
Introduction to object orientation

Perdita Stevens, University of Edinburgh

March 2010

What is an object?

Something you can do things to.

An object has state, behaviour and identity.

State can affect behaviour.

Behaviour can affect state.

Objects communicate by sending messages: the behaviour of an
object on receipt of a message is “up to the object”.

From objects to classes

Typical systems involve many very similar objects.

A class defines the structure and behaviour of similar objects.

In the languages we’ll consider a class C defines:

I C ’s interface, i.e. what messages any object of class C
understands, and some specification of the object’s behaviour
on receipt of a message

I C ’s implementation, i.e. some code that implements that
behaviour, some state (data) that is used.

Just as for individual objects:

Interface: public

Implementation: secret

Why use objects?

Original hope/hype was to

I reduce cost (time, in development and maintenance)

I improve quality

by

I making the design “naturally” match the domain

I achieving high levels of reuse



The secret of OO

When OO achieves these aims, it is usually not because of any of
the things that are specific to OO. Especially, reuse is a much less
important benefit than expected.

Instead it’s because

I the object oriented approach takes modularity, encapsulation
and abstraction as fundamental

I and OOPLs make them (comparatively!) easy, the obvious
way.

OO is a religion: it’s the people who become oriented towards
objects.

“Thinking objects” can be done in any language.

Modularity: why?

“The task of the software development team is to engineer the
illusion of simplicity.” (Booch)

And it needs engineering:

“The complexity of software is an essential property, not an
accidental one” (Brooks)

Already in 1965, Dijkstra was pointing out that real systems are
too complex for one person to understand as a whole. They have
not got simpler.

Separation of concerns

To accommodate human cognitive limitations and yet make
progress, we need some way to limit what needs to be understood.

Dijkstra actually had in mind “correctness”, “efficiency”,
“scalability” etc. as the concerns that needed to be separated.

Focus of modularity in software design is a more structural notion
of concern:

allow a developer to understand how one part of a system works
well enough to write/improve it, without needing to understand
the whole system that well.

What is a module?

A piece of code with a well-defined interface which encapsulates
some information about the code. E.g.

I subroutine

I library function

I class

I component

I subsystem

(Later we’ll consider getting the right modules with the right
interfaces: but observe that almost any modularity is better than
none.)



Defns from Booch (OOD with Apps)

encapsulation The process of hiding all the details of an object
that do not contribute to its essential characteristics;
typically, the structure of an object is hidden, as well
as the implementation of its methods. The terms
encapsulation and information hiding are usually
interchangeable.

abstraction The essential characteristics of an object that
distinguish it from all other kinds of objects and thus
provide crisply-defined conceptual boundaries relative
to the perspective of the viewer; the process of
focussing upon the essential characteristics of an
object.

Briefer characterisation

Abstraction limits how much you need to know about a module

Encapsulation limits how much you can know about a module
(...in some sense...)

Q: how exactly can not being able to know something be a benefit?

A: if it changes, you can be sure you weren’t relying on it

What’s a good module?

The problem was: Real systems are too complex for one person to
understand.

So aim of modules is to increase

I the understandability of the code, and hence

I the probability of correctness, and

I the ease of maintenance.

Ultimately understandability is determined in the human’s head.

Modules should have: meaning; high cohesion; low coupling.

Modules in OO

In OO systems the modules we think most about are the classes.

Classes are unusual modules though: they are instantiable!

The data of our program appears inside the instances of its
modules.

Classes are abstractions that should capture the key features of the
domain – they encapsulate state and the behaviour that alters that
state together.



Key domain abstractions

Basic idea: a class for each important thing in the problem
domain.

1. This is more stable than the requirements for a particular
system

2. and the resulting structure is easier for people to understand.

Starting point: take some text about the system, look at the noun
phrases.

Only later think about the behaviour required for this particular
application.

Encapsulation example

Format of data is a problem! In OO it’s the classic example of
something that should normally be hidden.

Even hide knowledge about whether or not it exists! information
hiding

E.g. suppose an application refers to a Point in 2D space, and can
get both its Cartesian co-ordinates (x , y) and its polar co-ordinates
(r , θ).

Do we store both sets, or do we store one and use that one to
calculate the other on demand?

The outside world shouldn’t know or care.

Relationships between classes

An object can’t do much on its own – it needs to cooperate with
other objects.

Since the behaviour of an object is defined in its class, this gives us
relationships between classes.

These are common and relate individual objects (and hence, their
classes):

I “sends a message to” (or specifically, “sends message XYZ
to”)

I “contains” (special case of the above!)

“is a kind of” is rarer and relates only classes.


