
More on object orientation

Perdita Stevens, University of Edinburgh

April 2010

Agenda

I Discussion of last time’s exercises

I More on abstraction and encapsulation: common pitfalls and
idioms to avoid them

I Overview of current OO languages, and languages with OO
features

I Conventions for designing using objects in C

Exercises

Please tick to show how you got on...

Questions, comments, problems?

Meta-comments: too easy/hard/short/long?

Aims for design

1. Flexibility (as opposed to rigidity)

2. Robustness (as opposed to fragility)

3. Reusability (as opposed to immobility)

Robert C. Martin wrote a great sequence of articles for the C++
report, on which I draw heavily in the next section.

See http://www.objectmentor.com.

http://www.objectmentor.com

The Open-Closed principle

“Software entities like classes, modules and functions should be
open for extension but closed for modifications.”

That is, you should be able to add new functionality for clients
that need it without needing to modify old stuff, and thus interfere
with clients that were already happy with the old version.

OCP classic example

You have 3 kinds of some entity already, and there may be more in
future. You could:

1. Write one class in which each method contains a case
statement with a case for each kind of entity.

2. Define a class for the entity, with a subclass for each kind of
entity.

2. satisfies the OCP better, because adding a new kind of entity
just means writing a new subclass, without modifying any existing
code.

Liskov substitution principle

“What is wanted here is something like the following substitution
property:

If

for each object o1 of type S

there is an object o2 of type T

such that

for all programs P defined in terms of T,

the behavior of P is unchanged when o1 is substituted for o2,

then S is a subtype of T. ”

Other ways to express LSP

Informally: if no client, that’s never heard of subclass S, can tell
anything’s changed when you give it an object of subclass S, then
creating S won’t have broken any client, so all is well.

“What you don’t know won’t hurt you.”

Alternatively:

Let q(x) be a property provable about objects x of type T . Then
q(y) should be true for objects y of type S where S is a subtype of
T .

Is LSP too strong?

All except the last version, yes. They make LSP independent of
any contract for T ’s behaviour, so they force S to preserve all of
T ’s behaviour – even things nobody ought to care about, e.g. the
order in which elements come out of an unordered set.

(Note the subtlety of the last formulation: provable vs true.)

Design by contract

says: there should be explicit contracts attached to the
responsibilities a class exists to fulfill.

A method has:

I a precondition – this must be true when the method is
invoked, or all bets are off

I a postcondition – the method promises to ensure this,
provided its precondition was met

A class has:

an invariant, which it must maintain.

Subclassing in DbyC

In Design by Contract terms, a subtype is a subcontractor to its
superclass.

It must

Demand no more; promise no less.

OK to strengthen postconditions;

OK to weaken preconditions;

but never the other way round.

Contracts vs no contracts

Explicit, formal contracts are great, and in principle let you check
that subclassing is safe.

But they are a pain to write and maintain.

Worth thinking about and documenting at least informally, at least
for crucial classes.

(Java Modeling Language...)

Common pitfall: high to low dependencies

You have your beautiful class C that offers high level services to its
clients. They can’t tell what low-level gubbins it depends on:
that’s all encapsulated.

So far so good.... but

1. when the low-level gubbins changes, clients are affected
nonetheless because your class has to be rewritten;

2. you can’t reuse C in a new application unless exactly the same
low-level gubbins is available.

Dependency inversion (Robert C. Martin)

(Slightly confusing name for a very basic principle)

“A. High-level modules should not depend on low-level modules.
Both should depend on abstractions. B. Abstractions should not
depend upon details. Details should depend upon abstractions.”

High-level module depends upon an abstract interface capturing
what it needs from a low-level module.

Low-level module depends on that interace too, as it implements it.

Law of Demeter

in response to a message m, an object O should send messages
only to the following objects:

1. O itself

2. objects which are sent as arguments to the message m

3. objects which O creates as part of its reaction to m

4. objects which are directly accessible from O, that is, using
values of attributes of O.

OOPLs

A biased selection:

Pure OO: Simula, Smalltalk

Less pure OO: Java, Python, C],...

Extensions of non-OOPLs: Objective C, C++, Perl5+,...

Others: CLOS, Oberon, Self, Scala...

Most relevant to you

I Java

I C++

I C]

Bonus: techniques for object orientation in C!

Common features

Java, C++ and C] are very similar:

I imperative (“do this; then do that” as opposed to e.g. “here’s
a function definition; here’s another”)

I class-based (as opposed to, say, prototype-based)

I statically typed (mostly)1

1Do not confuse static typing with static binding! A language is statically
typed in as far as the compiler will find the type errors.

In the beginning there was C

and then Bjarne Stroustrup came along.

C++ permits OO programming without sacrificing efficiency.

But Bjarne himself said:

C makes it easy to shoot yourself in the foot; C++ makes it
harder, but when you do it blows your whole leg off

Genesis of C++

1980 - 1983 “C with classes” (Bjarne Stroustrup)

1983/4 “C with classes” redesigned and renamed C++ (virtual fns
and operator overloading)

1985 C++ generally available

1989 C++ standardisation starts: X3J16 committee formed

1998 ISO/IEC 14882, Standard for the C++ Programming
Language

...

Guiding principles 1

1. Retain C as a (near) subset.

2. “Simplicity was an important design criterion: where
there was a choice between simplifying the language
definition and simplifying the compiler, the former
was chosen”

3. “Features that would incur run-time or memory
overhead even when not used were avoided”

Quotes from Stroustrup, The C++ Programming Language.

Guiding principles 2

“C++ type-checking and data-hiding features rely on
compile-time analysis of programs to prevent accidental
corruption of data. They do not provide secrecy or
protection against someone who is deliberately breaking
the rules.”

Stroustrup ibid, my emphasis.

How C++ adds OO features to C

New construct “class”. Classes are essentially structs (but with
default access control private).

Multiple inheritance.

Dynamic binding (“proper inheritance”) possible, but so is static
binding.

Lots of tightening up (e.g. enums more like real types: can’t do
arithmetic on them).

Memory management still explicit (new and delete).

Resources for learning more about C++: books

Bibles:

Bjarne Stroustrup, The C++ Programming Language
Margaret Ellis and Bjarne Stroustrup, The Annotated C++
Reference Manual

Bjarne Stroustrup, The Design and Evolution of C++

My favourite:

James O. Coplien, Advanced C++ Programming Styles and Idioms

Other people’s favourites:

Scott Meyers, Effective C++ : 50 Specific Ways to Improve Your
Programs and Designs

Scott Meyers, More effective C++

Java

Sun: James Gosling. Originated in 1991 as Oak targeted at
programming set-top boxes.

Java 1.0 released 1995, i.e. beginning of the web era.

C++ without the C-compatability-led compromises. Other aims:
robustness, security, portability, support for threads...

C]

Microsoft’s answer to Java, version 1.0 late 2001/early 2002.

Opinions differ about how novel it is... lots of jokes about how
close it is to Java, but Anders Hejlsberg, the main language
designer, says it is closer to C++.

In recent years influences have flowed both ways.

Shooting yourself in the foot 1

C You shoot yourself in the foot.

C++

You accidently create a dozen instances of yourself and shoot them
all in the foot. Providing emergency medical assistance is
impossible since you can’t tell which are bitwise copies and which
are just pointing at others and saying ”That’s me, over there.”

Shooting yourself in the foot in Java

You locate the Gun class, but discover that the Bullet class is
abstract, so you extend it and write the missing part of the
implementation. Then you implement the ShootAble interface for
your foot, and recompile the Foot class. The interface lets the
bullet call the doDamage method on the Foot, so the Foot can
damage itself in the most effective way. Now you run the program,
and call the doShoot method on the instance of the Gun class.
First the Gun creates an instance of Bullet, which calls the doFire
method on the Gun. The Gun calls the hit(Bullet) method on the
Foot, and the instance of Bullet is passed to the Foot. But this
causes an IllegalHitByBullet exception to be thrown, and you die.

or

Anybody can shoot themselves in any kind of foot with any kind of
gun that’s loaded with any kind of bullet. However, they can only
do it if their system is running a compatible Java Runtime
Environment.

Shooting yourself in the foot in C]

Copy how Java shot itself in the foot. Explain how you did it
better.

or

After searching for five hours, you find three seperate Foot and Gun
implementations on the MSDN. None of them works as described.

or

Of course you can shoot yourself in the foot as long as you declare
the code unsafe

or

Microsoft shoots you in the foot, then declares that this is the
standard way for people to shoot themselves in their feet.

Shooting yourself in the foot in Smalltalk

You spend so much time playing with the graphics and windowing
system that your boss shoots you in the foot, takes away your
workstation and makes you develop in COBOL on a character
terminal.

or

You send the message shoot to gun, with selectors bullet and
myFoot. A window pops up saying Gunpowder
doesNotUnderstand: spark. After several fruitless hours spent
browsing the methods for Trigger, FiringPin and IdealGas, you take
the easy way out and create ShotFoot, a subclass of Foot with an
additional instance variable bulletHole.

Sources for that digression

There are many, of course. I liked:

http://www-users.cs.york.ac.uk/susan/joke/foot.htm

http://digg.com/programming/How_to_Shoot_Yourself_in_the_Foot_in_

Any_Programming_Language

http://www.fullduplex.org/humor/2006/10/

how-to-shoot-yourself-in-the-foot-in-any-programming-language/

http://www-users.cs.york.ac.uk/susan/joke/foot.htm
http://digg.com/programming/How_to_Shoot_Yourself_in_the_Foot_in_Any_Programming_Language
http://digg.com/programming/How_to_Shoot_Yourself_in_the_Foot_in_Any_Programming_Language
http://www.fullduplex.org/humor/2006/10/how-to-shoot-yourself-in-the-foot-in-any-programming-language/
http://www.fullduplex.org/humor/2006/10/how-to-shoot-yourself-in-the-foot-in-any-programming-language/

Doing OO in C

... sort of a bit...

Recall: the main benefit of an OO approach is that it makes good
design – low coupling, high cohesion – easy. E.g. by

packaging data together that corresponds to the same domain
concept

encapsulating it

with a well-defined interface

so that clients depend on the interface, not the implementation

How to do it

Defining a set of “objects”:

typedef struct {
uint8 *data_storage;
...

} Data_buffer;

Then “methods” are functions that take a pointer to a
Data buffer as their first argument.

Don’t access data directly – use accessor functions.

Use .h files as interfaces that can have multiple implementations.

