
Introduction to the Unified Modeling Language

Perdita Stevens, University of Edinburgh

May 2010

Agenda

I Use cases
I textual representation
I basic use case diagram as summary of use cases

I Class diagrams
I Sequence diagrams

I realising use cases
I illustrating protocols etc.

I State diagrams, activity diagrams

I And the rest... deployment diagrams, component diagrams,
object diagrams, timing diagrams, etc.

I OCL and alternatives (programming language, English,
informal mathematics, formal specification lang.)

I Ways of modelling: agile modelling, executable modelling,
model-driven development, DSMLs

Approach

UML is a large language...

Today we’ll cover the absolute essentials.

Next time, we’ll add some of the “nice to know” stuff.

General warning: it is as hard to write correct UML as correct
Java, but there’s no compiler to tell you you’ve made a mistake.
Many books and websites contain incorrect UML – does it matter?
Sometimes...

Resources for learning more

Online resources are a mixed bunch.

Lots of good books...

The OMG standard itself http://www.uml.org

There is still a lot of material out there relating to UML1.x, and
UML2 is different in many ways.

http://www.uml.org

Use cases

document the behaviour of the system from the users’ points of
view. They help with three of the most difficult aspects of
development:

I capturing requirements

I planning iterations of development which are good for users

I meaningful system testing

First introduced by Ivar Jacobson (early 90s), developing from
scenarios. Independent of OO – strength or weakness??

Simple use case diagrams are easy to understand: can be useful for
communication between customers and developers.

A simple use case diagram

Browser

Librarian

JournalBorrower

BookBorrower

Reserve book

Borrow copy of book

Return copy of book

Extend loan

Borrow journal

Update catalogue

Browse

Return journal

Textual use cases

The diagram is just a summary. Usually behind each use case is a
structured textual description e.g. with sections:

I Use Case Name – short, descriptive

I Goal in Context – sentence

I Preconditions

I Success End Condition – to hold normally

I Failed End Condition – to hold even on failure

I Primary Actor(s)

I Secondary Actor(s), if any –

I Trigger – could be a time event

I Main success scenario – sequence of numbered steps

I Extensions – exceptional and failure cases

Recommendation: Writing Effective Use Cases, Alistair Cockburn.

Actors

An actor – shown as a stick figure – can be:

I a human user of the system in a particular rôle

I an external system, which in some rôle interacts with the
system.

More specifically, a particular kind of user. E.g, bank has many
customers, but we only show one Customer actor on the diagram.

The same human user or external system may interact with the
system in more than one rôle: he/she/it will be (partly)
represented by more than one actor. (e.g., a bank teller may
happen also to be a customer of the bank).

What is a use case?

A coherent work unit of the system which has value for an actor,
e.g. Borrow copy of book.

Shown on diagram as named oval.

Also includes (textual) description of the (a?) sequence of
messages exchanged between the system and any actors, and
actions performed by the system, in order to realise the
functionality.

Connection between use case descriptions and other forms of
requirements documentation is rather controversial.

Use cases: scope and connections

A use case:

I may include logic to handle unusual or alternative courses,
e.g. “if the BookBorrower has the maximum number of
books on loan already, refuse this loan” even though these
may result in the actor being unsatisfied.

I may be associated with other UML models which show how it
is realised.

A use case diagram summarises all the tasks performed by the
system (or subsystem, etc.)

Requirements capture

Use cases can help with requirements capture by providing a
structured way to go about it:

1. identify the actors

2. for each actor, find out
I what they need from the system
I any other interactions they expect to have with the system
I which use cases have what priority for them

There may be aspects of system behaviour that don’t show easily
show up as use cases for actors.

Analysis vs design

Some actors are part of the requirements: usually the ones who
derive benefit from a use case.

Others are part of the (business process) design: the ones who
interact with the computer system to provide the benefit.

For example, consider a FindBook use case of a library, in which
the user enters details of a book and wants to end up with a copy
of it. Maybe the system will give the user directions to where the
book is on the shelf. Maybe it will alert a librarian to go and fetch
it. In the latter case, should the librarian be shown as actor? In
some sense, the choice is a design decision.

Using use cases in development

Use cases are a good source of system tests: requirements
documented as desired interactions, which translate easily into
tests.

They can also help to validate a design. You can walk through how
a design realises a use case, checking that the set of classes
provides the needed functionality and that the interactions are as
expected.

Use cases are not limited to documenting the whole system: they
may describe any classifier, e.g. subsystem, class, COMPONENT.

What use cases are not

Use cases document the requirements of a system: not the whole
business process into which the system fits.

For example, UML does not permit associations between actors:
you cannot legally use a use case diagram to show an interaction
between two humans followed by one of them using a system.
(E.g. can’t legally show librarian and library member as separate
actors in Borrow Book, if only the librarian interacts directly with
the system.)

There are extensions to UML to allow business process modelling,
not considered here.

A class

Book

A class as design entity is an example of a model element: the
rectangle and text form an example of a corresponding
presentation element.

UML explicitly separates concerns of actual symbols used vs
meaning.

An object

jo : Customer

This pattern generalises: always show an instance of a classifier
using the same symbol as for the classifier, labelled
instanceName : classifierName.

Classifiers and instances

An aspect of the UML metamodel that it’s helpful to understand
up front.

An instance is to a classifier as an object is to a class: instance
and classifier are more general terms.

(In the metamodel, Class inherits from Classifier, Object inherits
from Instance.)

We’ll see many other examples of classifiers.

Showing attributes and operations

Book

title : String

copiesOnShelf() : Integer
borrow(c:Copy)

Syntax for signature of operations (argument and return types)
adaptable for different PLs. May be omitted (together) – but the
formal parameter name is compulsory when the argument list is
given(!)

Compartments

We saw the standard:

I a compartment for attributes

I a compartment for operations, below it

They can be suppressed in diagrams.

They are omitted if empty.

You can have extra compartments labelled for other purposes, e.g.,
responsibilities.

Visibility

Book

+ title : String

- copiesOnShelf() : Integer
borrow(c:Copy)

Can show whether an attribute or operation is

I public (visible from everywhere) with +

I private (visible only from inside objects of this class) with −

(Or protected (#), package (∼) or other language dependent
visibility.)

Association between classes

BookCopy
is a copy of

This generalises: association between classifiers is always shown
using a plain line.

An instance of an association connects objects (e.g. Copy 3 of War
and Peace with War and Peace).

An object diagram contains objects and links: occasionally useful.

Rolenames on associations

Director of
Studies

StudentdirecteeDoS

Can show the role that one object plays to the other.

Useful when documenting the class: e.g. a class invariant for
DirectorOfStudies could refer to the associated Student objects as
self.directee (a set, if there can be more than one).

Multiplicity of association

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

1 0..*

1 0..*

borrows/returns

borrows/returns

borrows/returns
1

0..*

is a copy of

Commas for alternatives, two dots for ranges, * for unknown
number. E.g. each Copy is a copy of exactly one Book; there must
be at least one Copy of every Book.

Generalisation

LibraryMember

MemberOfStaff

This generalises: generalisa-
tion between classifiers is al-
ways shown using this arrow.

Abstract operations and classes

An operation of a class is abstract if the class provides no
implementation for it: thus, it is only useful if a subclass provides
the implementation.

A class which cannot be instantiated directly – for example,
because it has at least one abstract operation – is also called
abstract.

Can show abstract operation or class using italics for the name,
and/or using the property {abstract}.

Interfaces

pr
in

ts

Stringifiable

<<interface>>
Stringifiable

stringify() : String

Module

stringify() : String

Printer

...

<<uses>>

...

Simpler diagram: WRITE ONCE

<<interface>>
Stringifiable

stringify() : String

Printer

pr
in

ts

Stringifiable

Module

stringify() : String

...

...

Many things other than classes can realise interfaces: can use the
lollipop symbol on e.g. components, actors.

Interfaces, newer notation

<<interface>>
Stringifiable

stringify() : String

Module

stringify() : String

Printer

...

<<use>>

...

Stringifiable

Designed relationships between classes

So far we’ve dealt with what Fowler calls the conceptual model.
We’ve identified the key domain abstractions and the conceptual
relationships between them.

Here we look at more advanced features of class models, especially
at how to record information pertaining to the design.

Dependencies

To make the system maintainable we want to minimise the
dependencies between parts of the system. Not all “real world”
connections are reflected in the system.

A is dependent on B if a change to B may force a change to A.

What counts as a change is context-dependent.

Aim to avoid complex dependencies especially circular ones.

Dependencies in UML

Dependencies are shown using a dotted arrow:

A B

We’ve seen them between use cases and between a class and an
interface: used generally for “relationship not otherwise specified”.

Note that some dependencies are implied, and need not be
repeated: for example any class depends on its superclasses.

Circular dependencies

going through more than one “sensible reuse unit”.

E.g. (from Webster p228):

graphical rendering subsystem uses calls from text
rendering subsystem uses calls from line layout subsystem
uses calls from graphical rendering subsystem.

It’s quite easy to get this by accident: one reason why we delay
deciding in which direction our associations are navigable.

Problem: if this happens you can say goodbye to reuse. It’s also
very hard to understand.

Navigability

Student Moduleis taking

1..* 6

When should the navigability of an association be decided?

Some experts believe vehemently that you should never identify an
association without deciding its navigability. Others disagree.

“As early as possible, but no earlier.”

An aggregation relationship

HonoursCourse Module
1..* 6..*

Non-exclusive part relationship.

A common fault is identifying too many aggregations. If in doubt
use plain association.

An composition relationship

Board Square
9

1

Exclusive part relationship.

Interaction diagrams

describe the dynamic interactions between objects in the system,
i.e. the pattern of message-passing.

Two main uses:

I Showing how the system realises [part of] a use case

I Showing how an object reacts to some message

Particularly useful where the flow of control is complicated, since
this can’t be deduced from the class model, which is static.

UML has two sorts, sequence and communication diagrams – the
differences are syntactic.

Developing an interaction diagram

1. Decide exactly what behaviour to model.

2. Check that you know how the system provides the behaviour:
are all the necessary classes and relationships in the class
model?

3. Name the objects which are involved.

4. Identify the sequence of messages which the objects send to
one another.

5. Record this in the syntax of a sequence or communication
diagram.

Sequence diagram

LibraryMember
theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

okToBorrow

borrow
borrowed

aMember : BookBorrower

Showing more detail

��
��

��
��

��
��
�

��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
�
��
�

��
��

		
		

��
�

��
��

���
�

borrow(theCopy)

borrow
borrowed

:LibraryMember :Copy : Book

okToBorrow

aMember : BookBorrower

Creation/deletion in sequence diagram

n=getName()

:Lecturer

:DirectorOfStudies

:UTO
getName()

new DirectorOfStudies (n)

destroy()

Modelling asynchronous communication

So far we’ve only shown single-threaded synchronous behaviour –
messages are sent and replied to. Can also use sequence diagrams
to show asynchronous communication, using different arrowheads.

Interaction type Symbol Meaning

Synchronous or call –I The ‘normal’ procedural situation. The sender
loses control until the receiver finishes handling
the message, then gets control back, which can
optionally be shown as a return arrow.

Return <– – Not a message, but a return from an earlier
message. Unblocks a synchronous send.

Asynchronous → The sender does not lose control; it sends the
message and may continue immediately. The
recipient of the message may also become ac-
tive, if it wasn’t already.

Showing more than one scenario

Sequence diagrams are most useful for showing just one, linear,
sequence of events – an example of what may happen, not a full
description of everything that could happen.

Sometimes you want to go further. UML1.x had some ad hoc
notation for it involving splitting object lifelines etc. UML2 does
this more systematically with fragments. We’ll just see a few
examples...

opt [ok to borrow]

LibraryMember

theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

borrow

borrowed

aMember : BookBorrower

alt

: Reservations

returned(self)

[reservation]

[else]

borrow(theCopy)

notifyAvailability(self)

: Book: Copy

loop [for each legal move m]

getBestMove

evaluate(m)

: AutoPlayer

: StrategyBuilder : moveEvaluator

Effects of interactions on objects

So far we’ve seen how to model:

I the requirements of the system with use cases

I the structure of the system with a class model

I the interactions between objects with interaction diagrams

Interactions describe how an object reacts to an event that forms
part of that particular interaction. (“What happens next?”)

But what determines this? In particular, the same object may react
to the same event in different ways, depending on its internal state.

We model this using state diagrams.

State diagrams

Useful for showing the way that an object of a given class changes
state, if it has qualitatively different internal states. May include:

I states

I events that cause transitions between states

I guards that must be true for a transition to take place

I actions that are caused by a given transition

I activities that take place when in a certain state

I start and end markers

States may be nested - but most classes will not even need
statecharts.

Protocol state machines

The simplest – and most useful – state machines are called
protocol state machines because they document a protocol for
interacting with an object.

E.g. what sequences of messages make sense?

They show how an object’s state changes on receipt of messages,
but not what the object does to the rest of the system, e.g. what
messages it sends.

A simple state diagram

return()

borrow()

on loan on the shelf

What are the states?

If we could draw infinite1 diagrams, we could represent each set of
values for an object’s attributes and links as a separate state and
show exactly what happens when the object receives each message.
We could include as much detail as the code.

In practice, a state represents an equivalence class of attribute
(and link) values: objects which behave qualitatively the same way
are in the same state.

That is, a real state diagram represents an abstraction of the
“ideal” (and useless!) state diagram.

1OK, computers are finite...

Transitions in more detail

When an object passes from one state to another it does so as a
result of an event, e.g. receiving a message. In addition to
changing state, the object may react in some way e.g. by sending a
message. Such (re)actions are shown after the slash: event/action.

Sometimes an event causes a state change only if a guard is
satisfied. The guard is shown: event[guard] / action.

An event is something done to the object:
an action is something the object does.

State diagram for Book, with guards

not borrowable borrowable
returned()

borrowed()[last copy]

returned()

borrowed()[not last copy]

State diagram for Copy, showing actions

on loan on the shelf

return()/book.returned(self)

borrow()/book.borrowed(self)

Cautionary note

It is possible to use state diagrams with actions very heavily to
define the behaviour of whole systems, by having a state diagram
for each component.

UML’s semantics of state diagrams is run-to-completion which
roughly means that when an event is processed, all the transitions
caused directly or indirectly by that event must happen, before the
next event is processed.

However, looked at in detail the UML semantics do not actually
make much sense where these actions are themselves synchronous
messages...

Advice: either stick to asynchronous actions, or treat actions as
comments.

Activity diagrams

Useful as an alternative to interaction (sequence or
communication) diagrams for:

I detailing a use case

I explaining an an object’s reaction to a message

Also useful for showing the dependencies between use cases: e.g.
workflow of an organisation.

Pros and cons of activity diagrams

Advantages:

I Can show parallel activities, so make dependencies and
non-dependencies explicit: avoid premature design

I Much the best way to document dependencies between use
cases.

Disadvantages:

I Not automatically clear who/what carries out an activity; can
be hard to make the connection with underlying objects...

I ... swimlanes attempt to help

Activity diagram - BOX SHAPE WRONG

prepare for
next member

find book on shelf

wait in queue

borrowing

record

record
return

put book back
on shelf

[borrower]

[returner]

[returning]

[borrowing]

member librarian

