
Model-driven development,
traceability and games

Perdita Stevens

May 2009



Welcome!

Relevant courses (not pre-requisites!) include:

I Software engineering with objects and components

I Programming Methodology

I Software System Design

I Communication and Concurrency



Models

For purposes of this talk:

A model is any artefact relating to a software system.

E.g.

I any diagrammatic abstraction of the design, e.g. in UML

I a set of requirements in stylised “numbered sentence” form

I the source code

I a test suite

A model can often be formalised as a graph of connected model
elements, which conforms to a set of rules embodied in a
metamodel.



Models

For purposes of this talk:

A model is any formalisable artefact relating to a software system.

E.g.

I any diagrammatic abstraction of the design, e.g. in UML

I a set of requirements in stylised “numbered sentence” form

I the source code

I a test suite

A model can often be formalised as a graph of connected model
elements, which conforms to a set of rules embodied in a
metamodel.



How are models used?

(Thinking principally about diagrammatic abstractions for now)

Principally: for communication between humans.

The process of developing a model helps clarify thought about the
system.

Giving someone a model can help them understand the system or
its development.

If a model is still up to date, it can help maintainers.



The trouble with models

They are necessary, but expensive to develop and keep up to date.

Two reactions are possible:

1. reduce cost: the agile approach. Model on a whiteboard, and
only for a present purpose.

2. increase benefit: the modelling approach. Use well-defined
modelling languages; use models throughout development;
generate code and documentation from them; verify them;
etc.

Ideally, reducing cost and increasing benefit are not mutually
exclusive.

As soon as you have any long-lived model, traceability becomes
important.



Traceability

The ability to trace the influence of one software engineering
artifact, or part of an artifact, on another, in order to

I understand the system (“why’s that like that?”)

I analyse the impact of (proposed) changes to an artefact
(“what might break if we change that?”)

I debug (“what could be causing THAT?!”)

I communicate (“who should know about that?”)



Classic traceability

requirements ←→ code ←→ tests

Traditional approach: traceability matrix, e.g.

contributes to n1 n2 n3 n4 n5

m1 X
m2 X
m3 X X X X
m4 X

Mature tool support, e.g. DOORS.



The Traceability Benefit Problem*

Ensuring traceability is “a duty honour’d in the breach”.

Mountains of research work, over decades, lots of techniques.

Sometimes mandated; but in many projects, hardly done.

Why? The cost-benefit comparison doesn’t favour it.

Term ?coined by Arkley and Riddle, Overcoming the TBP, ICRE’05



The Traceability Benefit Problem*

Ensuring traceability is “a duty honour’d in the breach”.

Mountains of research work, over decades, lots of techniques.

Sometimes mandated; but in many projects, hardly done.

Why? The cost-benefit comparison doesn’t favour it.

Term ?coined by Arkley and Riddle, Overcoming the TBP, ICRE’05



The Traceability Benefit Problem*

Ensuring traceability is “a duty honour’d in the breach”.

Mountains of research work, over decades, lots of techniques.

Sometimes mandated; but in many projects, hardly done.

Why? The cost-benefit comparison doesn’t favour it.

Term ?coined by Arkley and Riddle, Overcoming the TBP, ICRE’05



The Traceability Benefit Problem*

Ensuring traceability is “a duty honour’d in the breach”.

Mountains of research work, over decades, lots of techniques.

Sometimes mandated; but in many projects, hardly done.

Why? The cost-benefit comparison doesn’t favour it.

Term ?coined by Arkley and Riddle, Overcoming the TBP, ICRE’05



So what’s the problem?

The cost of collecting and maintaining traceability information is
high because of

I CHANGE, above all; and:

I different people and groups controlling different artefacts;

I tool and semantic incompatibility.

The benefit is often lower than hoped, e.g. because of poor quality
or missing information.

More subtly, sometimes it’s clear there are easier ways to achieve
the same benefit.

In theory, developing and maintaining traceability links ought to be
worth the cost;
in practice, it isn’t.



So what’s the problem?

The cost of collecting and maintaining traceability information is
high because of

I CHANGE, above all; and:

I different people and groups controlling different artefacts;

I tool and semantic incompatibility.

The benefit is often lower than hoped, e.g. because of poor quality
or missing information.

More subtly, sometimes it’s clear there are easier ways to achieve
the same benefit.

In theory, developing and maintaining traceability links ought to be
worth the cost;
in practice, it isn’t.



Automation

Much of the Traceability Benefit Problem derives from the cost
and unreliability of manually maintaining the information.

If this can be automated, problem solved?

Enter Model-Driven Development.



Imagine...

You could take the source code and functional requirements
specification of an implemented software system,

delete and change (and add?!) some requirements

and have the source code automatically modified to suit.

You can’t, of course, but with intermediate, more closely related
models, e.g. platform independent model and platform specific
model, this is the idea of MDD.



Imagine...

You could take the source code and functional requirements
specification of an implemented software system,

delete and change (and add?!) some requirements

and have the source code automatically modified to suit.

You can’t, of course, but with intermediate, more closely related
models, e.g. platform independent model and platform specific
model, this is the idea of MDD.



Model-driven development

Model-driven development (aka model-driven architecture), very
fashionable, pushed by Object Management Group members.

Idea is to get much, much more benefit from modelling:
ultimately, eliminate some activities, e.g. coding, completely.



MDD and traceability

MDD is often sold by the “no more coding” side, but maybe the
traceability benefit is actually more important/more realistic.

That is, even if we still have to do hard work on each model, it’s
possible MDD would be worthwhile just for the traceability win.

Even if your tool could only check consistency, this might already
be a big win if it did it well enough.

Model transformations specify the connections between models.



Model transformations may

Generate a model:

– take one model, return another

Check consistency of two models:

– take two (or more) models, return true/false (and trace
information?)

Update a model:

– take a human-modified model and another it’s supposed to be
consistent with, (and ???) and return a modified form of the
second.

(Also e.g. diffing, merging, synchronisation of several models.)

Need languages to express the transformations.



Model transformation languages

Of course you can write a model transformation in any language,
e.g. Java.

Problems include:

I hard to write concise, readable transformations in a
general-purpose language;

I for a bidirectional transformations, you’d have to write two
programs and keep them consistent by hand – nightmare.

So many special-purpose transformation languages have been
developed.



QVT Relations

OMG standard language, pretty much finalised in 2005.

Declarative, bidirectional, based on specifying relations on parts of
models.

Exactly two tools, ever: Medini QVT (open source engine);
ModelMorf (defunct)

Sufficient problem:
this kind of language really needs clear semantics!



QVT Relations

OMG standard language, pretty much finalised in 2005.

Declarative, bidirectional, based on specifying relations on parts of
models.

Exactly two tools, ever: Medini QVT (open source engine);
ModelMorf (defunct)

Sufficient problem:
this kind of language really needs clear semantics!



A basic relation

transformation Basic (m1 : MM ; m2 : MM)
{
top

relation ThingsMatch
{
s : String;
checkonly domain m1 thing1:Thing {value = s};
checkonly domain m2 thing2:Thing {value = s};

}

}

Relation ThingsMatch holds of bindings to thing1 in model m1
and thing2 in model m2 provided that

thing1.value = thing2.value



A basic relation

transformation Basic (m1 : MM ; m2 : MM)
{
top relation ThingsMatch
{
s : String;
checkonly domain m1 thing1:Thing {value = s};
checkonly domain m2 thing2:Thing {value = s};

}
}

Transformation Basic returns true when executed in the direction
of m2 iff for every binding to thing1 in model m1 there exists a
binding to thing2 in model m2 such that

thing1.value = thing2.value



Invoking relations: where clauses (omitting when clauses)

“The where clause specifies the condition that must be satisfied by all model
elements participating in the relation, and it may constrain any of the variables
in the relation and its domains. Hence, whenever the ClassToTable relation
holds, the relation AttributeToColumn must also hold.”

relation ClassToTable

{

domain uml c:Class { ... stuff ...}

domain rdbms t:Table { ... stuff ... }

where { AttributeToColumn(c, t); }

}



Example transformation

transformation Sim (m1 : MM ; m2 : MM)

{

top relation ContainersMatch

{

inter1,inter2 : MM::Inter;

checkonly domain m1 c1:Container {inter = inter1};

checkonly domain m2 c2:Container {inter = inter2};

where {IntersMatch (inter1,inter2);}

}

relation IntersMatch

{

thing1,thing2 : MM::Thing;

checkonly domain m1 i1:Inter {thing = thing1};

checkonly domain m2 i2:Inter {thing = thing2};

where {ThingsMatch (thing1,thing2);}

}

relation ThingsMatch

{

s : String;

checkonly domain m1 thing1:Thing {value = s};

checkonly domain m2 thing2:Thing {value = s};

}

}

value="c"

a1:Container

i1:Inter

tc1:Thing

xi:Inter

xc:Thing

value="c"

xd:Thing

value="d"

Model M1

xa:Container

Model M2



What does this remind us of?

A process B = (SB , iB , LB ,→B) is said to simulate a process
A = (SA, iA, LA,→A) if there exists a simulation relation
S ⊆ SA × SB containing (iA, iB).

The condition for the relation to be a simulation relation is the
following:

(s, t) ∈ S ⇒ (∀a, s ′ .(s
a→ s ′ ⇒ ∃t ′ . t

a→ t ′ ∧ (s ′, t ′) ∈ S))

and this is easily reformulated as a two-player game.



QVT Relations checking as a game

Take:

I a pair of metamodels

I a QVT-R transformation;

I models m1 and m2 conforming to the metamodels.

Assume we have a way of checking conformance to metamodel and
“local” checking inside relations.

Let’s define game G to check in the direction of model m2.

Two players, Verifier who wants the check to succeed, Refuter who
wants it to fail.



QVT Relations checking as a game

Take:

I a pair of metamodels

I a QVT-R transformation;

I models m1 and m2 conforming to the metamodels.

Assume we have a way of checking conformance to metamodel and
“local” checking inside relations.

Let’s define game G to check in the direction of model m2.

Two players, Verifier who wants the check to succeed, Refuter who
wants it to fail.



Refuter

top relation ContainersMatch

{

inter1,inter2 : MM::Inter;

checkonly domain m1 c1:Container {inter = inter1};

checkonly domain m2 c2:Container {inter = inter2};

where {IntersMatch (inter1,inter2);}

}

:Inter

:Thing

value="c"

:Thing

value="d"

Model M1

:Container

Model M2

value="c"

:Container

:Inter

:Thing



Refuter;Verifier

top relation ContainersMatch

{

inter1,inter2 : MM::Inter;

checkonly domain m1 c1:Container {inter = inter1};

checkonly domain m2 c2:Container {inter = inter2};

where {IntersMatch (inter1,inter2);}

}

:Inter

:Thing

value="c"

:Thing

value="d"

Model M1

:Container

Model M2

value="c"

:Container

:Inter

:Thing



Refuter;Verifier;Refuter

top relation ContainersMatch

{

inter1,inter2 : MM::Inter;

checkonly domain m1 c1:Container {inter = inter1};

checkonly domain m2 c2:Container {inter = inter2};

where {IntersMatch (inter1,inter2);}

}

:Inter

:Thing

value="c"

:Thing

value="d"

Model M1

:Container

Model M2

value="c"

:Container

:Inter

:Thing



Refuter;Verifier;Refuter

relation IntersMatch

{

thing1,thing2 : MM::Thing;

checkonly domain m1 i1:Inter {thing = thing1};

checkonly domain m2 i2:Inter {thing = thing2};

where {ThingsMatch (thing1,thing2);}

}

:Inter

:Thing

value="c"

:Thing

value="d"

Model M1

:Container

Model M2

value="c"

:Container

:Inter

:Thing



Refuter;Verifier;Refuter;Verifier

relation IntersMatch

{

thing1,thing2 : MM::Thing;

checkonly domain m1 i1:Inter {thing = thing1};

checkonly domain m2 i2:Inter {thing = thing2};

where {ThingsMatch (thing1,thing2);}

}

:Inter

:Thing

value="c"

:Thing

value="d"

Model M1

:Container

Model M2

value="c"

:Container

:Inter

:Thing



Refuter;Verifier;Refuter;Verifier ;Refuter

relation IntersMatch

{

thing1,thing2 : MM::Thing;

checkonly domain m1 i1:Inter {thing = thing1};

checkonly domain m2 i2:Inter {thing = thing2};

where {ThingsMatch (thing1,thing2);}

}

:Inter

:Thing

value="c"

:Thing

value="d"

Model M1

:Container

Model M2

value="c"

:Container

:Inter

:Thing



Refuter;Verifier;Refuter;Verifier;Refuter

relation ThingsMatch

{

s : String;

checkonly domain m1 thing1:Thing {value = s};

checkonly domain m2 thing2:Thing {value = s};

}

:Inter

:Thing

value="c"

:Thing

value="d"

Model M1

:Container

Model M2

value="c"

:Container

:Inter

:Thing



Refuter;Verifier;Refuter;Verifier;Refuter;VERIFIER LOSES!

relation ThingsMatch

{

s : String;

checkonly domain m1 thing1:Thing {value = s};

checkonly domain m2 thing2:Thing {value = s};

}

:Inter

:Thing

value="c"

:Thing

value="d"

Model M1

:Container

Model M2

value="c"

:Container

:Inter

:Thing



Summary of moves (missing out when)

Position Next position Notes

Initial (Ref.) (Verifier, R, B) R is any top relation; B com-
prises valid bindings for all vari-
ables from m1 domain

(Verifier, R, B) (Refuter, R, B ′) B ′ comprises B together with
bindings for any unbound m2 vari-
ables.

(Refuter, R, B) (Verifier, T , D) T is any relation invocation from
the where clause of R; D com-
prises B’s bindings for the root
variables of patterns in T , to-
gether with valid bindings for all
m1 variables in T .



Adding when-clauses

relation ClassToTable
{
domain uml c:Class { ... stuff mentioning p ...}
domain rdbms t:Table { ... stuff mentioning s ... }
when { PackageToSchema(p, s); }
where { AttributeToColumn(c, t); }

}

Allow Verifier to “counter-challenge” a when-clause... players swap
roles...

(see paper for details)



Adding when-clauses

relation ClassToTable
{
domain uml c:Class { ... stuff mentioning p ...}
domain rdbms t:Table { ... stuff mentioning s ... }
when { PackageToSchema(p, s); }
where { AttributeToColumn(c, t); }

}

Allow Verifier to “counter-challenge” a when-clause... players swap
roles...

(see paper for details)



Winning conditions

As always, you win if your opponent can’t go.

We saw Verifier unable to pick a matching valid binding.

In another play, Refuter might have had no where relation to pick.

But what about infinite plays?

Could just forbid: insist graph of relations with when-where edges
be a DAG.

Or should Verifier (rsp. Refuter) lose a play that goes infinitely
often through when (rsp. where) clauses (only)? Etc.?

NB QVT spec doesn’t address the issue at all – corresponds to
infinite regress of its definitions.



Winning conditions

As always, you win if your opponent can’t go.

We saw Verifier unable to pick a matching valid binding.

In another play, Refuter might have had no where relation to pick.

But what about infinite plays?

Could just forbid: insist graph of relations with when-where edges
be a DAG.

Or should Verifier (rsp. Refuter) lose a play that goes infinitely
often through when (rsp. where) clauses (only)? Etc.?

NB QVT spec doesn’t address the issue at all – corresponds to
infinite regress of its definitions.



Winning conditions

As always, you win if your opponent can’t go.

We saw Verifier unable to pick a matching valid binding.

In another play, Refuter might have had no where relation to pick.

But what about infinite plays?

Could just forbid: insist graph of relations with when-where edges
be a DAG.

Or should Verifier (rsp. Refuter) lose a play that goes infinitely
often through when (rsp. where) clauses (only)? Etc.?

NB QVT spec doesn’t address the issue at all – corresponds to
infinite regress of its definitions.



Winning conditions

As always, you win if your opponent can’t go.

We saw Verifier unable to pick a matching valid binding.

In another play, Refuter might have had no where relation to pick.

But what about infinite plays?

Could just forbid: insist graph of relations with when-where edges
be a DAG.

Or should Verifier (rsp. Refuter) lose a play that goes infinitely
often through when (rsp. where) clauses (only)? Etc.?

NB QVT spec doesn’t address the issue at all – corresponds to
infinite regress of its definitions.



Trace objects and the game

Verifier has a winning strategy iff the two models are consistent in
the direction considered (e.g., the target was correctly produced
from the source).

What does such a winning strategy look like?

Like a set of trace objects.

Issue: how close is the connection between the “patchwork”
structure of the transformation, the strategy and the models?



Trace objects and the game

Verifier has a winning strategy iff the two models are consistent in
the direction considered (e.g., the target was correctly produced
from the source).

What does such a winning strategy look like?

Like a set of trace objects.

Issue: how close is the connection between the “patchwork”
structure of the transformation, the strategy and the models?



Bidirectionality

So far we’ve only hinted at the issues raised by bidirectionality.

What do we mean by it, anyway?

A bidirectional model transformation must be able to propagate
changes to either model.

Examples:

I requirements ←→ tests

I platform independent model ←→ platform specific model ←→
source code

I database instance ←→ modifiable view

Non-examples:

I source code −→ binary

I database −→ read-only view



Consistent, both ways

xi:Inter

xc:Thing

value="c"

xd:Thing

value="d"

Model M1

value="c"value="c" value="d"

Model M2

xa:Container a2:Container a1:Container

i2:Inter i1:Inter

tc1:Thingtc2:Thing td:Thing



But with no bidirectional trace objects

xc:Thing

value="c"

xd:Thing

value="d"

Model M1

value="c"value="c" value="d"

Model M2

xa:Container a2:Container a1:Container

i2:Inter i1:Inter

tc1:Thingtc2:Thing td:Thing

xi:Inter

t:CTrace

X



What if we fiddle the game?

Let the player who’s choosing bindings also choose which domain
to choose them from. Then the other player has to match from
the other domain.

Refuter then has a winning strategy for the previous example...

Probably there are bidirectional trace objects, now?

This is definitely not doing what it says in the QVT spec – but
maybe it’s DWIM?



What if we fiddle the game?

Let the player who’s choosing bindings also choose which domain
to choose them from. Then the other player has to match from
the other domain.

Refuter then has a winning strategy for the previous example...

Probably there are bidirectional trace objects, now?

This is definitely not doing what it says in the QVT spec – but
maybe it’s DWIM?



Bisimulation

A process B = (SB , iB , LB ,→B) is said to bisimulate a process
A = (SA, iA, LA,→A) if there exists a bisimulation relation
S ⊆ SA × SB containing (iA, iB).

The condition for the relation to be a bisimulation relation is the
following:

(s, t) ∈ S ⇒
((∀a, s ′ .(s

a→ s ′ ⇒ ∃t ′ . t
a→ t ′ ∧ (s ′, t ′) ∈ S)) ∧

(∀a, t ′ .(t
a→ t ′ ⇒ ∃s ′ . s

a→ s ′ ∧ (s ′, t ′) ∈ S)))

Exactly analogous difference in the game: allow Refuter to choose
which process to challenge from, making a new choice each time.



Conclusion and ongoing work

A simple game, can help explain what QVT-R means...

... but also exposes false assumptions.

How does the community react to the bisimulation-based
interpretation of QVT-R?

Can this also help explain enforcing transformations, i.e., how
inconsistencies between models should be corrected?


