
SoSyM manuscript No.
(will be inserted by the editor)

Bidirectional model transformations in QVT:
semantic issues and open questions

Perdita Stevens?

School of Informatics, University of Edinburgh

December 9, 2009

Abstract We consider the OMG’s Queries, Views and Transformations
(QVT) standard as applied to the specification of bidirectional transfor-
mations between models. We discuss what is meant by bidirectional trans-
formations, and the model-driven development scenarios in which they are
needed. We analyse the fundamental requirements on tools which support
such transformations, and discuss some semantic issues which arise. In par-
ticular, we show that any transformation language sufficient to the needs of
model-driven development would have to be able to express non-bijective
transformations. We argue that a considerable amount of basic research is
needed before suitable tools will be fully realisable, and suggest directions
for this future research.

Keywords: bidirectional model transformation, QVT, model-driven de-
velopment, semantics

1 Introduction

The central idea of the OMG’s Model Driven Architecture is that human
intelligence should be used to develop models, not programs. The main in-
tention behind this manifesto is not to privilege a graphical over a textual
representation, but rather to press for the developer to be enabled to work
at as high a level of abstraction as is feasible. Routine work should be, as
far as possible, delegated to tools, and the human developer’s intelligence
should be used to do what tools cannot. To this end, it is envisaged that
a single platform independent model (PIM) might be created and trans-
formed, automatically, into various platform specific models (PSMs) by the
systematic application of understanding concerning how applications are

? Email: perdita@inf.ed.ac.uk. Fax: +44 131 651 1426



2 Perdita Stevens

best implemented on each specific platform. The OMG’s Queries, Views
and Transformations (QVT) standard [13] defines languages in which such
transformations can be written.

In this paper we will discuss bidirectional transformations, focusing on
basic requirements which such transformations should satisfy.

This paper is an extended version of the conference paper [14] presented
in MODELS’07. Compared with the conference version, the present pa-
per adds a more extensive discussion of the requirements that should be
placed on bidirectional transformations; an example to show that correct-
ness and hippocraticness alone do not suffice; and a discussion of the argu-
ment against as well as for Undoability. We newly discuss the expressivity
of QVT Relations for writing non-bijective transformations. We provide
a fuller comparison of our proposed framework with the lens approach of
Pierce et al. We have also expanded the explanation of several points that
have proved to have been less clear than they could have been. Finally, we
include proofs of all formal results.

The structure of the paper is as follows. In the remainder of this section,
we motivate bidirectional transformation, and especially, the need for non-
bijective bidirectional transformations; we then discuss related work. Section
2 briefly summarises the most relevant aspects of the QVT standard. Section
3 discusses key semantic issues that arise. Section 4 proposes and motivates
a framework and a definition of “coherent transformation”. Finally Section
5 concludes.

In order to justify the considerable cost of developing a model transfor-
mation, it should ideally be reused; perhaps a vendor might sell the same
transformation to many customers. However, in practice a transformation
will usually have to be adapted to the needs of a particular application. Sim-
ilarly, whilst we might like to argue that only the PIM would ever need to be
modified during development, with model transformation being treated like
compilation, the transformed model never being directly edited, neverthe-
less in practice it will be necessary for developers to modify both the source
and the target models of a transformation and propagate changes in both
directions. The interesting albeit unfinished document [17] makes these and
other points, emphasising especially that bidirectional transformations are
a key user requirement on QVT, and that ease of use of the transformation
language is another key requirement.

Even in circumstances where it is in principle possible to make every
change in a single source model, and roll changes down to target models by
reapplying unidirectional transformations, in practice this is not desirable
for a number of reasons. A non-technical reason is that different developers
are familiar with different models, and even different modelling languages.
Developers are less likely to make mistakes if they change models they are
comfortable with. A technical reason is that some changes are most simply
expressed in the vocabulary, or with respect to the structure, of one model.
For example, a single change to one model might correspond, semantically,
to a family of related changes in the other.



Bidirectional model transformations in QVT 3

Given the need for transformations to be applied in both directions,
there are two possible approaches: write two separate transformations in
any convenient language, one in each direction and ensure “by hand” that
they are consistent, or use a language in which one expression can be read
as a transformation in either direction. The second is very much preferable,
because the checking required to ensure consistency of two separate trans-
formations is hard, error-prone, and likely to cause a maintenance problem
in which one direction is updated and the other not, leaving them inconsis-
tent. The QVT Relations language (hereinafter QVT-R) takes this second
approach: a transformation written in QVT-R is intended to be able to be
read as a specification of a relation which should hold between two models,
or as a transformation function in either direction.

1.1 Bidirectional versus bijective transformations

A point which is vital for the reader to understand is that bidirectional
transformations need not be bijective. A transformation between metamod-
els M and N given by a relation R is bijective if for every model m conform-
ing to M there exists exactly one model n conforming to N such that m
and n are related by R, and vice versa (for every model n conforming to N
there exists exactly one ...). This is an important special case because there
is then no choice about what the transformation must do: given a source
model, it must return the unique target model which is correctly related to
the source. Ideally, the developer writing a bijective transformation does not
have to concern herself with how models should be transformed: it should
suffice to specify the relation, which will in fact be a bijective function. (In
practice, depending on exactly how the relation is expressed, it might be far
from trivial for a tool to extract the functions from the relation, however.)
Modulo information encoded in the transformation itself, both source and
target models contain exactly the same information; they just present it
differently.

The classic example in the QVT standard [13] of transformation between
a UML class diagram and a database schema is a case where both models
contain almost (but not quite) the same information. Therefore it happens
not to be a clear illustration of the fact that a language permitting only
bijective transformations is inadequate to express all the transformations
that MDD may require. More realistically we might express the requirement
as the synchronisation of a full UML model, including dynamic diagrams,
with a database schema, which makes it obvious that there will be many
UML models which might be related to a given schema. More generally,
bijective transformations are the exception rather than the rule: the fact
that one model contains information not represented in the other is part of
the reason for having separate models.

The QVT standard [13] is somewhat ambivalent about whether it intends
all bidirectional QVT transformations to be bijective. On the one hand,



4 Perdita Stevens

the requirements of MDD clearly imply that it should be possible to write
non-bijective transformations (see also [17]): for example, in general, the
development of a PSM will involve the addition, and preservation in the
face of changes to the PIM, of information concerning design decisions on
a particular platform. On the other hand, the standard does not explicitly
point out that there may be a choice of consistent model to be made, or
discuss the implications of this fact. Moreover, it is unfortunately easy to
mis-read the QVT-R definition in such a way that it would be technically
a consequence that all “valid” QVT-R transformations would be bijective,
as we will show below. For the potential of MDD to be realised, the need
for non-bijective transformations needs to be clearly understood, and the
implications for language design addressed.

1.2 Related work

In the context of model transformations, almost all formal work on bidirec-
tional transformations is based on graph grammars, especially triple graph
grammars (TGGs) as introduced by Schürr (see, for example, [8]). Indeed,
the definition of the QVT core language was clearly influenced by TGGs.
Greenyer and Kindler in [5] (following Greenyer’s master’s thesis [4]) stud-
ies the relationship between QVT (chiefly QVT core) and TGGs, defining a
translation from (a simplified subset of) QVT core into a version of TGGs
that can be input into a TGG tool. More broadly, the field of model trans-
formations using graph transformation is very active, with several groups
working and tools implemented. We mention in particular [9,16]. Most re-
cently, the paper [2] by Ehrig et al. addresses questions about the circum-
stances in which a set of TGG rules can indeed be used for forward and
backward transformations which are information preserving in a certain
technical sense. It is future work to relate our approach to TGGs.

In this context, it may seem foolhardy to write a paper which approaches
semantic issues in bidirectional model transformations from first principles.
However, there is currently a wide gap between what is desired for the
success of MDD and what is known to be soundly supportable by graph
transformations; the use of QVT-style bidirectional transformations has not
spread fast, despite the early availability of a few tools, partly (we think)
because of uncertainty among users over fundamental semantic issues; and
moreover, there is a large body of quite different work from which we may
hope to gain important insights. Here we give a few pointers. For a survey of
the available approaches to bidirectional transformations (i.e. not focusing
on QVT), and a discussion of research issues to be addressed in future,
especially the engineering issues, see [15].

Benjamin Pierce and colleagues in the Harmony group have explored
bidirectional transformations extensively in the context of trees [3], and
more recently in the context of relational databases [1]. In their framework, a
lens, or bidirectional transformation, is a pair of functions (a “get” function



Bidirectional model transformations in QVT 5

and a “putback” function) which are required to satisfy certain properties
to ensure their coherence. They define a number of primitive lenses, and
combinators with which to build more complex lenses. Thus, they define a
programming language operating on trees in which a program can be read
either as a forwards transformation or as a backwards one. Coherence of the
forward and backward readings of the program follows from properties of the
primitives and combinators. Their framework is asymmetric, however: their
forward transformation is always a function on the source model only, which,
in conjunction with their coherence conditions, implies that the target model
is always an abstraction of the source model: it contains less information.
This has advantages and disadvantages. It is insufficiently flexible to serve
as a framework for MDA-style model transformations in general, but the
restriction permits certain constructs, especially composition, to work in a
way which is not possible in the more general setting. We shall return to
this work later in the paper.

Bidirectional programming languages have been developed in various
areas, and a survey can be found in [3]. Notably Lambert Meertens’ paper
[10] addresses the question of developing “constraint maintainers” for use
in user interface design, but his approach is far more general. His main-
tainers are essentially model transformations which, in terms we shall intro-
duce below, are required to be correct and hippocratic, but not undoable. In
[7], Kawanaka and Hosoya develop a bidirectional programming language
for XML. In Tokyo, Masato Takeichi and colleagues Shin-Cheng Mu and
Zhenjiang Hu have also worked extensively on an algebraic approach to
bidirectional programming: see [11,12,6].

2 QVT

The OMG’s Queries, Views and Transformations (QVT) standard [13] ad-
dresses a family of related problems which arise in tool-supported model
driven development. Not all information which is modelled is relevant at
any one time, so there is a need to be able to abstract out the useful infor-
mation; and models need to be held in meaningful relationships with one
another. Provided that we permit non-bijective transformations (required
to support model views), transformations subsume views.

The QVT standard describes three languages for transformations: the
Operational, Relations and Core languages. The Relations language is the
most relevant here. In the Operational language, someone wishing to spec-
ify a bidirectional transformation would have to write a pair of transfor-
mations and make them consistent by hand, which we have already said is
undesirable. QVT Core is a low level language into which the others can
be translated; an example translation from QVT Relations to QVT Core
is given in the standard. Since we are concerned with transformations as
expressed by users, we will work with QVT Relations (QVT-R).

A QVT-R transformation embodies a definition of what it means for a
source model to be correctly related to a target model, that is, it embod-



6 Perdita Stevens

ies a consistency relation. QVT transformations are given a “check then
enforce” semantics which means that a transformation must not modify a
target model if it is already correctly related to the source model. This is
pragmatically very important, to avoid confusing the user with apparently
unmotivated changes. However, the combination of this rule with the pos-
sibility of a non-bijective consistency relation has important implications
which tool developers and others need to appreciate.

For example, suppose that R ⊆ M × N is a non-bijective consistency
relation. If the transformation in the target direction is to be given by the
one-argument function f : M → N and that in the source direction is to
be given by g : N → M , then it is impossible for the transformation to
respect the “check then enforce” semantics. This is easy to see: without
loss of generality, suppose that (m,n) ∈ R and (m,n′) ∈ R, with n 6= n′.
Running the transformation in the target direction should not modify either
pair of models, since in both cases the target model is already correctly
related to the source model. However, f(m) cannot take both values n and
n′. One might protest that the situation of running the transformation on
models which are already consistent is artificial. However, the same problem
will arise when applying a transformation to a pair of models which is
inconsistent, if there is more than one way in which consistency could be
restored.

A passage which the author originally read as indicating that QVT trans-
formations should be able to be expressed as one-argument functions is on
page 18 of [13]; it reads:

In relations, the effect of propagating a change from a source model
to a target model is semantically equivalent to executing the entire
transformation afresh in the direction of the target model.

In fact1 this is probably not what the passage intends. It concerns, instead,
what should happen in the following situation: (m,n) is a consistent pair
of models (perhaps held on different computers), and then m is modified
to mδ by making a change to it which a tool records as δ. Rather than
“executing the entire transformation afresh” – which may involve expensive
traversal of large models, and/or transporting a large model over a network
– it is desirable for a tool to be able to propagate just the change, in effect
applying a record of change δ to model n to get nδ consistent with mδ. The
real force of the passage quoted is then that nδ must be the same model2

as would be obtained by directly synchronising mδ with n.
This scenario too is trickier if the consistency relation is allowed to be

non-bijective than if it is not. Let us illustrate this with an informal example,
as follows. A UML model is considered to be consistent with a test-set iff the
test-set contains at least one test for every class which both appears as an
active class in a class diagram of the UML model and has a state diagram
there. Change propagation can now only work properly for certain, carefully

1 as pointed out by a referee to whom I am grateful
2 or at least, the same up to some suitable notion of “semantic equivalence”



Bidirectional model transformations in QVT 7

chosen, notions of what a “change” is. Suppose that, in a certain tool, one
form that a record of change can take (parametrised on Z and C) is “added
state Z to the state diagram for classifier C, creating such a diagram if it did
not already exist”. Now change records of this form cannot systematically
be propagated without violating the “check then enforce” semantics.

To see this, consider two models m and m′, both consistent with the
same model n. They are the same except for one difference: in m, class C
is an active class in the class diagram, but it has no state diagram; in m′,
class C appears as a non-active class, but it does have a state diagram.
Since in neither m nor m′ are both conditions for class C to need a test
in n satisfied, n need not contain any test for C; let us suppose that it
does not. Now suppose that a change record δ of the form just described is
applied to each model. Although δ changes a state diagram in m′, it makes
no difference to m′’s consistency with n: class C still does not need a test,
because it still does not appear as an active class in the class diagram. Let
m′

δ be the result of applying change δ to model m′. We have seen that
m′

δ is still consistent with n. According to “check then enforce” semantics,
therefore, propagating the change δ to n must not cause any change to
n, because by “check then enforce”, executing the entire transformation in
the target direction on the already-consistent pair (m′

δ, n) would leave n
unchanged. On the other hand, applying the very same change δ to model
m will give a model mδ which is inconsistent with n, because the class C
now satisfies both criteria to need a test, but has none. Executing the entire
transformation afresh on the inconsistent pair of models (mδ, n) would cause
a change to n, and therefore, propagating the change δ to n must cause a
change to n. This is a contradiction.

This problem lies, of course, in the form of the change record that this
hypothetical tool permitted. We could envisage alternatives, such as record-
ing in the change whether or not the classifier concerned already had a state
diagram, so that the change propagation mechanism could use that informa-
tion to act accordingly. More generally, this kind of problem could always be
avoided by adding more information to the change records to be propagated
– ultimately, the “change record” could include the entire new version of
the model, in which case it is clear that this kind of problem cannot arise.
However, it is not obvious to a tool designer reading [13] that they will need
to choose the form of their change records changes so carefully, and it is
not clear to this author how to give a general rule by which to determine
whether a proposed change record is safe.

3 Semantic issues

The previous section made the general point that it is important to realise
that there are far-reaching implications of allowing non-bijective bidirec-
tional transformations, and that it would be better if the QVT standard
made this more explicit. In this section we raise a variety of other issues



8 Perdita Stevens

which we consider to need further study: they are settled neither by the
QVT standard, nor as far as we know by existing related work.

3.1 What exactly it makes sense to write

The QVT-R language is designed to be easy for someone familiar with re-
lated OMG standards such as OCL to learn and use; this has clearly been
a higher design goal than ensuring that only safe transformations can be
written. There are several places (when and where clauses, among others)
where arbitrary OCL expressions are permitted, even though only certain
expressions make sense as part of a bidirectional transformation. For exam-
ple, a transformation may in one direction give an attribute a value using
an non-invertible expression.3 Specifying exactly what language subset is
permitted, however, is likely to run quickly into a familiar problem: that
any reasonably easy-to-define language subset which is provably safe will
also exclude many safe expressions of the full language. It may well be
preferable to be permissive, and rely on users not to choose to write things
that don’t make sense. They will, however, require a clear understanding
of what it means for a transformation to “make sense”. In Section 4 we
propose first steps in this direction and give simple postulates which, we
argue, any bidirectional model transformation should obey.

3.2 Determining validity of a transformation

Let us suppose that the reader and the developer accept that model trans-
formations will be written in an expressive, unsafe language, but that they
also accept that the transformations written should obey certain postulates.
(These might be the ones proposed in this paper, or others; the general point
is the same.) Since we lack a transformation language in which any trans-
formation is guaranteed to satisfy the postulates, this has to be verified,
formally or informally, on a case-by-case basis. How can developers become
confident that their transformations do indeed obey these postulates? Ide-
ally, the language and the postulates should be so clearly understandable
that the developers can be confident in their intuition: tool support is no
substitute for this kind of clarity, since however easy it is to correct an er-
ror once it has been made, it is better not to make the error in the first
place. However, it is also desirable that a tool should be able to check, given
the text of a transformation and the metamodels to which it applies, that
it obeys the postulates. That is, this transformation should be able to be
verified statically at the time of writing it, as opposed to failing when it is

3 Note that permitting non-bijective transformations does not make this un-
problematic: since transformations are to be deterministic, where there are sev-
eral relationally possible choices of value the language needs to provide a way to
specify which should be chosen.



Bidirectional model transformations in QVT 9

applied to arguments which expose a problem. To what extent this can be
done – for the postulates discussed in this paper or any others – is an open
question.

A major danger with bidirectional transformations is that one direction
of the transformation may be a seldom used but very important “safety
net”. This is why we would like to have a systematic, even if incomplete,
way to verify that a given transformation is correct (including, for example,
that it obeys agreed “sanity” postulates). For the most frequently used
direction of a bidirectional transformation, the ordinary process of trying
to use the transformation might suffice; the other direction, however, might
not be exercised enough to find its bugs. It will be unfortunate if the user
only finds out that their transformation cannot be executed in the less usual
direction long after the transformation has been written, in circumstances
where the reverse transformation is really needed...

3.3 Composition of relations in QVT: when and where clauses

Most of this paper takes a high level view of transformations, in which a
whole transformation text specifies a relation and a pair of transformational
functions. We have not yet considered the details of how simpler relations
are combined and built up into transformations in QVT. This is interesting,
however, and not least because it gives another justification for consider-
ing non-bijective transformations. A QVT relational transformation has an
overall structure something like this:

transformation ... {
top relation R {
domain a...
domain b...
when {...}
where {...}

}
top relation S ...
relation ...
relation ...
...
}

In order to understand when and where clauses, note that [13] uses two
different notions of a relation holding. Let us explain this in terms of the
running example from [13]. The reader does not need to be familiar with
the example: it suffices to know that it concerns a bidirectional transforma-
tion umlRdbms between UML models and relational database schemas, and
includes a top relation ClassToTable, which explains how classes in a UML
model are related to tables in a database schema.

At the top level, a relation holds of a pair of models – checking will return
TRUE – if they are consistent. For example, the top relation ClassToTable



10 Perdita Stevens

will hold of UML model m and RDBMS model s if, as far as the classes
and tables go, there is no inconsistency. If models m and s are consistent
according to relation ClassToTable, we will write ClassToTable+(m,s).

The + is intended to distinguish this notion from the following: the top-
level consistency between m and s is demonstrated by matching individual
classes in m to individual tables in s. That is, the text of the transformation
ClassToTable explains under what circumstances an individual table t can
be considered to correspond to an individual class c. (More formally, it is the
valid bindings of domain variables in the text of ClassToTable which are
related, but that is not important here.) This correspondence is a relation
which relates the set of classes to the set of tables, and the relation is
defined by the text of ClassToTable. We will write ClassToTable(c,t) if
c corresponds to t.

Note that the relation on models ClassToTable+ is a lifted version of the
relation on bindings ClassToTable: a UML model is related to an RDBMS
model by ClassToTable+ iff for every class there is a table related to it by
ClassToTable and vice versa.

The when and where clauses can contain arbitrary OCL, but are typically
expected to contain (if anything) statements about relations satisfied by
variables of the domain patterns. Thus in fact, the relation R holds if for
every valid match of the first domain, there exists a valid match of the
second domain such that the where clause holds. The when clause “specifies
the conditions under which the relationship needs to hold”. The example
used in the standard is the relation ClassToTable with domains binding
c:Class (and hence p:Package etc.) and t:Table (and hence s:Schema
etc.), the when clause being PackageToSchema(p,s) and the where clause
being AttributeToColumn(c,t).

Now, what does this mean in relational terms, and specifically, what
is the difference between the when clause and the where clause, both of
which appear at first sight to impose extra conditions on valid matches of
bindings, thus forming an intersection of relations? Unfortunately, this is
not straightforward to express relationally. Operationally, the idea is that
the variables in the when clause “are already bound” “at the time this re-
lation is invoked”. Roughly speaking, when a relation ClassToTable has
domain patterns with variables including p : Package and s : Schema,
and a when clause which states PackageToSchema(p,s), the QVT engine is
supposed to have already processed the PackageToSchema relation (if not,
it will postpone consideration of the ClassToTable relation). The match-
ings calculated for PackageToSchema provide bindings for variables p and
s in ClassToTable. Evaluation of ClassToTable now proceeds, looking for
compatible valid bindings of all the other variables.

We have sketched the operational view of what happens in one example,
but an open problem is to give a clean compositional account of even the
relation (let alone the transformation) defined by a whole QVT transfor-
mation. Making this precise would involve a full definition of R+ taking ac-
count of when and where clauses, and an account of the relationship between



Bidirectional model transformations in QVT 11

properties of R and properties of R+. As an example of the complications
introduced by dependencies between relations, suppose that there are two
ways of matching pairs of valid bindings (skolem functions) for one relation,
one of which leads to a compatible matching for a later-considered relation
and one of which does not. If a QVT engine picks “the wrong” matching
for the first relation considered, is it permitted to return the result that the
models are inconsistent, even though a different choice by the tool would
have given a different result? Surely not: but then there is a danger that the
tool will need to do global constraint solving or arbitrarily deep backtrack-
ing to ensure that it is not missing a solution. Not only is this inefficient, but
it will be very hard for the human user to understand. Now, looking at the
examples in [13], it seems clear that this kind of problem is not supposed
to arise, because when clauses are used in very restricted circumstances.
However, it is an open question what can be permitted, and we can expect
to encounter the usual problem of balancing expressivity against safety.

For a simple example of “spatial” composition of relations where we can
lift good properties of simple relations to good properties of a more complex
relation, see the next section.

3.4 Sequential composition of transformations

We have discussed the ways in which relations are composed in QVT to
make up transformations. A different issue is the sequential composition of
whole transformations.

Throughout this paper, we envisage a bidirectional QVT tool which
does not retain information between uses: it simply expects to be given a
pair of models, a transformation, and a command telling it in which direc-
tion to apply the transformation and whether to check or enforce. If the
tool is allowed to retain trace information – the correspondence graph in
TGG terms – between executions, the composition problem becomes more
tractable. This, however, is a severe pragmatic limitation: for example, it
does not extend well to situations in which models are being used and mod-
ified in multiple tools, not only the trace-aware transformation tool. See [15]
for further discussion.

Model-driven development envisages chains of transformations, some of
which may be purchased, others written in-house. For example, a scenario
envisaged as essential by [17] is that an organisation purchases a PIM-to-
PSM transformation, but needs to modify it to meet their specific require-
ments, e.g. by post-composing with a relatively simple transformation which
expresses how this organisation’s particular needs differ from what is im-
plemented in the purchased transformation.

Thus we naturally expect to be able to define a transformation to be
the sequential composition of two other transformations, and then treat the
composition as a first-class transformation in its own right. In this case, the
pair of models given to the tool will be the source of the first transformation



12 Perdita Stevens

and the target of the second: the tool will not necessarily receive a version of
the intermediate model, the one which acts as target of the first transforma-
tion and source of the second. In order to define a general way to compose
transformations, we need to suppose that we are given transformations R
from M to N and S from N to P and show how to construct a composed
transformation T = R;S, giving the relational and functional parts of the
composed relation in terms of the parts of the constituent relations.

We will return to this issue in the next section, after introducing appro-
priate notation.

4 Requirements for bidirectional model transformations

In this section we discuss bidirectional model transformations which are
not necessarily bijective, and discuss under what circumstances these will
make sense. We will give postulates which are clearly satisfied by bijective
transformations, but also by certain non-bijective transformations.

4.1 Basic requirements

First let us set some basic notation and terminology. Much of this work
concerns sets of models, and in model-driven development a metamodel is
often used as a convenient way to specify a set of models (those that conform
to the metamodel). Since that is the audience we principally address, we
shall use the term “metamodel” wherever a model-driven developer would
expect to see it, and will make some a few remarks that do refer to the
content of a metamodel. However, in reading the technical work the reader
may consider “metamodel” to be synonymous with “set of models”: any
other way of specifying a set of models would work as well. We will use
capital letters such as R, S, T for the relations which transformations are
supposed to ensure. That is, if M and N are metamodels (sets of models)
to be related by a model transformation, the relation R ⊆ M × N holds
of a pair of models – and we write R(m,n) – if and only if the pair of
models is deemed to be consistent. As well as this consistency relation,
the transformation developer will also need, somehow, to specify the two
directional transformations:

−→
R : M ×N −→ N

←−
R : M ×N −→M

The idea is that −→R looks at a pair of models (m,n) and works out how
to modify n so as to enforce the relation R: it returns the modified version.
Similarly, ←−R propagates changes in the opposite direction.

In practical terms, what we expect is that the programmer writes a single
text (or set of diagrams) defining the transformation in QVT-R (or indeed,



Bidirectional model transformations in QVT 13

in another appropriate language). This same text can be read in three ways:
as a definition of a relation which must hold between pairs of models; as
a “forward” transformation which explains how to modify the right-hand
model so as to make it relate to the left-hand model; as a “backward”
transformation which explains how to modify the left-hand model so as
to make it relate to the right-hand model. By slight abuse of notation,
we will use capital letters R, S etc. to refer to the whole transformation,
including both transformational functions as well as the relation itself, when
no confusion can result.

Our notation already incorporates some assumptions, or rather asser-
tions, which need justification.

First, and most importantly, that the behaviour of a transformation
should be deterministic, so that modelling it by a mathematical function
is appropriate. The same transformation, given the same pair of models,
should always return the same proposed modification. This is a strong con-
dition: it proscribes, for example, transformation texts being interpreted dif-
ferently by different tools. An alternative approach, which we reject, would
have been to permit a tool to modify the target model by turning it into
any model which is related to the source model by the relation encoded in
the transformation. There are several good reasons to reject that approach.
Most crucially, the model transformation does not take place in isolation
but in the presence of the rest of the development process. Even though
certain aspects of one model may be irrelevant to users of the other – so
that the transformation will deliberately abstract away those aspects – this
does not imply that the abstracted away aspects are not important to other
users! Usually, it will be unacceptable for a tool to “invent information”
in any way, e.g. by making the choice of which related model to choose.
The developer needs full control of what the transformation does. Even in
rare cases where certain aspects of the transformation’s behaviour (say, the
choice of name for a newly created model element) might be thought of as
unimportant, we claim that determinism is necessary in order to ensure,
first, that developers will find tool behaviour predictable, and second, that
organisations will not be unacceptably “locked in” to the tool they first use.
Experience shows that even when a choice is arbitrary, people find it impor-
tant that the way the arbitrary choice is made be consistent. One example
of this is the finding that, even though the spatial layout of UML diagrams
does not (generally) carry semantic information, it is important for UML
tools to preserve the information.

Our second assertion is that the behaviour of a transformation may
reasonably depend on the current value of the target model which will be
replaced, as well as on the source model. This follows from our argument
in Section 1 that restricting bidirectional transformations to be bijective
is too restrictive. Of course, the fact that we choose a formalism which
permits the behaviour of a transformation to depend on both arguments
does not force it to do so. In the special case of a bijective transformation,
the result of −→R may be independent of its second argument, and the result



14 Perdita Stevens

of ←−R independent of its first argument. Another important special case is
when the transformation in one direction uses only one of its arguments,
while the reverse transformation uses both. Pierce et al.’s lenses fall into
this category, and we will discuss how they fit into this framework below.

A technical point is that we require transformations to be total, in the
sense that −→R and ←−R are total functions, defined on the whole of M × N .
We may want to define, for a metamodel M , a distinguished “content-
free” model εM to be used as a dummy argument e.g. in the case that a
target model is created afresh from a source model. Note that since the
model containing no model elements might not conform to M , εM might
not literally be empty.

Correctness Our notation is chosen to suggest that the job of −→R and ←−R is
to enforce the relation R, and our first postulates state that they actually
do this. We will say that a transformation T is correct if

∀m ∈M ∀n ∈ N T (m,
−→
T (m,n))

∀m ∈M ∀n ∈ N T (←−T (m,n), n)

These postulates clearly have to be satisfied by any QVT-like transfor-
mation.

Hippocraticness, or “check-then-enforce” The QVT standard very clearly
states that a QVT transformation must not modify either of a pair of models
if they are already in the specified relation. That is, even if models n1 and n2

are both properly related to m by R, it is not acceptable for −→R , given pair
(m,n1), to return n2. Formally, we say that a transformation is hippocratic4

if for all m ∈M and n ∈ N , we have

T (m,n) =⇒ −→
T (m,n) = n

T (m,n) =⇒ ←−
T (m,n) = m

These postulates imply that if the relation T is not bijective, then (at
least one of) the transformations must look at both arguments. As a conse-
quence, applying a transformation to a source model in the presence of an
existing target model will not in general be equivalent to applying it in the
presence of an empty target model.

This is as expected. Imagine, for example, that we generate an initial
PSM automatically from a PIM. Subsequently, work is done on the PSM
that is irrelevant to the PIM (that is, does not make the modified PSM
inconsistent with the original PIM). Next, a modification is made to the
PIM, and the transformation is applied to roll the changes through to the

4 First, do no harm. Hippocrates, 450-355BC



Bidirectional model transformations in QVT 15

PSM and restore consistency. The PSM developers would be very unhappy
if the transformation took no account of the work they had done in the
meantime. (Of course, depending on the change to the PIM, it may or
may not have been invalidated: this is part of the challenge of writing such
transformations.)

Are these requirements enough? Correctness and hippocraticness are the
only two high-level requirements clearly placed on QVT transformations in
the specification [13] (although, of course, that specification also defines the
language, so providing high-level requirements for it is an optional extra).
Are they sufficient requirements on a bidirectional model transformation
language to ensure sane behaviour?

Here is a pathological example to show that it may be worth investigating
further conditions. We give it in natural language to illustrate that it is a
general issue, independent of the particular languages used.

Let M be a set of models in which a model consists of a set of elements
representing composers, each having a name and dates.

Let N be a set of models in which a model consists of a set of elements,
also representing composers, each having name and nationality.

Let R be the obvious consistency relation: m and n are consistent iff the
same names occur in each.

Let −→R (m,n) have the following behaviour. If R(m,n) then return n (i.e.,
make no modification, so as to be hippocratic). Otherwise, create n′ by:
1. deleting any objects in n whose names do not occur as names of objects

in m;
2. identifying any names that occur in m but not n, and adding new objects

with those names;
3. set the nationality field of all objects in n′ (not just the new ones) to

“Lithuanian”.
Similarly, let ←−R (m,n) return m if m and n are already consistent, and

otherwise, return a model with the correct set of names but with all dates
set to some arbitrary value.

This transformation is correct, because the consistency relation does
not mention the dates or nationality fields. It is hippocratic by construc-
tion. However, it is intuitively deeply unsatisfactory. Somehow we expect
something more fine-grained than hippocraticness: we expect that applying
a transformation will not modify any information unless it is somehow nec-
essary to do so to restore consistency. How can we capture this intuition?
This is harder than it seems, because although it is easy to come up with
individual transformations that do not seem sensible, it is generally also
possible to construct scenarios in which technically similar behaviour would
be justifiable. For example, we would not want to insist that a transforma-
tion must never modify some collection of elements of a model if modifying
a smaller collection would also restore consistency.

Notice that the QVT specification states ([13], ) “the semantics of check-
before-enforce ensures that target model elements that satisfy the relations



16 Perdita Stevens

are not touched.” However, to make this statement precise we would need
to have a precise notion of what it means for a model element, as opposed
to the model it is part of, to satisfy a relation. This brings us back to the
discussion in Section 3.3.

4.2 Further requirements

In the conference paper [14], we proposed Undoability as part of the defi-
nition of coherent transformation, mentioning but not making explicit the
counterargument, that this postulate might be too strong. It still seems im-
portant enough to be part of the main coherence definition, but let us now
give both sides of the argument.

Undoability Our final pair of postulates is motivated by thinking about
the following scenario. The developer, beginning with a consistent pair of
models m (the source) and n (the target, perhaps produced by a model
transformation), makes a modification to the source model, producing m′,
and propagates it using the model transformation tool (so that target model
n is replaced by −→T (m′, n)). Immediately, without making any other changes
to either model, our developer realises that the modification was a mistake.
She reverts the modified model to the original version m, and propagates the
change. The developer reasonably expects that the effect of the modification
has been completely undone: just as the modified model has been returned
to its original state m, so has the target model been returned to its original
state n.

Formally, we will say that transformation T is undoable if for all m,m′ ∈
M and n, n′ ∈ N , we have

T (m,n) =⇒ −→
T (m,

−→
T (m′, n)) = n

T (m,n) =⇒ ←−
T (←−T (m,n′), n) = m

Note that our pathological example in Section 4.1 above is not undoable:
the result of making a change and then immediately undoing it will be to
replace the dates or nationality values with the arbitrary choice given in the
transformation.

The trouble with undoability as a general requirement on transforma-
tions is that it is too strong. Consider a transformation between models
comprising sets of Composers each with a name and dates, and models
comprising sets of Compositors each with a nome and nacionalidade. In
the natural way, suppose that two models are supposed to be consistent if
they have the same set of names (nomes: we are using a mixture of English
and Portuguese just to make it clearer which model is referred to in what
follows.)



Bidirectional model transformations in QVT 17

Going back to our initial scenario, suppose the change the developer
made was to delete some information from m to get m′. (For example, per-
haps she deleted a Composer with name “Sibelius” and dates “1865-1957”.)
When she applied the transformation to propagate the change, any “cor-
responding information” from n was deleted, yielding n′. (A Compositor
with nome “Sibelius” was deleted.) But also deleted was any information
which was “stuck” to that information in n, even if it wasn’t represented
in m. (The nacionalidade “Finnish”, was deleted along with the rest of
the Compositor.) So when the developer reverted to m, and propagated
the change back, the transformation can restore the information which
is contained in m (for example, it can recreate a Compositor with nome
“Sibelius”), but it may not be able to recreate all the information that had
been deleted (“Finnish” has been lost). This lost information may have to
be replaced with “default values”, so that the final model is not exactly the
same as at the beginning.

This seems to be a fundamental difficulty with bidirectional transfor-
mations. The above counter-argument is quite convincing: to forbid such
non-undoable transformations altogether will be a severe restriction. On the
other hand, a model transformation which did not allow one’s changes to be
undone in this way would be quite confusing. It may be that a pragmatic
solution to deal with the scenario we began with would be implemented at
the level of the interactive tool, which might retain extra information dur-
ing a modelling session to provide editor-style “undo” capabilities separate
from the model transformations.

Whether or not we wish to impose undoability, it is useful to have a term
for transformations that satisfy all the conditions we have so far considered.

Definition 1 Let R be a transformation between metamodels M and N ,
consisting of a relation R ⊆ M × N and transformation functions −→R :
M×N −→ N and←−R : M×N −→M . Then R is a coherent transformation
if it is correct, hippocratic and undoable.

4.3 Examples and consequences

Having presented a framework for bidirectional transformations and argued
for a set of postulates that they should obey, let us explore the consequences
of our choices. First we state two reassuring trivialities:

Lemma 1 Let M be any metamodel. Then the trivial transformation, given
by:

– R(m,n) if and only if m = n

– −→R (m,n) = m

– ←−R (m,n) = n

is a coherent transformation.



18 Perdita Stevens

Proof Straight from the definitions.

Lemma 2 Let M and N be any metamodels. Then the universal transfor-
mation, given by:

– R(m,n) always
– −→R (m,n) = n

– ←−R (m,n) = m

is a coherent transformation.

Proof Straight from the definitions.

Note that the latter lemma already proves that our postulates permit
bidirectional transformations which are not bijective. We would of course
expect that any bijective transformation is coherent, and so it is:

Lemma 3 Let M and N be any metamodels. Then any bijective transfor-
mation, given by:

– R(m,n) if and only if n = r(m)
– −→R (m,n) = r(m)
–←−R (m,n) = r−1(n)

where r : M −→ N is a bijective function, is a coherent transformation.

Proof Straight from the definitions.

4.4 Relationship with lenses

The relationship between our framework and that of [3] is close. Let us
briefly recapitulate that approach. (Warning to those already familiar with
that work: we are slightly modifying the notation, for ease of comparison.
We are also omitting the create function: it plays essentially the same role
as our content-free model element, and would complicate the discussion
without adding anything.)

Given a “concrete” set C and an “abstract” set A, a lens l comprises:

l.get : C −→ A

l.put : C ×A −→ C

satisfying the following laws for every c, c′ ∈ C and a ∈ A:

GETPUT: l.put(c, l.get(c)) = c
PUTGET: l.get(l.put(c, a)) = a



Bidirectional model transformations in QVT 19

A key concern of the lens work is to provide a way to build up com-
plex lenses from simple ones; in order to give a semantics to the language,
they have to consider partial lenses. However, the top-level lens eventually
constructed is always expected to be total, and here we need only consider
total lenses.

The key difference between this set-up and ours is that [3] assumes a
concrete domain and a strict abstraction: that is, there is an inherent asym-
metry.

Lemma 4 A lens l with concrete domain C and abstract domain A gives
rise to a transformation R between C and A which is correct and hippocratic,
as follows:

– R(c,a) iff l.get(c) = a

– −→R (c, a) = l.get(c)
–←−R (c, a) = l.put(c, a)

Proof First we need to show, using the lens laws, that R as defined here is
correct. Given c ∈ C and a ∈ A, simply expand the definitions:

1. R(c,−→R (c, a)) iff l.get(c) = −→R (c, a) iff l.get(c) = l.get(c), that is, trivially.
2. R(←−R (c, a), a) iff l.get(←−R (c, a)) = a iff l.get(l.put(c, a)) = a which is true

by PUTGET.

Next, to show that R is hippocratic, suppose that R(c, a) holds.

1. We need to show that −→R (c, a) = a. Expanding the definition, −→R (c, a) =
l.get(c) = a by assumption.

2. Finally we must show that←−R (c, a) = c. Expanding the definition,←−R (c, a) =
l.put(c, a). By assumption this is l.put(c, l.get(c)) which is c by GET-
PUT.

Of course, a correct and hippocratic transformation does not allow us to
define an exactly corresponding lens, because of the asymmetry in the lens
framework. However, we can recover analogues of GETPUT and PUT-
GET:

Lemma 5 Let M and N be any metamodels, and let R be a correct and
hippocratic (but not necessarily undoable) transformation. Then for any m ∈
M , n ∈ N :

– ←−R (m,
−→
R (m,n)) = m

– −→R (←−R (m,n), n) = n

Proof By correctness, R(m,
−→
R (m,n)). So by hippocraticness,←−R (m,

−→
R (m,n)) =

m as required. The other case is symmetric.

A very well behaved lens is one which, in addition to satisfying the lens
laws GETPUT and PUTGET, satisfies

PUTPUT: l.put((l.put(c, b), a) = l.put(c, a)



20 Perdita Stevens

Lemma 6 Any very well behaved lens l can be regarded as a coherent trans-
formation, using the same definition as in Lemma 4.

Proof We need to show that, given the lens laws including PUTPUT,
the transformation will be undoable. Suppose that R(c, a), that is, that
l.get(c) = a.

1. For any b ∈ C, we must show that −→R (c,−→R (b, a)) = a. Expanding the
definition, (note that the inner use of −→R is ignored because of the lens
asymmetry) the LHS is just l.get(c), which is a by definition.

2. For any b ∈ A, we must show that ←−R (←−R (c, b), a) = c. The LHS is
l.put(l.put(c, b), a), which is l.put(c, a) by PUTPUT, which is l.put(c, l.get(c))
by assumption, which is c by GETPUT.

4.5 Composition of metamodels

Let us say that a metamodel M is the direct product of metamodels M1

and M2 if any model m conforming to M can be written in exactly one way
as a pair of a model m1 conforming to M1 and a model m2 conforming to
M2, and conversely, any such pair conforms to M . For example, perhaps M1

and M2 comprise disjoint sets of metaclasses, with no relationships or con-
straints between the two sets. (This is admittedly an artificially constraining
scenario: we will discuss relaxations in a moment.)

Now suppose that we have coherent transformations R on M1×N1 and
S on M2×N2. We can construct a transformation which we will call R⊕S
on M ×N pointwise as follows:

– (R⊕ S)(m1 ⊕m2, n1 ⊕ n2) if and only if R(m1, n1) and S(m2, n2)
–
−−−−−→
(R⊕ S)(m1 ⊕m2, n1 ⊕ n2) = (−→R (m1, n1))⊕ (−→S (m2, n2))

–
←−−−−−
(R⊕ S)(m1 ⊕m2, n1 ⊕ n2) = (←−R (m1, n1))⊕ (←−S (m2, n2))

Then

Lemma 7 If R and S are coherent transformations, R⊕S is also a coherent
transformation.

Proof We show the first of each pair of postulates: the others are symmetric.
Correctness: we need to show that (R ⊕ S)(m1 ⊕ m2,

−−−−−→
(R⊕ S)(m1 ⊕

m2, n1 ⊕ n2)). Expanding the definition of
−−−−−→
(R⊕ S), this is equivalent to

(R ⊕ S)(m1 ⊕ m2, (
−→
R (m1, n1)) ⊕ (−→S (m2, n2)) which by definition of the

consistency relation is true iff R(m1,
−→
R (m1, n1)) and S(m2,

−→
S (m2, n2));

these are true by correctness of R and S respectively.
Hippocraticness: we need to show that if (R⊕S)(m1⊕m2, n1⊕n2), that

is, if R(m1, n1) and S(m2, n2), then
−−−−−→
(R⊕ S)(m1 ⊕m2, n1 ⊕ n2) = n1 ⊕ n2.

The LHS is (−→R (m1, n1))⊕ (−→S (m2, n2)) which is n1⊕n2 by hippocraticness
of R and S.



Bidirectional model transformations in QVT 21

Undoability: we need to show that if (R ⊕ S)(m1 ⊕m2, n1 ⊕ n2), that
is, if R(m1, n1) and S(m2, n2), then for any m′

1 ⊕m′
2 ∈M ,

−−−−−→
(R⊕ S)((m1 ⊕m2,

−−−−−→
(R⊕ S)(m′

1 ⊕m′
2, n1 ⊕ n2)) = n1 ⊕ n2

Once again, all we have to do is mechanically rewrite the definition.

Notice that the proof of each postulate involved only the correspond-
ing postulate on R and S, and was completely routine. This captures the
intuition that transformations on parts of models which are completely in-
dependent ought to be able to be combined without difficulty. One would
expect to be able to extend this result to cover carefully-defined simple de-
pendencies between the metamodel parts, perhaps sufficient to justify, for
example, applying a transformation defined only for class diagrams to a
complete UML model, rolling the resulting changes to the class diagram
through to the rest of the model. Even here, though, the issues are not
entirely trivial.

4.6 Sequential composition revisited

The relation part of the sequential composition of transformations must be
given by the usual mathematical composition of relations: (R;S)(m, p) if
and only if there exists some n such that R(m,n) and S(n, p). Mathemat-
ically this is a fine definition, but we already see the core of the problem:
a tool has no obvious way to find a relevant n. What about the associated
transformations? For example, −→T may be given models m and p such that
there does not exist any n such that R(m,n) and S(n, p). It is required to
calculate an update of p; that is, to find a new model p′ such that such
an intermediate model does exist, and in general the choice of intermediate
model will depend on both m and p. However, −→R “does not understand” p,
etc., so there does not appear to be any way to do this in general.

We may consider two special cases in which it is possible to define com-
position of transformations.

1. If R and S are bijective transformations, then the intermediate model
is unique, and is found by applying −→R just to the first argument m.
Composition of transformations in this case is just the usual composition
of invertible functions.

2. More interestingly, the Harmony group considers transformations in
which −→R is a function of the source model only, even though ←−R still
uses both source and target model. Here −−→R;S must clearly be defined
to be −→R ;−→S , and we can define ←−−R;S using a trick: use the function −→R
to bring the source model forward into the middle in order to use it to
push the changes back. Formally (and translating into our notation)

←−−
R;S(m,n) =←−R (m,

←−
S (−→R (m), n))



22 Perdita Stevens

5 Writing non-bijective QVT transformations

Supposing, as argued above, that the QVT standard is not intended to
restrict transformation writers to writing bijective transformations. How
can they write non-bijective transformations?

In this paper we do not provide a formal semantics of QVT, and therefore
we cannot provide mathematically proven results about QVT’s expressive-
ness. We can, however, observe some features.

First, notice that any information in a model which is not mentioned in
a QVT-R transformation is not constrained by it. This provides an impor-
tant, but rather uninteresting, source of non-bijectiveness. For example, if
composers with names and dates are matched with composers with names
and nationality by name alone, then, given a model with dates, any model
with the right names and any set of nationalities is consistent with it, so
the consistency relation is not bijective.

A more interesting indication of non-bijectiveness – and hence expres-
siveness – in the language is the existence of choices that a transformation
writer can make which do not affect the consistency relation, but only the
method by which consistency is restored. That is, we can look for ways
to define two transformations, R1 and R2, which define the same consis-
tency relation, but whose forwards and backwards consistency-restoration
functions have different behaviour.

QVT-R’s main feature that lets transformation writers do this is: key.
The definition is as expected: “a definition of which properties of a MOF
class, in combination, can uniquely identify an instance of that class”.
(QVT, unlike MOF, permits a key to consist of several properties.) Within
a transformation, the role of a key is to allow the transformation writer to
choose whether, when an element is found in the target model that par-
tially matches one in the source model, it should be modified, or a new
object created.

For example, Figure 1 shows a QVT-R transformation which matches
English and Portuguese representations of composers if they contain identi-
cal information, keying by name. Let us compare this transformation with
the one that results from deleting the key declarations.

Consider a situation in which the model english contains a Composer
with name “Britten” and nationality “English”, while the model portuguese
contains a Compositor with nome “Britten” and nacionalidade “British”.
If executed in the direction of portuguese, the transformation without
key will leave the existing object unaltered and will also create a new
Compositor with nome “Britten” and nacionalidade “English”. The trans-
formation with key will instead modify the existing Compositor, changing
the nacionalidade field from “British” to “English”. These two QVT-R
transformations, therefore – with and without the key declarations – em-
body the same consistency relation, but provide different ways to restore
consistency.



Bidirectional model transformations in QVT 23

Fig. 1 QVT-R transformation illustrating use of key
transformation Translation (english : ConcreteMM ; portuguese : AbstractMM)

{

key ConcreteMM::Composer{name};

key AbstractMM::Compositor{nome};

top relation R

{

n1,n2:String;

enforce domain english c:Composer {name=n1, nationality=n2};

enforce domain portuguese d:Compositor {nome=n1, nacionalidade=n2};

}

}

This capability is important and easy to use, but limited. It provides no
means to compute information: it only involves the copying and deletion of
information.

The basic idea of connecting the notion of a key uniquely identifying
a model element, with the notion of specifying whether a model element
should be modified or deleted, is an interesting one, but not without dis-
advantages. Supposing that there is a key which is regarded as such by the
model developers (whether or not actually recorded as a key in the meta-
model), this conflation makes sense: we need some mechanism to prevent the
model transformation breaking the key property by creating a new model
element with the same key value as an old one. However, the transforma-
tion writer might want to have control over whether an element should be
modified or deleted, even when there is no usable key. For example, in our
composers example, the transformation writer might reasonably want to
prevent the transformation from creating duplicate elements with the same
name, without preventing the modeller from doing so. In fact, a situation in
which the transformation specifies a key which is not specified as a key in
the corresponding MOF model is dangerous: the QVT specification makes
clear that a key declared in QVT must actually be a key, but a transfor-
mation engine will have no way to enforce this. If a model which is input
to the transformation does not actually satisfy the key property declared
in the transformation, the results are undefined: presumably it should be a
run-time error.

The only other mechanism within QVT-R that is intended for choosing
how to resolve inconsistencies is the use of black-box operations (see [13]
p18). These are restricted to being used on primitive or simple object do-
mains; that is, at the lowest level of granularity. They are to be invoked
only when the relation fails to hold (notice that this again raises the ques-
tion of determining this at a local level, and the connection again to a need
for/assumption of local hippocraticness), and they must guarantee that the
relation will hold after their invocation (correctness, locally). There is no



24 Perdita Stevens

mention of any kind of consistency between forwards and backwards applica-
tions of black-box transformations: this is left entirely to the transformation
writer.

What is not covered by this discussion, and would require investigation
in the context of a formal semantics, is whether there are less obvious ways
in which the transformation writer has a choice about how to restore con-
sistency. If we defined a restricted version of QVT, without the use of key or
blackbox operations, would it still ever be possible to write two transforma-
tions that had the same consistency relation, but differed in their restoration
of consistency? For example, could there be a way to make different use of
when and where clauses, giving two transformations which defined the same
relation, but in which, as a side-effect of how the transformation is executed,
would restore consistency differently? If such ways exist, we will also need
to discuss whether this is good or bad. It might be that certain choices
are natural consequences of different ways to write transformations; on the
other hand, transformation writers would presumably be unhappy to be
told that they had to restructure their transformations in order to change
decisions.

We would also like to know other things about the level of expressiveness
that QVT-R has. For example, suppose that a developer is used to writing
model transformations in QVT-Operational, but has discovered that she
has a need to be able to write bidirectional transformations. In making the
switch to QVT-R, will expressiveness be lost? Or is it the case that for any
QVT-Op transformation, there is a corresponding QVT-R transformation
which has the same behaviour in the forward direction, but adds the back-
ward direction as needed? We conjecture that the latter is too optimistic,
but further work is needed.

6 Conclusion

We have explored some fundamental issues which arise when we consider
relationally defined transformations between models which are bidirectional
and not necessarily bijective. We have motivated our work from the current
QVT standard, and some of the issues we raise are specific to it, but most are
more general. We have suggested a framework and a set of postulates which
ensure that bidirectional transformations will behave reasonably for some
definition of “reasonable”, and explored some consequences of our choice.
Future work includes relating our framework to triple graph grammars, and
further exploration of the relation with bidirectional programming.

Acknowledgements The author has benefited from discussions on this sub-
ject with too many people to list, and from helpful comments from several
referees.



Bidirectional model transformations in QVT 25

References

1. Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce. Relational
lenses: A language for updateable views. In Principles of Database Systems
(PODS), 2006. Extended version available as University of Pennsylvania tech-
nical report MS-CIS-05-27.

2. Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele
Taentzer. Information preserving bidirectional model transformations. In
In proceedings of Fundamental Approaches to Software Engineering (FASE
2007), number 4422 in LNCS, pages 72–86. Springer, March/April 2007.

3. J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bi-directional tree transforma-
tions: A linguistic approach to the view update problem. ACM Transactions
on Programming Languages and Systems, 29(3):17, May 2007.

4. Joel Greenyer. A study of technologies for model transformation: Reconciling
TGGs with QVT. Master’s thesis, University of Paderborn, Department of
Computer Science, Paderborn, Germany, July 2006.

5. Joel Greenyer and Ekkart Kindler. Reconciling TGGs with QVT. In Model
Driven Engineering Languages and Systems, 10th International Conference,
MoDELS 2007, Nashville, USA, September 30 - October 5, 2007, Proceedings,
volume 4735 of Lecture Notes in Computer Science, pages 16–30. Springer,
2007.

6. Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor
for developing structured documents based on bidirectional transformations.
In In Proceedings of the 2004 ACM SIGPLAN Workshop on Partial Evalua-
tion and Semantics-based Program Manipulation (PEPM’04), pages 178–189,
2004.

7. Shinya Kawanaka and Haruo Hosoya. biXid: a bidirectional transformation
language for XML. In In Proceedings of the International Conference on
Functional Programming, ICFP’06, pages 201–214, 2006.

8. A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars - A
Survey. In R. Heckel, editor, Proceedings of the SegraVis School on Founda-
tions of Visual Modelling Techniques, volume 148 of Electronic Notes in The-
oretical Computer Science, pages 113–150, Amsterdam, 2006. Elsevier Science
Publ.

9. Alexander Königs. Model transformation with triple graph grammars. In
In proceedings, Workshop on Model Transformations in Practice, September
2005.

10. Lambert Meertens. Designing constraint maintainers for
user interaction. Unpublished manuscript, available from
http://www.kestrel.edu/home/people/meertens/, June 1998.

11. Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach
to bi-directional updating. In In Proceedings of Programming Languages and
Systems: Second Asian Symposium, APLAS’04, pages 2–20, 2004.

12. Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective language
for reversible computation. In In Proceedings of Mathematics of Program
Construction (MPC’04), pages 289–313, 2004.

13. OMG. MOF2.0 query/view/transformation (QVT) adopted specification.
OMG document ptc/05-11-01, 2005. available from www.omg.org.

14. Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues
and open questions. In Proceedings of 10th International Conference on Model



26 Perdita Stevens

Driven Engineering Languages and Systems, MODELS 2007, Nashville, USA,
September 30 - October 5, 2007, volume 4735 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2007.

15. Perdita Stevens. A landscape of bidirectional model transformations. In
Generative and transformational techniques in software engineering II, num-
ber 5235 in Lecture Notes in Computer Science, pages 408–424. Springer, July
2007.

16. Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan de Lara, Laszlo
Lengyel, Tihamer Levendovsky, Ulrike Prange, Daniel Varro, and Szilvia
Varro-Gyapay. Model transformation by graph transformation: A compar-
ative study. In Workshop on Model Transformations in Practice, September
2005.

17. Steven Witkop. MDA users’ requirements for QVT transformations. OMG
document 05-02-04, 2005. available from www.omg.org.


