
GUIDE: Games with UML for Interactive Design
Exploration

Jennifer Tenzer Perdita Stevens

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh

Abstract

In this paper we present our design tool GUIDE, which allows the user to explore a design
in UML interactively by playing a game. The game incorporates both the design model
and a specification of what it means for the design to be correct. The central idea of this
approach is that the designer can increment the game during a play and gradually add more
detail to it. Specification and design are refined by repeated plays of the game. The designer
stops playing when design and specification are detailed enough for his purpose and match
each other. The interactive game approach helps to cope with incompleteness and informal
definition of UML models, which make strictly formal verification techniques difficult. The
designer may resolve these problems when they arise during a play or let the GUIDE tool
determine how the play should proceed. We discuss the potential impact of GUIDE and
tools like it on software development.

Key words: Interactive software design, UML, formal games

1 Introduction

The Unified Modeling Language (UML) [28] is a standard language for modelling
the design of object oriented software systems. There exists a variety of UML tools,
most of which focus on support for drawing UML diagrams and generating code
from them. None of the currently existing UML tools provides much support for
experimentation and evaluation of different design options. The hard tasks of de-
ciding whether a design fits to the specification, improving it and comparing it to

�

jennifer.tenzer@gmail.com
�

Perdita.Stevens@ed.ac.uk (corresponding author)

other solutions still has to be accomplished by the human modeller without much
guidance from a tool.

Our design tool GUIDE (Games with UML for Interactive Design Exploration)
[10] aims at filling this gap. The foundation for this tool are exploration games
which are an extension of two-player games as used in formal verification. The
GUIDE tool supports the user in defining an exploration game, playing it in differ-
ent roles, and incrementing the game definition.

An exploration game involves four different participants: two players called Verifier
and Refuter who compete with each other, a Referee, and an Explorer. The game
contains the design model of the system under consideration and a specification
of what it means for the design to be correct. The aim of Verifier is to show that
the design fits the specification, while Refuter tries to find a flaw in the design.
All moves are performed in several stages. The responsibility for each stage can
be assigned to one of the players or the Referee. The responsibility assignments
allow the game participants to resolve non-determinacy during a play when they
are faced with incompleteness or informality of the UML model. The Explorer has
the power to modify or increment the game definition at any point during a play.
The incrementations can affect both the design and the specification of the system
and may improve the chances of winning for one of the players.

The exploration game framework can be applied to UML in many different variants.
A game variant has to specify how exactly the exploration game is defined, i.e.
what its positions, moves, and winning conditions look like, which parts of the
UML model are used for the definition, how the responsibilities for the players are
assigned and how the Explorer may increment the game. Game variants can either
be used to check one design solution with respect to desired or undesired properties,
or to compare two different designs.

The GUIDE tool does not expect the user to have any knowledge of formal games
or verification and helps him to set up a game on the basis of a UML design model.
Once the game is defined the modeller can start a play. The part of the Explorer
always has to be played by the human designer, who may play any number of the
other game participants in addition. Taking on the role of Verifier or Refuter pro-
vides the modeller with a specific perspective and goal for the design exploration.
As Refuter he will concentrate on detecting flaws in the design, as Verifier he will
attempt to demonstrate that the design is correct. GUIDE makes the moves for all
game participants that are not played by the user, evaluates the winning conditions
and guides the user through a play.

GUIDE is itself a framework which can be extended in various ways. Additional
game variants can be implemented, new kinds of expressions for winning condi-
tions and responsibilities may be defined, and alternative algorithms for computing
the moves that are made by the GUIDE tool can be integrated.

The remainder of this paper is organised as follows. Section 2 gives an overview
on related work. In Section 3 we argue that games are a suitable foundation for
an interactive UML design tool like GUIDE which supports design exploration.
Section 4 contains an informal summary of the exploration game framework and
a description of an example game variant. The core functionality of the GUIDE
tool is presented in Section 5. In Section 6 we explain the architecture of GUIDE
and some of the technical solutions that have been chosen. Section 7 provides a
brief insight into how the GUIDE tool can be extended and customised. Section 8
discusses possible future developments of the GUIDE tools and its successors, how
we see this new approach fitting into practical software development, and the issues
that will arise. In Section 9 we conclude.

This paper is a revised and extended version of [24]. Section 8 is entirely new; the
other sections have been revised in minor ways.

2 Related work

The idea of using games as basis for a tool that allows design exploration has first
been introduced in [22] on a general level. Exploration games are extensions of two-
player verification games as described in [8] and [26]. A precise definition of the
formal exploration game framework appears in [25]. An application of exploration
games to UML activity diagrams has been presented in [23].

On a very abstract level the whole software development process can be regarded
as an interactive game. In [2] agile software development is considered as a “coop-
erative game of invention and communication”. The software developers play the
game with two goals in mind. The primary goal is the delivery of a working soft-
ware product, and the secondary goal is to prepare the next game. Non-cooperative
games can be used as metaphor for design reviews [13] or inspections [4], where
one player defends the design, and the other players try to find a flaw in it. An
adversarial attitude has also been successfully adopted by the Black Team [3] for
testing software systems. As far as we know games have not yet been applied in a
more formal way to the software design process or used as foundation for tools. In
particular there exist no approaches where games are used to explore a UML model
as introduced in this paper.

The work of Harel et al. on “play-in play-out scenarios” [11], [12] has a similar
flavour to our work, and is motivated by similar concerns about the interactivity
of tools to support design. Play-in scenarios allow the capture of requirements in
a user-friendly way. The user specifies what behaviour he expects of a system by
operating the system’s GUI – or an abstract version thereof – which does not have
any behaviour or implementation assigned to it yet. A tool which is called the play-
engine transforms the play-in of the user into live sequence charts (LSCs), which

are used as formal requirements language. The user does not have to prepare or
modify the LSCs directly but only interacts with the GUI. This approach differs
form ours in that its focus is on capturing and testing the requirements while we are
mainly interested in helping the user to design a system which fulfils the require-
ments. Thus play-in play-out scenarios do not aim to help in defining intra-object
behaviour, as our exploration games do, but remain on the higher level of interac-
tion between objects and user.

When UML tools are considered, the commercial tools Rhapsody [21] and Real
Time Studio [20] are most related to our work, because they allow the designer
to “play through” and examine state machines by animation. However, these tools
require very precise design models. They do not permit informally specified con-
straints or interruptions of the animation process in order to add more information
or change the design. There is also no notion of a system specification in these tools
against which the design is checked. The user merely observes the animation and
decides on his own whether the system behaves as he expected.

The tools HUGO [14] and vUML [15] allow the designer to check general proper-
ties of UML state machines, such as the possibility for deadlocks. HUGO addition-
ally verifies whether desired (or undesired) behaviour specified by UML interac-
tion diagrams can be realised by state machines. Both tools translate a UML model
which has been created by an external tool into a formal model which is then used
as input for the model checking tool SPIN. They differ from our GUIDE tool in
two respects. First, they require a UML model as input which is precisely defined.
Informal guard conditions, undefined object attributes and non-deterministic state
machines are not permitted. Second, they concentrate on the evaluation of a UML
model, while our exploration games are focused on interactive modification of the
design.

3 Motivation

Games have been chosen as foundation for GUIDE because they offer several ad-
vantages. First, playing a game does not require background knowledge in formal
methods and is fairly intuitive. The basic idea of two players Verifier and Refuter
who compete against each other to prove the correctness of the design or detect a
flaw in it is easy to grasp. Since the GUIDE tool is targeted at mainstream software
designers, this has been an important factor for choosing the tool foundation.

Another advantage of games with respect to tool support is that they are an interac-
tive technique, which allows the modeller to influence a play. The progress of a play
is determined by the decisions of the players who react to each other’s moves, and
by the Referee. These roles can be played by the designer, who may also increment
the game definition as Explorer during a play.

Such an incremental development of a game is the central idea of this work. Since
the design and the specification of the system are both incorporated in the game, the
designer can increment each of those parts. For example, suppose that the design
model is complete, but that there is only limited understanding of what it means for
the design to be correct. Perhaps it has not yet been understood how the informal
specification of overall system requirements should be translated down into precise
requirements; or perhaps the informal specification is itself incomplete or incorrect.
In mainstream business software development, which is our main focus of concern,
both are likely to be the case. The game as initially defined by the modeller may
incorporate only a small amount of information about what it means for the design
to be correct: it may be “too easy” for Verifier to win the game. The modeller should
be able to improve the game to make it a better reflection of the correctness of the
design. This might include, for example, changing the winning conditions so that
plays which would have been won by Verifier are won by Refuter in the new game.
At the same time, it is likely that the design itself is too incomplete to permit full
verification. The modeller should also be able to change the game by adding more
information about the design.

This idea fits very well to iterative and incremental software development processes
where the specification is updated along with the artifacts describing the system de-
sign. Thus games are a very natural choice with respect to how software is usually
developed. The designer increments the game while it is being played and has to
ensure that the game is challenging for the two players. A sequence of such incre-
mentations, which may be part of different plays, is an exploration of the design and
its specification. Even though the incrementations of the game may be beneficial
for one player, the modeller is not necessarily biased. For example, during one play
the designer may first increment the game such that it becomes easier for Refuter,
and later explore a different part of the game which increases Verifier’s chances of
winning.

The advantage of permitting game incrementation during a play is that the designer
does not have to start a new play from the beginning but can continue the improved
game from the current position. However, the disadvantage is that an incrementa-
tion may invalidate the play. For example, moves of the old game may not be part
of the incremented version anymore. Even if all moves of the play still exist after
the exploration, there is no guarantee that the players will select the same moves as
before when the play is repeated from the beginning. Thus a winning strategy for
the old game does not necessarily work in the incremented game and may have to
be adapted.

Figure 1 illustrates how different plays of game G0 initiate different explorations.
The new versions of the game are further improved which leads to new variations
and combinations of design and specification. Incrementing the game will in most
cases correspond to adding more detail to its parts. That means both specification
and design become gradually more precise. Hence this approach provides a smooth

D0=>D1

D0=>D2

Design D0, Specification S0

Game G0:

S0=>S1

...... ...

Game G4:
Design D3, Specification S0 Design D1, Specification S2

Game G5: Game G6:

...

S0=>S2D1=>D3

Design D2, Specification S1

S0=>S1 D0=>D2

...

Game G2:
Design D2, Specification S0

...

Game G1:
Design D1, Specification S0

...

Game G3:
Design D0, Specification S1

...

Fig. 1. Repeated game incrementation

progression from informal exploration of decisions to full verification. This has the
potential to lower the commitment cost of using formal verification. The designer
can stop exploring if he believes that design and specification are precise enough for
his purpose. Playing the game again from the beginning without further incremen-
tations verifies the current design against the current specification. The designer
may still have to provide information during the verification process if the game is
too incomplete at some points, which is very likely with UML design models as
basis. However, it is not necessary to improve the game so far that the complete
system can be verified formally without the help of the designer.

Finally, games may have another advantage: games which people play in their free-
time are played for fun. The question is whether games that are played with the
purpose of exploring design decisions are also to some extent entertaining. If so,
a game-based design tool like GUIDE may actually make the work of software
designers more enjoyable.

4 Exploration games

In this section we describe exploration games informally and introduce an example
variant which is based on UML state machines. However, the concepts of explo-
ration games are very general and can easily be applied to other UML diagram
types or combinations thereof. A full formal definition of the exploration game

framework and several applications to UML appears in [25].

An exploration game is defined by a game arena, an initial position, responsibility
assignments for the different stages of each move, game settings, winning con-
ditions for the players, and possible incrementations by the Explorer. The game
arena consists of positions and moves. It draws information from particular parts
of a UML design model – in our example from UML state machines and class
diagrams. A move may have a precondition and parameters. The preconditions of
the move do not have to be specified formally. If they are based on constraints in
the UML model, such as guards in state diagrams, they are very likely to be for-
mulated in natural language. The participants in an exploration game are the two
players Verifier and Refuter, the Referee and the Explorer. A move is selected in
the following steps:

(1) Precondition evaluation. The set of legal moves from the current position is de-
termined by declaring which informally specified preconditions are assumed
to be true.

(2) Choice of move shape. A move shape is a set of moves which have the same
source position, name, precondition and parameter signature. The moves be-
longing to a move shape only differ in their parameter values and target posi-
tions. Only legal move shapes may be selected in this move step.

(3) Parameter provision. The move shape is reduced by fixing the parameter val-
ues for the move. If only one single move is left, the next move has been
selected and the last step is obsolete.

(4) Resolution of non-determinism. There may be more than one move which be-
longs to the selected move shape and has the chosen parameter values. These
moves only differ in their target positions and one of them has to be picked as
next move.

In contrast to formal models that are normally used as basis for verification games,
the UML model is most unlikely to define a unique system, complete in all de-
tail. In the exploration game framework the game participants resolve any kind of
non-determinacy during a play. The responsibility for performing the four different
move steps are assigned to Refuter, Verifier or the Referee. In contrast to the players
the Referee does not benefit from decisions about the progress of the play.

The game settings can be general or specific for one variant. They are used for two
purposes. First, they fix an interpretation of the UML semantics where necessary.
UML contains “semantic variation points” for some of its features which provide
a degree of freedom in its interpretation. Since the possible moves in a game de-
pend to a great extent on the UML semantics, the designer has to decide how such
semantic variation points should be treated. Second, the game settings may impose
restrictions on how the game is played and incremented. For example, the game
settings can specify a move limit and thus determine the maximum length of a
play. Furthermore the game settings define whether the Explorer may increment

enrol(s:Student)
addToWaitingList(s:Student)
addToParticipants(s:Student)

name: String

Module

matriculate()

Student

addModule(m:Module)

0..*

0..*

waitingFor

modulesparticipants

0..*

waitingList {ordered}

0..*

matNo: int

minParticipants: int
maxParticipants: int

Fig. 2. Example class diagram

the game in a way that violates the play history.

The Explorer’s goal is to make the game more precise and keep the balance between
Refuter and Verifier. He is allowed to adjust the difficulty of the game for the players
by incrementing the game definition during a play. Apart from incrementing the
game the Explorer may also backtrack in the play history or change the current
position. The role of the Explorer is always played by the human designer who has
enough knowledge about the system to choose sensible incrementations and make
the model more precise. Additionally the modeller may take on other parts in the
game, such as, for example, the role of one of the players to examine the design
from a particular perspective.

Incrementations are defined with respect to the UML model for all parts of the
game where this is possible. In this case the designer does not work directly with
the game definition, but increments the game indirectly via changes in the UML
model. As we shall see, the designer can also modify the game directly, for exam-
ple, by changing the winning conditions; this kind of incrementation corresponds
to modifying the specification of the system, as opposed to the design model. Thus
during the course of play, both the design and the specification can be improved.
After he has performed such an incrementation as Explorer, the play is continued
according to the new game definition.

4.1 Example of an exploration game

For our example game variant we assume that a UML model for a university course
registration system consisting of the class diagram in Figure 2 and the two state
machines shown in Figure 3 is given. Notice that the guard conditions in the state
machines are informally specified. Whenever we refer to one of the players we use
the female form for Verifier and the male form for Refuter.

During a play of this game a collection of objects is observed with respect to state
changes. The objects constitute the system which is verified. Here we consider a
student Joe and a module CS1.
Positions: A position represents a snapshot of the system and consists of the fol-
lowing parts:

� For each object

Student

EndOfYear
[else]

t3:
EndOfYear

t4:
matriculate()

matriculate()

t2:
StartOfYear

t5:

t6:

t1:
addModule(m:Module)

Enrolling Studying

Taking Exams

Proposed
Scheduled

EndOfYear StartOfYear

Module

t7:

t9:t10:

Open

t8:

s.addModule(self)
enrol(s::Student)/

Being Taught

[practicals passed]

On Holiday

Fig. 3. State machines for Module and Student

� a state configuration,
� and an event pool.

� A set of parameters which are in scope at the position.

The positions where all event pools are empty belong to Refuter, all others to Veri-
fier. At the initial position all objects are in their default states and the event pools
are empty.
Moves: In this example the moves from Refuter’s positions correspond to generat-
ing events. All events which refer to an operation in the class diagram are regarded
as call events and are targeted at a specific object. When a call event is generated
a target object has to be specified and the event is put into its event pool. The call
events in our example are matriculate, addModule, enrol, addToWaitingList and
addToParticipants. All other events that occur in the state machines are considered
as signal events. They are broadcast to all objects and put into their event pools
when generated. If an event is parameterised, suitable parameter values have to be
provided for it.

A move from one of Verifier’s positions corresponds to firing a set of state ma-
chine transitions according to the UML semantics. For each object the first event
in its pool is dispatched and an enabled state machine transition is fired, if there is
any. An event which does not trigger any transitions is discarded as specified in the
UML standard [28][p.492]. Whether a transition is enabled or not depends on the
evaluation of the guard condition at the time when the event occurs. Thus the legal-
ity of a move is determined by the evaluation of the guards, which are considered
as preconditions of the move.

If a transition is fired and an effect is attached to it, another event is generated.
The new event is put into the appropriate event pool and the object completes its
transition. This corresponds to the idea of asynchronous actions in UML, where
the object does not have to wait until the new event has been processed before it
reaches the next stable state.

Figure 4 shows some of the positions and moves of our example game. Refuter’s

CS1 CS1

CS1

...

...

...

...

...

Joe: discard Scheduled
CS1: fure t7

CS1.enrol(Joe)

Joe: fire t1

StartOfYear Scheduled

CS1

CS1

CS1 CS1

EndOfYear

EndOfYear

EndOfYear

EndOfYear

...

...

StartOfYear

CS1: fire t9
Joe: fire t2

EndOfYear

CS1 CS1

EndOfYear

CS1: fire t6
Joe discard Scheduled

Scheduled

CS1: discard StartOfYear

Joe: fire t2

CS1

s

CS1

m

Joe

CS1

CS1: fire t8

CS1

CS1 CS1

CS1

State configurationName

Joe Enrolling

Proposed

Event pool

StartOfYear

StartOfYear

p1:V

State configurationName

Joe Enrolling

Proposed

Event pool

Scheduled

Scheduled

p2:V

State configurationName

Joe

Proposed

Event pool

p7:V

Studying Scheduled

Scheduled

State configurationName

Joe Enrolling

Event pool

StartOfYear

StartOfYear

p8:V

Open

State configurationName

Joe

Event pool

empty

emptyStudying

p10:R

Being Taught

State configurationName

Joe

Event pool

Studying

State configurationName

Joe

Event pool

Studying

p11:V p12:V

Open Being Taught

[else]

State configurationName

Joe

Event pool

empty

empty

Open

p13:R

Taking Exams

State configurationName

Joe

Event pool

empty

empty

Open

p14:R

On Holiday

State configurationName

Joe Enrolling

Event pool

empty

Name

enrol

p5: V

State configurationName

Joe Enrolling

Event pool

Name

enrol

p6: V

addModule

Value

Value

Open

Open

[practicals passed]

State configurationName

Joe

Event pool

empty

emptyStudying

p9:R

Open

State configurationName

Joe

Proposed

Event pool

empty

empty

p3:R

Studying

State configurationName

Joe Enrolling

Event pool

empty

empty

p4:R

Open

State configurationName

Joe Enrolling

Proposed

Event pool

empty

empty

p0:R

OBJECTS OBJECTS

OBJECTS OBJECTS

OBJECTS

OBJECTS OBJECTS

OBJECTS OBJECTS

OBJECTS

PARAMETERS

OBJECTS

PARAMETERS

OBJECTS

OBJECTS OBJECTS

OBJECTS

Joe: fire t5
CS1: discard EndOfYearCS1: discard EndOfYear

Joe: fire t3

Fig. 4. Positions and moves in the example game

positions are shown in grey-shaded rectangles and are labelled by “R”, Verifier’s
are labelled by “V”. The position shown as p0 is the initial position.
Winning conditions: Refuter wins a play if a position is reached where CS1 is in
state Open and Joe is in state Taking Exams. He also wins all plays which end at a
position belonging to Verifier because no further moves are possible. Verifier wins
all other plays.
Because of the informally defined guard conditions at the transitions it is unclear
for some of the moves whether they should be regarded as legal or not. For this
example we assign the responsibility for deciding about the legality of moves to
Verifier. Furthermore we assume that the players select move shapes at their own
positions. They also provide parameters and resolve non-determinism for all moves
emerging from the positions belonging to them.

Responsibilities:

� Verifier decides whether an informal precondition of a move is assumed to be
true.

� Verifier and Refuter fulfil all other tasks at their own positions and for the moves
emerging from these positions.

Game settings: According to the UML semantics an event is always discarded
if it does not trigger a transition. However, this semantic rule has been criticised
as being inappropriate in some cases, especially where the events are the calling
of methods; in practice, many UML users use the alternative rule that call events
may not be discarded. Here we introduce a setting which specifies whether the
official rule should be applied to call events. For this example game we assume that
discarding call events is forbidden.
Incrementations:

� Add or delete a state transition.
� Add or delete a state. If a state is deleted, all transitions which emerge from or

lead to it are also deleted.
� Add or delete an event or operation.
� Change the guard condition at a transition.
� Change the winning conditions.
� Change the responsibility assignments.
� Change the game settings.

Notice that the first four incrementations all operate directly on the parts of the
UML model which have been used as basis of the game definition for our game
variant. The last three incrementations are more general and transferable to other
game variants which do not use UML state machines and class diagrams as foun-
dation.

The game variant which has been introduced here is a simple example of an appli-
cation of exploration games to UML in order to illustrate the approach. We have
abstracted from details, such as, for instance, how exactly the winning conditions
and responsibilities are defined. Since the positions of the game only record the
abstract states of the objects, it is difficult to evaluate sophisticated guard condi-
tions. For example, it is not possible to decide whether the number of students who
are enrolled in a module exceeds the maximum number of participants. In order
to evaluate a precondition like this we would have to define a more complex game
variant whose positions contain the objects’ attribute values and links. For our ex-
ample game preconditions whose evaluation is undefined because the positions do
not contain enough information are treated as if they were informally defined. The
game participants have to decide whether their evaluation is assumed to be true or
false.

Error

Full

t8:
Module

enrol(s:Student)

Proposed
Scheduled

EndOfYear StartOfYear

t7:

t9:t10:

Open

Being Taught

StartOfYear

s.addModule(self)

StartOfYear

enrol(s:Student)/[seat available]/

create waiting list; addToWaitingList(s)

t12:

t13:

t14:

t15:

enrol(s)[else]/

addToWaitingList(s)

Fig. 5. State machine for Module after exploration

4.2 Example plays without exploration

We examine some example plays of our game, consisting of the positions shown in
Figure 4. Here we only consider plays which do not involve incrementations by the
Explorer. Assume that Refuter challenges by StartOfYear at position p0. Verifier has
only one choice to respond to this challenge and moves to p3. From there Refuter’s
next moves are Scheduled and EndOfYear. Again Verifier has only one possibility
to react to these events and the play continues from p3 via p7 and p9 to p11. Here
Verifier has for the first time the chance to actually select a move. Before she can
do this she has to decide which of the moves are legal. The guard condition else
at transition t5 indicates that exactly one of the transitions triggered by EndOfYear
must be enabled, i.e. the guard conditions are mutually exclusive. That means only
one move emerging from p11 can be declared as legal. Verifier realises that she will
lose the play if she moves to p13, because this position fulfils the winning condition
for Refuter. Hence a rational choice for Verifier is to declare that the move to p14
is legal. If she selects this move, she can avoid losing the play. In fact, if Verifier
applies this strategy every time position p11 is visited, she can win all plays. That
means Verifier has a winning strategy and the design is considered to be correct
with respect to the specification under the current game definition.

Verifier wins this variant of the game so easily because she can always avoid firing
transition t3. At an early stage of the design phase, it may be useful to give Veri-
fier so much power. This game variant is suitable for playing through the desired
scenarios of the system without being forced to consider preliminary parts of the
design or special cases. A variant of the game which is maximised for detecting
flaws is to allow Refuter to decide about the validity of informal preconditions. In
the example play described above Refuter will then declare that the move to p14
is illegal. Thus Verifier is forced to move to position p13 where Refuter wins the
game. If the Referee is responsible for evaluating informally defined preconditions,
the outcome of each play is uncertain. None of the players has a safe winning strat-
egy because the decision of the Referee at p11 determines who can win.

4.3 Example plays with exploration

In this section we use the example game from Section 4.1 to show how a game is
repeatedly changed by incrementations. During the explorations the state machine
for Module will be altered. The resulting state machine after all explorations con-
sidered here is shown in Figure 5. In the descriptions of the example plays we will
again refer to positions which are part of the arena excerpt shown in Figure 4.

Assume that Refuter challenges by StartOfYear, Scheduled and EndOfYear from
the initial position. Verifier applies her winning strategy and moves to p14. At this
point the designer realises that the game is too easy for Verifier: she is permit-
ted to forbid (“dodge”!) a reasonable challenge, EndOfYear when practicals have
been failed. This discovery urges him to increment the game as Explorer such that
the disadvantaged player has a better chance of winning. The Explorer backtracks
to position p11 and changes the responsibility assignments such that Refuter is
responsible for the evaluation of all informal preconditions. The play is contin-
ued with these modifications and Refuter declares that the critical move to p14 by
which Verifier can avoid losing the game is illegal. Now Verifier has no other choice
except to move to p13, where Refuter wins the game.

The designer decides to play the incremented game again from the beginning to
see how the players move under the changed circumstances. It becomes obvious
that it is now Refuter who can always win the game easily by declaring that the
move to p14 is illegal. The modeller realises that Verifier loses because she cannot
respond adequately when Refuter raises StartOfYear before Scheduled. There are
several alternatives of how he can improve the game as Explorer such that Verifier
has better chances of winning. Here we consider the following three possibilities:

(1) Backtrack to p1, add a new state to the state machine for Module and add a
transition t11 from Proposed to the new state which is triggered by StartO-
fYear. With these changes Verifier must fire t11 for CS1 in response to StartO-
fYear. The state of object CS1 changes to the new state and the critical state
combination is avoided as the play continues.

(2) Backtrack to p1, add a new state Error and add a new transition t12 from Pro-
posed to Error with trigger StartOfYear. Then change the winning conditions
such that Verifier wins the game if state Error is reached. Verifier must fire
t12 for CS1 in response to StartOfYear. After that move the winning condition
holds and Verifier wins the play.

(3) Backtrack to p7 and change the winning conditions such that Verifier wins if
Refuter challenges with Scheduled immediately after StartOfYear. With these
changes position p7 becomes a winning position for Verifier, because the two
events have been generated in the forbidden order.

The first two options indirectly extend the set of moves for Verifier in the arena

of the game. If the first solution is chosen, Verifier has the chance to circumvent
a position which leads to a win for Refuter in the old game by using one of the
new moves. The last two possibilities involve changes of the winning conditions
such that Refuter is discouraged from making the critical sequence of moves which
causes problems for Verifier. Here we assume that the Explorer chooses the second
alternative. If played without exploration, the improved game is always won by
Verifier.

We can continue in various ways, with the designer gradually improving both the
system design and its specification. A way of incrementing the game which has not
been considered yet is to alter the guard conditions at transitions. For example, the
designer can refine the conditions under which t8 may be fired by adding a guard
condition seat available. When Refuter challenges by Scheduled and m.enrol from
the initial position, Verifier now loses the play if Refuter declares that seat available
does not hold. Verifier cannot find a transition which is triggered by m.enrol and
the game settings forbid her to discard call events. That means there are no moves
possible from the current position which belongs to Verifier, and Refuter wins the
play.

A simple way to improve Verifier’s chances of winning the game is to change the
game settings such that call events may be discarded. Another approach which
preserves the strictness of the game settings is to add more detail about what should
happen if there is no seat available when a student attempts to enrol to the model.
One solution is to add the student to a waiting list. In order to follow this approach
the Explorer adds a new state Full, and transitions t13, t14 and t15 as shown in
Figure 5 to the diagram. After this exploration Verifier has again a winning strategy
for the current game.

4.4 Significance of explorations

Explorations can be regarded as possible answers to design questions. Sometimes
very concrete design questions arise during a play. For example, the fact that Veri-
fier loses the game at position p13 after the first incrementation leads to the follow-
ing questions;

� What should happen if the year starts before the module is scheduled?
� Is the sequence StartOfYear, Scheduled legal or out of the system’s scope?

Often it may be enough that the play evolves in a way which was not expected
by the designer to make him think about certain design issues. For example, the
designer may realise during a play that a feature which he assumed to be part of the
system is missing both in the specification and the design. The designer discovers
this flaw because he misses corresponding moves in the play. In our example the
designer could for instance ask himself whether a module can be cancelled at any

time.

In other cases the idea for a new exploration is not triggered directly by a play,
but comes up when the designer thinks about how to improve the game for one of
the players. For example, attaching a guard condition to t8 is just one possibility to
improve the chances of Refuter that the designer decided to follow.

It is also possible to think of Explorer’s incrementations as independent proposals
for system changes which are not inspired by plays of the exploration game at all.
On this more general level exploration games can for instance be used to explore the
evolvability of a system. In this case the incrementation is hypothetical and serves
to show that a game can be extended as desired without breaking functionality that
was present in the initial design.

5 Playing a game with the GUIDE tool

GUIDE is a prototype tool written in Java which is based on the exploration game
framework. Before a game can be set up with GUIDE, a UML model has to be
created. GUIDE does not contain a visual editor and requires an .xmi file which is
compliant to the UML1.4 metamodel [27] from an external UML tool as input. We
have chosen an old version of the UML metamodel, because most UML tools still
use this version. The test models for GUIDE have been created with the community
edition of the Poseidon tool [19].

Figure 6 shows the main window of GUIDE after a project with the example game
of Section 4.1 has been opened. There is a menubar on top of the window, a model
tree which displays the UML model on the left hand side, a game panel with six
different views on the right, and a message window at the bottom. The views in the
game panel are controlled by the game tabs on top of the panel. Each view shows
a particular part of the game definition. The definition of a new game in GUIDE
consists of the following steps using the menubar:

(1) Open the UML model game by File � Open Model, which displays a file dia-
logue.

(2) Set the arena type by Edit � Arena type, which opens a dialogue where the
user can select one of the types that are currently available in GUIDE. The
arena type specifies the game variant and determines which parts of the UML
model are used within the game. Once the user has performed this step, the
model tree is displayed.

(3) Set the initial position by Edit � Initial position. The dialogue which is in-
voked by this operation is customised for the arena type that has been selected.
For the example game variant which is considered in this paper the designer
first enters object names and then selects classes from the UML model for

Fig. 6. GUIDE main window

Fig. 7. Dialogues for editing an expression in Refuter’s winning condition

them. After that he chooses a state from the appropriate state machine for
each object. Since the user cannot enter arbitrary class and state names, the
initial position is always valid. The user can also specify parameters which
are known at all positions of the game and their initial values. The param-
eter values have to be updated manually during a play and allow additional
information about the system to be recorded.

(4) Define the winning conditions for the players by Edit � Winning condition Re-
futer and Edit � Winning condition Verifier. Most of the dialogues which are
displayed on selecting these menu items are the same for each variant because
GUIDE contains a general expression framework. A typical sequence of di-
alogues is shown in Figure 7. A winning condition consists of one or more
AND-Clauses. Each AND-Clause is a conjunction of expressions, which can
be applicable to all variants, such as for instance Dead end position of op-
ponent reached, or to just one game variant. The only dialogue that is variant
specific in Figure 7 is the last one in the sequence where the state expression is
defined. This expression may be part of a winning condition because it “fits”
the selected arena type.

GUIDE uses default values for all other parts of the game definition which can be
changed by the user. The responsibilities of the two players and the Referee are

Fig. 8. GUIDE main window with general settings tab and a context menu for a state ma-
chine node

edited via dialogue sequences that are very similar to those for the winning condi-
tions. Moreover the game settings may be modified directly in the corresponding
game tabs. The tab for the general game settings, which are the same for all game
variants, is shown in Figure 8. The same figure also shows a context menu in the
model tree which pops up when the user clicks on a node representing a state ma-
chine with the right mouse button. The model tree contains context menus like this
for all other node types. Each item of the context menus opens a dialogue which
allows the user to increment the corresponding part of the UML model at any time.
In the Values view the user can specify which values should be used for parame-
ters that are not objects but primitive data types. This is a mechanism to enforce
finiteness of the number of moves that emerge from a position, which we do not
consider further here.

Notice that a game cannot be defined in arbitrary order. For example, it does not
make sense to define a winning condition before a UML model, which serves as
foundation for the game, has been opened. Therefore some of the menu items in
GUIDE are not always enabled and the user is forced to perform the different steps
of the game definition in a reasonable order.

Once the user is satisfied with the game set up, he can start to play by Game � Play.
A dialogue as shown in Figure 9 appears and asks the user for the distribution
of tasks during the play. After that the play window which contains the current
position and play history is displayed and the players start to move. Figure 10 shows

Fig. 9. Preparation of a play

Fig. 10. Play window showing a play without exploration

one of the plays that was discussed in Section 4.2 in the play window of GUIDE.
When the last position of this play is reached, GUIDE discovers that Refuter’s
winning condition holds. The play is finished and GUIDE announces that Refuter
is the winner.

Each move consists of the four stages that were explained in Section 4.1. The al-
gorithm for GUIDE moves, which is selected in the general settings tab, computes
how GUIDE performs these move steps in the role of the players or the Referee. If
the settings specify that GUIDE should attempt to compute winning strategies for
the players, the algorithm can use these strategies during its computation. The user
can choose in the dialogue for the preparation of a play whether the move steps
that are made by GUIDE should be displayed. If the user has to perform a part of

Fig. 11. Dialogues for move steps

the move, he is asked for input by different dialogue windows. Figure 11 shows a
sequence of move steps in the example game where the user plays both Refuter and
Verifier.

At any time during a play the user can increment the game definition as specified by
the formal exploration game framework. He is not forced to answer the dialogues
that are displayed immediately and can use the context menus in the model tree, the
items of the Edit menu and the features in the game settings tabs to increment the
game. Furthermore the Change position button in the play window permits modifi-
cations of the current position during a play. Each change of position results in an
incrementation of the game arena because the new position becomes the target of
the last move. Whenever the modeller performs an incrementation, a short descrip-
tion is displayed in the play history. Figure 12 shows the history of the example
play in Section 4.3 during which incrementations have been performed.

The Backtrack button in the play window allows the modeller go back to an earlier
position of the play which can be selected in the history. Backtracking includes
the incrementations of the game, i.e. the game definition is also changed back to
an earlier version. For example, clicking the Backtrack button in the play window
shown in Figure 12 would restore the old version of Refuter’s winning condition
and remove transition t12 from the UML model. After backtracking the play would
continue at the second item of the play history, which is selected.

6 GUIDE Architecture

This section is intended as an overview on GUIDE’s architecture and concentrates
on the most important classes and methods. Figure 13 shows the package structure
of GUIDE.

Package io consists of classes for saving and loading GUIDE projects and UML
models. As storage mechanism for the UML model we have used the Metadata
Repository (MDR) by NetBeans [16]. The MDR project is aimed at persistent stor-
age and manipulation of metadata. It is based on the Meta Object Facility (MOF)
standard [18]. The solution based on MDR has two main advantages. First, differ-

Fig. 12. Play window showing a play with exploration

expression algorithm

expression algorithm

GUIDE

exuml

io event framework

game

game

GuideFactory GuideProject UMLUtils

gui

variants

Fig. 13. The package structure of GUIDE

ent UML tools can be supported because MDR is not bound to a particular XMI
version or tool-specific saving format. That means the XMI output of any UML tool
that is compliant with the UML1.4 metamodel can be read into GUIDE. Second,
MDR’s interfaces for accessing and manipulating the UML model have reduced
the amount of code that had to be written.

The classes in event specify the actions which are invoked via the GUI, and pack-
age ex contains exception classes. The uml package provides classes for the UML
elements that appear in the model tree. The classes in the gui package are Java
Swing components, such as for instance a file dialogue, which are customised and
used by different parts of the tool. The main frame of the GUI is also located in

Position

Move

Game

modelLocation: String

initPos
model

resRefuter

resReferee

resVerifier

MDR

positions

1..*

0..*

moves

wcRefuter

WinningCondition

UmlPackage

ResponsibilitySet

variantSettingsgeneralSettings

0..*

1..*

GeneralSettings

wcVerifier

arena

Arena

game

getPrecondition():String

MoveParameter

MoveComponent

getHistoryEntry():String

getSettingsPanel:SettingsPanel

Settings

Fig. 14. GUIDE game framework – Game structure

the gui package. All other GUI components are stored further down in the package
hierarchy in subpackages of the game, expression and algorithm packages.

The most interesting packages in the context of this paper are the framework and
variants package. As shown in Figure 13 they both have the same structure. The
framework package provides general classes and interfaces which can be refined
and realised in the variants package. The class GuideFactory consists of methods
for finding classes in the variants package which implement particular interfaces
or are subclasses of framework classes. Java’s reflection mechanism is used for
this purpose. The relation between the framework and variants package is further
discussed in Section 7.

Figure 14 shows the part of GUIDE which contains the game structure. As in the
formal exploration game framework, a Game consists of an arena, an initial posi-
tion, winning conditions, responsibility assignments and game settings. The UML
model of a game is given by a UmlPackage which is a class in MDR. The abstract
classes Arena, Settings and MoveComponent are specialised by concrete classes in
the variants package. The concrete subclass of Arena for the game variant which
we have considered in this paper is based on UML state machines. As in the ex-
ample game discussed in Section 4.1, the Settings subclass refers to the UML state
machine semantics. The concrete subclasses of MoveComponent for the game vari-
ant considered here stand for generating events, firing transitions and discarding
events.

The part of GUIDE’s framework package which is essential for playing a game
is shown in Figure 15. The GameEngine is invoked by the GUI and controls the
play. It is linked to a Play which consists of ExplorationPosition instances. Each
exploration position is a tuple of a Position and an Incrementation. If a move is
made during a play, an exploration position with null as incrementation and the tar-
get position of the move is added to the history. In case the game is incremented, a

play(Game g)

GameEngine

Play

ExplorationPosition Position

history

Incrementation

undo(g:Game)

description:String

0..*

Fig. 15. GUIDE game framework - Playing a game

evaluate(m:Move):Boolean
evaluate(p:Position):Boolean
evaluate(p:Play, gs:GeneralSettings, vs:Settings):Boolean

AndClause

<<Interface>>
ResponsibilityExpPosIF

evaluate(p:Position):Boolean

<<Interface>>
ResponsibilityExpMoveIF

evaluate(m:Move):Boolean

<<Interface>>

Expression

<<Interface>>

ndtRes

paraProvRes
0..*

0..*

0..*
preEvalRes
0..*

moveShapeRes
ResponsibilitySetevaluate(p:Play, gs:GeneralSettings, vs:Settings):Boolean

WinningCondition

0..*

ExpressionIF

isSuitable(a:Arena):boolean
isEditable():boolean
isNegated():boolean
setNegated(b:boolean)
isNegationAllowed():boolean
getDescription():String
getExpressionPanelIF():JPanel

WinningConditionExpIF

evaluate(p:Play, gs:GeneralSettings, vs:Settings):Boolean

0..*

Fig. 16. GUIDE expression framework

concrete instance of the abstract Incrementation class and null as position constitute
the new exploration position.

There already exist all necessary concrete subclasses of Incrementation in GUIDE,
which represent incrementations of the model, winning conditions, responsibili-
ties, and game settings, respectively. They all implement the abstract undo method
which restores the game that is provided as parameter to the state before the incre-
mentation has happened.

The general expression framework of GUIDE is shown in Figure 16. Both Win-
ningCondition and ResponsibilitySet are associated with collections of AndClause
instances. When a winning condition is evaluated, the result is true if one of its
AND-Clauses is true. The evaluate method of AndClause which has a play, gen-
eral settings, and variant specific settings as parameters is invoked for each AND-
Clause to perform the evaluation. Within this method the expressions that constitute
the clause are cast to WinningconditionExpIF and evaluated. The GUI ensures that
an AND-Clause which is part of a winning condition only consists of expressions
which implement this interface and are suitable for the arena of the game. If all
expressions are evaluated to true, the evaluation of the AND-Clause and of the
winning condition also return true.

Instances of ResponsibilitySet are evaluated in similar fashion, but make use of
two different evaluation methods. Which one is chosen depends on the type of

responsibility that is evaluated. A ResponsibilitySet consists of four different AND-
Clause collections, which correspond to the four responsibilities in the exploration
game framework. The responsibilities for precondition evaluation and move shape
selection are evaluated over positions, while the ones for parameter provision and
resolution of non-determinism are evaluated over move shapes.

GUIDE provides several subclasses of Expression which implement the interfaces
of the expression framework and define expressions that are usable in all game vari-
ants. An example of a general winning condition expression is Move limit reached,
which refers to the move limit that may be set as part of the general settings. This
expression is represented by a constant in a subclass of Expression.

Further subclasses can be created for variant specific types of expressions. For the
variant which is based on UML state machines, a class StateMachineExp has been
added to the variants package. The class implements all interfaces except for Re-
sponsibilityExpMoveIF in Figure 16. Hence an object of this class can be used in
winning conditions and for the definition of responsibilities which are based on
positions, but not for responsibilities referring to moves.

Notice that there is no separate class which represents move shapes in GUIDE. A
move shape is simply a move whose parameters and target position are ignored.
Another important point is that the evaluate methods in the expression framework
return Boolean values. That means they can return true, false or a null object. The
latter is used to indicate that the evaluation has been undefined.

The contents of the algorithm package are shown in Figure 17. Two interfaces and
one abstract class are associated with GeneralSettings. They define the algorithms
that are used by the tool to make moves and evaluate preconditions during a play,
and for computing winning strategies. There are two methods for computing a win-
ning strategy in StrategyBuilderIF. The first one computes a fresh winning strategy,
while the second method adapts an existing winning strategy during a play. The
latter is needed to react to game incrementations and decisions by the game partici-
pants. The evaluate method in PreconditionEvaluatorIF uses a return value of type
Boolean to cater for undefined evaluations.

Most of the methods in GuideMoveMaker require a parameter that specifies which
role GUIDE should play. The only exception is the last method which refers to
the undefined evaluation of winning conditions. It is used to determine whether the
play may be continued or one of the players wins in case the game settings specify
that the Referee is responsible for this decision and GUIDE acts as Referee. For the
provision of parameter values by method provideParameterValues a mapping from
types to possible values has to be specified.

GUIDE provides simple default implementations of the interfaces and abstract class
in the algorithm package. The default precondition evaluator always returns null to
indicate that the evaluation is undefined and has to be performed by the responsi-

<<Interface>>

computeWinningStrategy(prefix:Play, g:Game, player:String, safe:boolean):WinningStrategy
computeWinningStrategy(prefix:Play, g:Game, player:String, safe:boolean, curWS:WinningStrategy,

nextMoves:Set, selectedShapeOrMove:Move, moveStage:int):WinningStrategy

StrategyBuilderIF

<<Interface>>

WinningStrategy

0..1

GeneralSettings

selectMoveShape(moveShapeSet:Set, role:String):Move

resolveNDT(moveSet:Set, role:String):Move
provideParameterValues(shape:Move, valueMap:HashMap, role:Stirng):List

GuideMoveMaker

evaluate(precondition:String, prefix:Play, role:String):boolean

PreconditionEvaluatorIF

evaluate(precondition:String, prefix:Play):Boolean

undefinedWCEvaluation(prefix:Play):String

Fig. 17. GUIDE algorithm framework

ble game participant. The subclass of GuideMoveMaker which is used by default
computes GUIDE’s moves on the basis of the associated winning strategies if there
are any. Otherwise GUIDE performs the different tasks which it is responsible for
randomly. The default strategy builder only attempts to compute a winning strategy
if a move limit has been set for the game. It searches for a winning strategy by
building the arena up depth first until the move limit is reached.

7 Extensions of GUIDE

The GuideFactory class is used to search the variants package for realisations of
interfaces and subclasses of the framework classes while GUIDE is running. The
classes that are found are instantiated, and can be selected to be part of the tool via
the GUI. This solution permits extensions of GUIDE by adding new classes to the
variants package. Since the GuideFactory attempts to instantiate the classes in this
package, new classes should always have a default constructor with no parameters.

In order to define a new game variant, a subclass of the abstract class Arena has to be
created within the game subpackage. The definition of a new variant also requires
new subclasses of Position and MoveComponent, and a panel for displaying and
editing positions belonging to the new arena. Moreover methods which compute the
next moves emerging from a position and customise the model tree are left abstract
in Arena and have to be implemented. Any user-defined game variant which follows
these rules becomes available for selection in the dialogue that is displayed by
Edit � Arena type.

Another part of GUIDE that can be extended is the expressions package. A new
kind of expression should be implemented as subclass of Expression, and realise

at least one of the interfaces for winning conditions or responsibilities shown in
Figure 16. The interface ExpressionIF contains a method for deciding whether an
expression is suitable for an arena and one which yields a panel for editing expres-
sions of this type. The Expression class provides default implementations for these
methods which should be overridden by its subclasses. The solution for the imple-
mentation of the first method in class StateExpression, which is part of our example
variant, was to define another interface StateExpressionIF. This interface specifies
which methods should be provided by a suitable arena. The isSuitable method in
StateExpression checks whether the arena implements this interface. All expres-
sions which are suitable for the arena of the game become available for selection in
the expression dialogues of the GUI.

It is also possible to define customised algorithms which specify how the GUIDE
tool evaluates preconditions, makes moves and computes winning strategies. Classes
which contain new algorithms should implement at least one of the interfaces
shown in Figure 17 or be subclasses of GuideMoveMaker. They must be put into the
algorithms subpackage of variants to be found by GUIDE and are then displayed
as options in the general settings panel, where the user can select which algorithms
should be used.

8 Adoption issues

The body of this paper has focused on introducing the prototype GUIDE tool as a
means of illustrating the use of games to assist the creative software design process.
We have briefly discussed future work developing and evaluating the tool. In this
section, we discuss how we see GUIDE, and tools like it, eventually contributing to
creative software design. We will summarise the issues which we aim to address,
current software design practices, and the problems and benefits we anticipate in
introducing the GUIDE tool or its successors to real software development envi-
ronments.

8.1 Supporting creativity in software design

Software design is fundamentally a creative activity. It is not possible to draw up
exhaustive rules about how to make good software designs. Current best practices
include:

� techniques such as design patterns (see e.g. [6]), to help developers learn how to
recognise and solve commonly occurring problems;

� techniques to find and fix bad design after the fact: these include both design
review meetings, and individual practices like Extreme Programming’s “merci-

less refactoring”[1], which aim to eliminate bad design soon after it has been
introduced and before it has a chance to cause many bad knock-on effects.

� heuristics, rules of thumb and coding standards that tend to encourage good de-
sign: for example, we can use catalogues of “bad smells” [5] to detect possible
flaws, such as duplicated code or complex monolithic methods;

Fundamentally, these techniques amount to educating the designer, and/or fixing his
mistakes after the fact (although still before the design has been used in a system
released to a customer). There is still not much in the way of support to do a good
job of a particular design in the first place. It is this gap which GUIDE and its
successors aim to fill.

We assert that the fundamental reason why software design is hard to do well is that
it generally involves developing a deep intuitive understanding of what will happen
under many different collections of circumstances. Designers have to take into ac-
count, for example, the range of possible data input to the system; the possible
interactions the system has with humans or other computer systems; the possible
concurrency effects, e.g., race conditions. Even harder, they have to try to design
the system in such a way as to minimise the rework necessitated by changes to
customer requirements, the technical or business environment, etc., whether the
changes occur during initial development or after deployment. It is relatively easy
to “walk through” a potential design in a single concrete environment, but to under-
stand the implications of one’s design decisions overall, one has in effect to explore
a tree of possibilities. Changing a design decision in order to eliminate a problem
at one position in the “tree” may introduce problems elsewhere. Creating a design
from within a design space is akin to picking the best tree from a forest. In prac-
tice, designers undoubtedly use “fast and frugal” heuristics [7]: that is, one part of
the skill of the good designer is to identify which sets of circumstances need to be
thought about explicitly, while another is the ability to do the mental walkthroughs
efficiently and accurately.

One approach to this problem is to attempt to automate the entire forest search.
Automating the connection between a UML model and the code, and then using
automated testing techniques, is one way to automate the part of the search that
concerns different input values. In certain restricted circumstances, it may be pos-
sible to define the design space and the desiderata for the design formally, and have
a tool search for the best design. This is a promising approach to some aspects of
the problem, most notably the management of concurrency issues. However, it can
never solve the entire problem. To see why, let us reconsider the fact that the design
needs to be robust against future changes to the customer’s requirements and other
changes to the hardware, software, human and organisational context.

This is one of the reasons why high-level design is, and will remain, a fundamen-
tally human-driven activity. No design can be robust against every possible change
to the customer’s requirements. Indeed, attempts to maximise flexibility, for ex-

ample by using design patterns at every opportunity, can backfire by leading to
excessively complex and hence error-prone designs.

This danger of excess complexity is the rationale behind the Extreme Programming
(XP) mantra “You ain’t gonna need it”. “Agile methodologies” [2], of which XP is
an example, react against what is called Big Design Up Front (BDUF), the practice
of trying to anticipate all possible requirements and requirement changes. They
advocate an environment in which, rather than try to make one design which can
meet all needs and anticipate all changes, one ensures that the design is kept clean
and simple enough that a skilled developer can quickly adapt it to actual changes
when they arise. They tend to reject building detailed models in languages such as
UML, in favour of focusing on the code and doing everything possible to facilitate
informal development among a small team of developers.

The agile methodology movement is an important step forward for software de-
velopment methodologies, but it works best for software which can be developed
by a small team and where every part of the software can be modified as occasion
demands. Where this is not the case, the original designer may have to anticipate
future changes – to do some BDUF – to maximise the chance that required changes
can be made without needing to alter hard-to-alter parts of the system. For exam-
ple, if a system involves some software deployed to customers and some held at a
central site, it might be straightforward to alter the latter, but very awkward and ex-
pensive to alter the former. In general, the skilled designer discovers enough about
the environment in which the system operates to make good guesses about where it
is worthwhile to introduce a little extra complexity, for example a layer of abstrac-
tion, in order to localise changes that are quite likely to be required. Almost always,
which changes will actually be required is unknown at the time of design.

We envisage that a tool such as GUIDE could be useful in cases where a certain
about of Big Design Up Front is required, e.g. because modifying the design later
will be impractical. Where agile methodologies reject BDUF because historically
it has been almost impossible to do well, we aim to make it easier to do, when it
must be done. The creativity still comes from the designer, but the tool can help the
designer to explore the consequences of a decision.

8.2 Future developments which would aid adoption

Before GUIDE or a tool like it could be adopted in actual software design practice
various advances need to me made. Some of these are intellectually challenging:
others are “just” usability enhancements. As usual with UML tools, there is the
difficulty that the usability of the tool can be very seriously adversely affected by
rather “uninteresting” factors: to develop the tool to the point where one can with
full confidence identify the shortcomings of the new technique, as distinct from

the shortcomings of the prototype implementation, would require an amount of
development work not available in academia. Nevertheless we plan over the next
year to undertake initial evaluation attempts. In this section we discuss the main
areas of enhancement needed in the medium term.

8.2.0.1 Smoother integration with UML drawing tools The current prototype
does not include a full UML editor, but can read in a UML design in XMI format
from another tool. Modifications can be made to the design while using GUIDE;
GUIDE can write a new XMI file incorporating the modifications which can be
read into the designer’s UML tool. Ideally what one would want, however, is full
integration, allowing changes to be made in one’s favourite UML editor and imme-
diately seen by GUIDE.

8.2.0.2 Smoother integration with code and tests More ambitiously, a future
GUIDE-like tool could build on the closer integration between models and code
allowed by some UML tools to take into account design decisions recorded only
in code, as well as those reflected in the UML model. There are intriguing pos-
sibilities in the area of incorporating the growing test suite, perhaps by using test
scenarios to derive preferred plays that the tool would definitely explore. New tests
might be derived from the rules of the game, as one way of recording the designer’s
developing understanding of the requirements.

8.2.0.3 Integration with an OCL tool Currently the evaluation of move pre-
conditions is defined to be the responsibility of the players, because the move pre-
conditions are derived from constraints in the model, which are uninterpreted in
GUIDE, and indeed often written in natural language. Alternatively, constraints
can be written in UML’s built-in textual specification language, Object Constraint
Language (OCL). GUIDE could then be coupled to a tool that can evaluate OCL
constraints, such as for example the USE tool [29]. If the designer commits himself
to use OCL in the UML model, some of the move preconditions may then be evalu-
ated automatically and do not require interaction with the game participants during
a play. One disincentive to pursuing this approach is that OCL has not been as
successful in practice as the diagrammatic parts of UML. Designers tend to find it
hard to read and write OCL constraints, and OCL also has some remaining seman-
tic problems. For this reason many designers who want to write precise constraints
write them in the target programming language; evaluating them automatically then
becomes part of the integration with code task mentioned above.

8.2.0.4 More powerful strategy search algorithms The current GUIDE tool
incorporates a basic algorithm for searching for winning strategies, which requires

that the exploration depth be limited. In the field of verification (e.g. model-checking)
games which were the inspiration for this work, there is a literature on algorithms
for strategy search, including work on infinite state spaces. Applying this work to
the context of design games will not be straightforward, but could be beneficial. An
alternative, perhaps complementary, approach is to investigate heuristics that would
allow us to calculate a “good” strategy for a player, even if we could not guarantee
that it was a winning strategy.

8.2.0.5 Automatic specification extraction Using a GUIDE-like tool the user
improves both the software design and the understanding of its specification. The
modified design can be extracted as XMI, but there is currently no systematic way
to extract the new specification in a way which would allow it to be used easily
to modify a specification document. Using the game variants currently provided, it
would be quite straightforward, and perhaps useful, to provide such a mechanism.
More interesting and challenging would be to investigate the extraction of a spec-
ification from a game definition if more flexible game definition is permitted, as
discussed above.

8.3 Broader issues

Several of the issues discussed in the previous subsection are related to the central
theme of raising the abstraction level at which development decisions are made
from code to models. This is a chicken-and-egg situation: in part, GUIDE-like
tools should be an enabler of this change; in part, they depend upon that change
happening. The topic is a hot one in software engineering: it is the focus of the
OMG’s Model Driven Architecture movement

�

, and of the Agile Modelling move-
ment

�

. Models are currently most successful, in the sense of remaining key arti-
facts throughout the development process, where essentially they function as high-
level code: the model records so much about the system that the generation of code
can be fully automatic [17]. The underspecification normal to models is removed,
which reduces the cognitive burden on the designer. The disadvantages are that vi-
sual modelling languages may not be as well-adapted as code to recording detailed
decisions easily, and that we may be in danger of losing the advantage of separating
architectural concerns from details of implementation. We hope that by helping the
designer to understand the implications of design decisions even when the design
is incomplete, GUIDE-like tools can make a wider range of models cognitively
manageable.

An important technical issue is that the more one relies on a model the more it
matters that there should be a precise common understanding of what the model

�

http://www.omg.org/mda/
�

http://www.agilemodeling.com/

means – what it implies about the code, and (just as importantly) what it leaves
open. UML is currently deficient in this respect. Its semantics is imprecise in many
important ways, and the method by which its semantics is defined is very hard even
for specialists to understand. Arguably this is, in practice, an inevitable result of the
increasing complexity and scope of the language, and it might be better to make use
of much smaller, simpler languages. Microsoft’s Domain Specific Language tool
work [9] is interesting from this point of view. Note that although we have so far
worked in the context of UML because of its dominance of the software modelling
world, the basic ideas of the work are not UML-specific.

9 Conclusion

In this paper we have introduced our tool GUIDE, which is an implementation of
the exploration game framework. By repeatedly playing an exploration game, the
designer gradually adds more detail to the design and specification in the role of the
Explorer. While a game is being played, the designer may resolve non-determinacy
by interaction with the GUIDE tool. He can take on the roles of other game par-
ticipants to examine the design from a particular view and to perform parts of the
moves in the play.

At the moment GUIDE supports the example game variant, expressions and al-
gorithms which have been described in this paper. The tool is a proof-of-concept
prototype which needs further testing with more complex examples than presented
here. Probably the most important task for future work is to give users the op-
portunity to exercise our tool and to analyse their feedback. Thereby it would be
possible to identify which parts of the approach presented here are most interesting
in practice and where improvements are necessary. Experiments with students will
be used as first step for testing GUIDE more thoroughly before advertising it to
a wider community. More advanced investigations could focus on the comparison
of exploring a design using the GUIDE tool with traditional reviewing techniques
such as design reviews.

In this paper, and in our medium-term suggestions for further developments in the
previous section, we have assumed that it is always the designer who plays the
Explorer and increments the game. It is undoubtedly fascinating to imagine that the
tool could perform the exploration of the design. However, as we have discussed,
the exploration generally requires knowledge about the system and design skills.
We expect that building a tool which performs the tasks of a designer to a certain
degree would involve a large amount of research in the area of artificial intelligence.
The GUIDE tool does not aim at substituting for the designer, but at supporting
him in using his skills. A very advanced version of GUIDE could try to give the
designer feedback about which kind of incrementation is beneficial for a player in
specific situations. However, it is then still the designer who has to make a concrete

incrementation according to the tool’s suggestion.

Acknowledgements

The authors would like to thank the anonymous reviewers of the SoMeT paper
[24] for useful comments, and the UK Engineering and Physical Sciences Research
Council (GR/N13999/01, GR/A01756/01) for its support of this research.

References

[1] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
2004.

[2] A. Cockburn. Agile Software Development. Addison-Wesley, 2002.

[3] T. DeMarco and T. Lister, editors. Peopleware – Productive Projects and Teams.
Dorset House Publishing, 1987.

[4] M. Fagan. Design and code inspections to reduce errors in program development. IBM
Systems Journal, 15(3), 1976.

[5] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, 1995.

[7] Gerd Gigerenzer, Peter M. Todd, and the ABC Group. Simple Heuristics that Make
Us Smart. Oxford University Press, 1999.

[8] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games:
A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.

[9] Jack Greenfield and Keith Short et al. Software Factories. Wiley, 2004.

[10] GUIDE – Games with UML for Interactive Design Exploration. Available from the
author’s homepage at
http://www.lfcs.informatics.ed.ac.uk/jnt.

[11] D. Harel. From play-in scenarios to code: An achievable dream. IEEE Computer,
342(1):53–60, January 2001.

[12] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In Proceedings of Formal Methods in Computer-Aided Design,
FMCAD’02, pages 378–398, 2002.

[13] W. S. Humphrey. A Discipline for Software Engineering. Addison-Wesley, 1995.

[14] A. Knapp and S. Merz. Model checking and code generation for UML state machines
and collaborations. In 5th Workshop on Tools for System Design and Verification,
FM-TOOLS’02, Report 2002-11. Institut für Informatik, Universität Augsburg, 2002.

[15] J. Lilius and I. Paltor. vUML: A tool for verifying UML models. In Proceedings of
Automated Software Engineering, ASE’99. IEEE, 1999.

[16] NetBeans Metadata Repository (MDR). Website at http://mdr.netbeans.
org.

[17] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley, 2002.

[18] Meta-Object Facility (MOF). Available from the OMG at http://www.omg.org.

[19] Poseidon for UML, version 3.0. Available from Gentleware at
http://www.gentleware.com.

[20] Real Time Studio professional, version 4.3. Available from Artisan Software at
http://www.artisansw.com.

[21] Rhapsody, version 5.0. Available from I-Logix at http://www.ilogix.com.

[22] P. Stevens and J.Tenzer. Games for UML software design. In Formal Methods for
Components and Objects, FMCO’02, volume 2852 of LNCS. Springer, 2003.

[23] J. Tenzer. Exploration games for safety-critical system design with UML 2.0. In
Proceedings of the 3rd International Workshop on Critical Systems Development with
UML, CSDUML’04, Technical Report I0415, pages 41–55. Technische Universität
München, September 2004.

[24] J. Tenzer. GUIDE: Games with UML for interactive design exploration. In
Proceedings of the 4th International Conference on Software Methodologies, Tools,
and Techniques, SoMeT’05., pages 364–387. IOS Press, 2005.

[25] J. Tenzer. Exploration games for UML software design. PhD thesis, University of
Edinburgh, 2006.

[26] W. Thomas. Infinite games and verification. In Computer Aided Verification, CAV’02,
volume 2404 of LNCS. Springer, 2002.

[27] OMG Unified Modeling Language Specification, version 1.4, September 2001.
Available from the OMG at http://www.omg.org.

[28] UML 2.0 Superstructure Final Adopted Specification, August 2003. Available from
the OMG at http://www.uml.org.

[29] USE – a UML-based Specification Environment. Website at
http://www.db.informatik.uni-bremen.de/projects/USE.

