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Abstract
This paper applies a body of theoretical (though practically motivated and validated) work on the cognitive and
semantic aspects of diagrammatic notations to the very practical problem of describing product line architectures and
products based on them in UML, the industry standard modelling language. We briefly analyse the tasks that a suitable
notation must support; justify using UML as a basis and discuss deviations from it; discuss issues in the light of their
different semantic and cognitive characteristics; and propose a notation.

1 Introduction
As the explicit use of product linesÑcollections of products based on a common product line architectureÑis
increasingly recognised as a means of achieving business benefits, it becomes increasingly evident that tool support for
the associated design activities is required. Just as we need to be able to record the design decisions made in the
production of an individual product, we need to be able to record the decisions embodied in a product line architecture
(PLA), in a product instantiation of that PLA, and in their relationship.

For many organisations, the choice of UML as the notation in which to record these decision is an inevitable one. The
short paper [Ste99] discussed the pros and cons of this decision and showed how some of the important decisions could
be recorded in UML using the standard extension mechanisms, without the need for non-standard notations. Like much
related work, however, it took a naive approach to the notational choices made. No systematic attempt was made to
evaluate the resulting notation or to consider cognitive issues.

In the field of cognitive science, meanwhile, there is a large body of work which discusses the significance of choices
like these for the human user of diagrams. Most examples in that field have be taken either from small diagrammatic
languages with well-defined, small task setsÑVenn diagrams, for exampleÑor from the unconstrained world of
graphic design.

In this paper we readdress the problem of [Ste99] with the aid of this work. The contribution of the paper is two-fold:
first, we provide a reasoned, consistent proposal for the solution of the practical problem of choosing a notation for
product lines; second, in applying the theoretical work to a real-world example, we demonstrate its maturity in use.

The remainder of this paper is structured as follows: in Section 2 we briefly cover the necessary technical background
in the fields of semantic and cognitive aspects of diagrammatic notations and of UML and its semantics; in section 3
we discuss users of a notation for PLAs and the tasks in which they should be supported. This concludes the description
of the problem we address and the tools we use. In section 4 we discuss options, propose and justify a simple notation
for product lines. Finally we discuss related work, conclude and discuss topics for further exploration.

2 Technical background

2.1 Intuition and Comprehensibility in Diagrams
It is often claimed that diagrammatic specification, modelling and programming languages provide natural
representations which permit intuitive reasoning. Understanding how, and for what applications, diagrams actually do
offer benefits to comprehensibility requires that we examine seriously the meaning and accuracy of the terms ÒnaturalÓ
and ÒintuitiveÓ in this context.

Studies such as [Goo99,SY97,ZN94] have indicated that the most effective representations are those which are well
matched to what they represent, in the context of particular reasoning tasks. For the purposes of this paper we assert
that an ÒintuitiveÓ representation is one which is well matched. Furthermore, we assert that whether a representation is
ÒnaturalÓ concerns how it achieves its intuitive matching; and (certain classes of) diagrammatic representations are
particularly good at naturally matching their intuitive interpretations. Clearly, these two assertions beg the questions of



what are the intuitive meanings which an effective representation matches, and how diagrams achieve such matching in
a natural way.

An intuitive, or well matched, representation is one which clearly captures the key features of the represented artefact
and furthermore simplifies various desired reasoning tasks. To assess intuitiveness we must consider not only the
(formal) semantics of a diagram, but also how well the diagram captures less formalised aspects such as conceptual
grouping of elements. Such information may play no role in, say, determining the behaviour of a system, but will
substantially aid comprehension of the design. This extra information andÑto a certain extentÑthe inferences a human
reader might be expected to draw from it, is termed pragmatic content. An intuitive (well-matched) diagram is thus one
for which this combined semantic, pragmatic and inferential content closely matches the truth of the represented
artefact.

A recent comparison [GLS98] of typical text-based languages and diagrammatic languages was quite revealing about
both similarities and differences between the two. The decomposition in [GLS98] of issues in how diagrams capture
information permitted the identification, in a subsequent study [Gur99], of the fundamental issues relating to the
effectiveness of visual and diagrammatic representations for communication and reasoning tasks. This latter study
identified two advantages which effective diagrams exploit in naturally capturing content. The first of these is that
intrinsic properties of certain diagram symbols and graphical relations enable them to directly capture semantic
information. The second is that diagrams offer designers substantial opportunities for exploiting pragmatic features to
capture useful information about their intentions and the represented artefact.

2.1.1 Diagrams: Direct Representations
One primary difference between diagrams and typical text-based representations is that diagrams may capture semantic
information in a very direct way. That is to say, intrinsic features in the diagram, such as spatial layout, directly capture
aspects of the meaning of the diagram. For example, in Figure 1 the fact that package A is contained in package C does
not need to be consciously deduced from the representations of the inclusion of A in B and B in C: it is immediate.

A

B

C

Figure 1: Direct representation of package inclusion

This directness may be exploited by the semantics of diagrams in a systematic way. Such ÒsystematicityÓ is not
exclusively the preserve of diagrammatic representations, butÑwith their potential for direct interpretationÑdiagrams
have a head start over textual representations in the systematicity stakes. However, to understand what makes diagrams
effective, we must consider their interpretation by humans more generally.

2.1.2 Pragmatics in Diagrams
In linguistic theories of human communication, developed initially for written text or spoken dialogues, theories of
ÔpragmaticsÕ seek to explain how conventions and patterns of language use carry information over and above the literal
truth value of sentences. This concept applies equally well to the use of diagrammatic languages in practice. Indeed,
there is a recent history of work which draws parallels between pragmatic phenomena which occur in natural language,
and for which there are established theories, and phenomena occurring in diagrammatic languages
[GLS98,MR90,Obe96]. For example, studies of digital electronics engineers using CAD systems for designing the
layout of computer circuits demonstrated that the most significant difference between novices and experts is in the use
of layout to capture domain information [PG92]. In such circuit diagrams the layout of components is not specified as
being semantically significant. Nevertheless, experienced designers exploit layout to carry important information by
grouping together components which are functionally related. By contrast, certain diagrams produced by novices were
considered poor because they either failed to use layout or, in particularly ÔawfulÕ examples, were especially confusing



through their misuse of the common layout conventions adopted by the experienced engineers. The correct use of such
conventions is thus seen as a significant characteristic distinguishing expert from novice users. These conventions,
termed Òsecondary notationsÓ in [PG92], are shown in [Obe96] to correspond directly with the graphical pragmatics of
[MR90].

More recent studies of the users of various other diagrammatic languages, notably visual programming languages, have
highlighted similar usage of graphical pragmatics [Pet95]. A major conclusion of this collection of studies is that the
correct use of pragmatic features, such as layout in graph-based notations, is a significant contributory factor in the
comprehensibility, and hence usability, of these representations. For diagrammatic languages, and particularly tools
which support them, to be effective, they must permit the ready use of such pragmatic featuresÑboth in the form of
global conventions (such as programming styles) and of more local (e.g. in-house or even individual) styles.

2.2 UML, its semantics and pragmatics
UML, the Unified Modelling Language, is the rising industry standard notation for describing the design of systems,
especially object oriented systems. The OMG has accepted Version 1.3 [UML]; ISO standardisation is underway.

In [Ste99] we argued that, for many organisations, a product line notation should use standard UML, because:

1. Developers are increasingly likely to know UML. Familiarity with a notation is essential to using it correctly and
efficiently.

2. There are many tools supporting UML. Using the same tool and notation throughout development is convenient.
3. Despite many justified criticisms of UMLÕs semantics, it is the best specified general purpose modelling language

to date. Because UML is widely accepted by a large user community, remaining areas of ambiguity are being
rapidly clarified.

UML is defined by two main documents, the Notation Guide and the Semantics.
1
 The abstract syntax of UML is

described using a metamodel, which, with associated constraints, enforces consistency conditions between UML
diagrams representing one system. The semantics is defined informally.

2.2.1 Tool support, UML extensions
UML is built to be extensible. The simplest extension mechanism is the ability to define new stereotypes of metamodel
elements. One can also define new properties of model elements via tagged values. Recently more far-reaching
proposals have been made for profiles[OMG99] or prefaces[CKM+99] to define extended or modified ÒdialectsÓ of
UML. However, extreme caution is needed; in practice, people use those features of UML which are supported by their
tool.

Current tools generally implement only a subset of UML; but this is changing rapidly as the standard matures. The new
XML Metadata Interchange format (XMI), an OMG standard-in-progress[OMG98] for UML in XML (among other
benefits) enables tool developers to update their tools with respect to the latest version of the UML standard with less
effort than would previously have been required.

However, even if many tools will soon support the whole language, this does not imply that they will smoothly support
extensions. Particular vendors will presumably incorporate certain extensions in their tools; but then their users risk
being Òlocked inÓ to a single vendor. If tool vendors offer no support for extensibility, we are obviously forced to stick
to basic UML, however cognitively bad the result. In this paper we make an intermediate assumption: that several tool
vendors will offer the ability to associate user-defined graphics with user-defined stereotypes. This conservative
assumption nevertheless allows us sufficient flexibility.

2.2.2 Remark on generalisation
In the UML semantics many metamodel elements are GeneralizableElements: that is, it is often possible to specify that
a model element is a generalisation of another similar one. In the context of classes, components etc. this concept is
well understood and carries a connotation of substitutability: an instance of the more specialised model element can be
substituted for an instance of the more general model element. UMLÕs intention is to broaden this notion to include, for
example, generalisations of associations, stereotypes, and collaborations. The implications of such a relationship
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 The Semantics takes precedence over the NG; many uses of UML are covered by the Semantics, but not mentioned in

the Notation Guide. Such cases are normally obvious extensions of things illustrated in the NG, so notation and
meaning are unambiguous. Several previous authors have made statements about the limitations of UML based only on
the NG, without considering the Semantics: this is an error. It is a reasonable criticism of UML that it is a large
language whose limits take considerable effort to determine.



holding are not, however, explored, and they pose formidable technical difficulties and ambiguities which are at present
ill-understood. For this reason we avoid using this concept in the core of our PLA descriptions.

3 Users of a product line notation and their tasks
There are many classes of potential users of a product line notation. [BOS98] identified as stakeholders in the
architecture of a product: architects, test engineers, configuration managers, management, maintainers, developers, API
users, end-users and QA people. In this paper we will consider two groups:

1. users of PLAs: people concerned (in any role) with the task of building a product using a PLA;
2. maintainers of PLAs: people concerned with the improvement of a PLA.
To choose genuinely useful notation we must understand what tasks it should facilitate. This is hard in the case of a
notation for PLAs because the set of tasks is complex.

Each task broadly concerns understanding a software design artefact (product or PLA). Users of PLAs have two kinds
of tasks:

1. those where the relationship between the PLA and the product is the focus of interest. For example, we may be
considering whether the product makes correct use of the PLA, or whether a particular change in functionality can
be provided by using PLA features.

2. those in which the product is the focus, and it is less relevant that the product is built from a PLA.
Maintainers of PLAs have tasks which are more similar to those faced by all developers of software for reuse: for
example, evaluating potential changes to a PLA. This requires understanding both existing and potential instantiations.

Next we consider what aspects of a PLA should be documented diagrammatically. Both groups need to understand the
hotspots of the PLA; what kinds of modification, omission or extension are permitted, expected or required. (There are
various different kinds of hotspots: for example, instantiation of a PLA may be by composition, by specialisation or a
mixture. Instantiation by composition is generally more straightforward, so here we concentrate on instantiation by
specialisation.) Users need especially to understand the dynamics of the PLA; how does it work to achieve its aims?
Maintainers will be relatively less concerned with dynamics and more concerned with the dependencies between the
parts of the architecture. Many of these concerns are common to all architecture development: the chief difference is
the concern for identifying hotspots explicitly.

We remark that we are not assuming a component and explicit connector approach to architecture: although popular in
academia, this is not an approach taken by most industrial users of UML. We discuss how the notation can be adapted
to such an approach in section 5.

Clearly a diagrammatic modelling notation can only be a partial solution to the PLA documentation problem. For
example, a concise textual description of the intention of the PLA is indispensable.

4 Proposals and evaluation
We consider the main UML diagram types in turn.

4.1 Externally visible behaviour
This includes the coherent tasks which figure in the requirements of the system; or indeed of any other classifier, such
as a subsystem or a class. For example, in the case of a PLA for a family of computerised games, it might be the case
that part of the functionality of a Game component, whose primary responsibility is to enforce the rules of the game, is
provided by the PLA and part must be provided by the product designer. The PLA designer might use a diagram like
Figure 2 to describe this intention.
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Figure 2: A use case diagram showing variability

To begin with, the product designer needs to be able to tell whether the PLA provides appropriate facilities and
flexibility; this is relatively straightforward using this representation. Once a product-level use case model has been
defined, there are two different tasks. The product designer needs to

1. check that the product makes valid use of the PLA;
2. make use of the product-level use case diagram as in any other development.
The first task is most easily achieved if the structure of the product-level use case diagram mirrors that of the PLA use
case diagram exactly: in our example, if the product reuses Validate move and provides an instantiation (say
Validate resulting chess position) of the hotspot use case.

The second, however, may be hindered by this representation: one of the advantages of use case diagrams in
development is that they can be kept simple enough to be used in discussion with customers, who are not experts in the
notation. This is harder if the diagram splits use cases as shown. It is straightforward in principle for a tool to
temporarily suppress non-primary use cases which are related to primary use cases by extend and include relationships,
which would provide a simple view of the use case model. In fact this ÒfoldingÓ of diagrams extends naturally to the
other diagram types; for reasons of space we will not discuss it again.

4.2 Static structure
The notation for static structure diagrams raises most of the issues we wish to consider, so we will go into greatest
depth here.

4.2.1 What information do we need to represent?
A static structure diagram shows the different kinds of static software entities that are used in the design of a system,
together with the relationships between them. For example, depending on the designerÕs style it may show:

• components, such as classes
2
 (together with their operations and attributes) or subsystems; these may be used to

represent connectors explicitly if required;
• interfaces provided by classes;
• associations between classes: that is, relationships expressed by objects of one class containing references to

objects of the other, or by objects of one class sending messages to objects of the other;
• aggregation or composition relationships between classes: formally hard to pin down ([HSB99]) these are

particular kinds of association, used when there is a (weaker or stronger) Òis a part ofÓ relationship between objects
of the classes;
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• generalisations between classes: that is, relationships expressed by objects of one class being regardable as objects
of the other class;

• dependencies not classifiable as associations or generalisations;
• packages: that is, the grouping of other elements into namespaces.
These are the main elements of static structure diagrams provided by UML. In the context of PLA documentation we
also need to show what the PLA provides, what the PLA instantiator must provide, and what flexibility is available.
Specifically, when a product is based on a PLA, some of its classes will be provided by the PLA, others by the product
instantiator. Some of the former may be optional, for use in certain products when appropriate; this includes the
common situation in which the PLA is accompanied by a component library. The latter may build on PLA classes by
generalisation or composition or both. More interestingly, some of its relationships will be consequences of decisions
made by the PLA designer, whereas others will be determined by decisions of the product designer. For example,
certain associations may be required to be present in any instantiating product; others may be optional. The product
designer may add associations between elements which, though present at the PLA level, were not associated there.
There may be cases where it would be desirable to forbid the product instantiator to do so, in order to avoid adding
undesirable dependencies (or such additional associations may be forbidden as a blanket rule; but this is probably too
draconian in practice). Similarly, some PLA elements may be refined at the product levelÑfor example, a class may be
specialised, or a simple association which in the dynamic model carries a single message may be replaced by a more
complex protocol, or by another connection such as an association class.

The exact flexibility required will again depend on the designerÕs style, but the space of possibilities may be described
using two axes:

1. the existence dimension: we need to represent whether a component or a connection must necessarily appear in any
product, whether it may optionally appear, or perhaps in the case of a connection whether it is forbidden to appear;

2. the specialisation dimension: we need to represent whether an element, if it is present at all in a given product,
must necessarily be specialised (because, as with an abstract class, it is not fully defined at PLA level), whether it
may optionally be refined, or whether it must be used as is.

These dimensions are sometimes confused, but we think it is useful to consider them separately.

4.2.2 Semantic considerations
Thus we must represent certain information which is not routinely represented in UML diagrams. Some of this
information will be carried in the pragmatics of the diagram; that is, though present for the human reader it will have no
impact on the UML semantics of the diagram. For anything we would like recorded at the semantic level, we need to
make use of one or more of UMLÕs extensibility mechanisms. In section 2 we discussed the implications for tool
support of the various possibilities, and settled in general for a mild customisation, the use of user-defined stereotypes
along with new graphic notations to represent stereotyped model elements. The choice of notation is a cognitive issue,
so we postpone its consideration to the next subsection. Here we discuss the choice of what metamodel elements should
acquire new stereotypes, and what they should be.

The answers are, happily, almost obvious: in general we stereotype the metamodel element of which an instance is
expected to appear in the product, and the stereotypes that we need correspond to the values on the two dimensions of
existence and specialisation identified above. For example, if we expect there to be classes in our diagrams, we need
stereotypes of the metamodel element Class (or perhaps better one of its supermetaclasses such as Classifier) such as
<<must exist>>, <<must be specialised>> etc.

3

There are a few semantic points which deserve further comment:

4.2.2.1 Representing potential associations
There is an unavoidable underlying question of what exactly an Association between two UML Classifiers is. Here we
assume that associations between classifiers model static associations: roughly, a connection which is somehow
modelled in data of the classifiers concerned, so that it would be correct, for example, for a code generator to provide
instance variables for one or more of the associated classes to store the implementing reference(s). We do not
necessarily show two classifiers as being associated whenever an instance of one may dynamically invoke a service of
the other. There are sound reasons for making this choiceÑand it has been defended as the best choice by Rumbaugh
in [RBP+91] Ñbut it has some unfortunate consequences for the PLA designer. Most notably, it is arguably incorrect
to show an association which is not implemented in the classifiers, even if a requirement of correct use of the PLA is
that the instantiations of the classifiers should always be associated.
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 More elegantly, we could use two new tagged values, one for each dimension: but this is perhaps less likely to be

supported by tools. The choice is inessential here.



(On the other hand, since an Association is a GeneralizableElement, it may in principle be abstract, and we may think
that an abstract association is what we need.  The meaning of an abstract association is not as clear as it might be, since
elsewhere in the standard an Association is said to represent a relation, and does not itself carry an implementation. The
related question of whether an association can in general play the role of a connector is an interesting one not fully
resolvable with respect to the current specification. This is another reason why we skirt the issue of representing
connectors in this paper.)

The way out is to show dependencies between components, with a dotted arrow. The best we can do is to use a
stereotype on dependency to indicate the particular kind of dependency, namely one that should turn into an association
at lower levels.

4.2.2.2 Namespace control
We will probably want the whole PLA to have its own packageÑand hence namespaceÑseparate from, but imported
by, a package containing the models of the system which uses the PLA; this is routine in UML but not shown here.

4.2.2.3 Interdependent  constraints
Specialisations have to be compatible (Òanimals eat food, lions eat meat, cows eat grassÓ). Compatibility is partly a
semantic and partly a type-theoretic notion, outside the scope of this paper. The underlying point is that of course the
PLA does not consist solely of the reusable assets; it also includes rules about how it should be used; for example, of
what it means for specialisations to be compatible. An unsolved question which UML does not address is: How is this
requirement for compatibility to be reflected in the diagrammatic notation? It can of course be represented by adding
OCL constraints to the diagrams, but this is not ideal. The most important point is that representing semantically
important information in OCL runs the risk of its being accorded less importance by the reader than the more obviously
salient diagrammatic information. More specifically, OCL is vulnerable to criticism as a specification language. Its
admirable aim is to be a language which is easily usable by any developer whilst still being formal. There is no
consensus that it achieves the first aim; for example, the decision to automatically flatten all collections (so that, for
example, it is not possible to describe a set of sets in OCL), which was apparently taken in the interests of simplicity,
seems confusing to some. On the other hand the language is not formally defined-it has a formal syntax but no formal
semantics-so it does not completely achieve the second aim either.

4.2.3 Cognitive considerations
A product designer concerned with the relationship between a product and a PLA must understand: (i) how to validate
a product against the PLA; (ii) what must be done to instantiate the PLA; and (iii) whether it is an appropriate PLA for
the required product. These tasks involve a comparison of the PLA and product, suggesting that a natural representation
would offer separate diagrams for each. An intuitive notation is one in which, as far as possible, these tasks can be
performed purely by visual inspection of the PLA and product diagrams.

4.2.3.1 Utilising diagram layout
Consider firstly the task of comparing a product and PLA diagram to check whether the former is a valid instantiation
of the latter. A visual inspection of the product diagram should confirm that every required element appears in the
product and that every element requiring specialisation has been specialised in the product. Ideally it should be
immediately obvious which elements of the product diagram represented the corresponding elements in the PLA
diagram. The most obviously natural means of achieving this is to make the visual structureÑthe layout of key
elementsÑidentical in both PLA and product diagrams.

PLA diagrams are often designed by encapsulating or deleting parts of product diagrams, so fortunately there is a
tendency for them to share layout. However, typically some elements of the PLA diagram will be replaced by more
complex sub-diagrams in the product diagram. For example, an abstract class in the PLA may be replaced (instantiated)
in the product diagram by a more complex arrangement of several classes and associations. Checking that this sub-
diagram is a valid instantiation is a user task that goes beyond what is directly supportable in a diagram. However, the
diagram must make it obvious that the sub-diagram is intended to replace the original PLA element. The PLA diagram
should ideally contain sufficient free space for such a sub-diagram to be directly inserted without perturbing other PLA
diagram elements. This use of layout carries further advantages, as this pragmatic feature encourages the PLA designer
to record information concerning possible instantiations. For example, a designer might add the comment Òyour
CurrentPosition hereÓ in a space left blank for the instantiation. This also helps distinguish accidental from deliberate
free space.



We illustrate this approach with a na�ve use of UML, taken from [SP99]. Figure 3 shows the PLA for a family of
computerised games, while Figure 4 shows an instantiation of this for noughts-and-crosses.
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Figure 3: Class diagram for games PLA

Token

Move

Game

CurrentPosition

Figure 4: Class diagram for noughts and crosses

Note that the PLA diagram of Figure 3 fails to reflect the structure of elements in the product diagram. A more intuitive
representation of the games PLA is given by Figure 5. This alternative diagram also contains further features which
carry semantic information, which we discuss next.
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TokenMove

Game

CurrentPosition

Figure 5: Alternative diagram for games PLA

4.2.3.2 Making distinct semantic dimensions visually distinct
As we have stated, checking that a product is a valid instantiation of a PLA involves checking existence and
specialisation. These two issues are orthogonal for particular elements in a PLA; whether an element is required to
exist, may be viewed independently of whether it need be specialised. An intuitive representation should reflect this
distinction; the notation chosen to represent the dimension of existence (e.g. optional) should be clearly distinct from
that which represents the dimension of specialisation (e.g. abstract).

The basic symbols of static diagrams are boxes and arrows which connect them. Following Graphic Design
recommendations [Hor98,Tuf90], we see that such symbols may be represented via a number of basic line types
(including solid, dashed and wavy). Each of these line types may be further varied across a number of graphical
dimensions (such as thickness, colour and shading). We directly represent the semantic dimensions of existence and
specialisationÑand the distinction between themÑby assigning to them distinct graphical dimensions. The most
appropriate dimensions are those which appeal to an appropriate visual metaphor. We represent the dimension of
existence by saturation. Thus must-exist is represent by a bold line, while the weaker may-exist is represented by a
paler, and hence less imposing, shaded line. We use colour to represent the dimension of specialisation as it has the
most obviously appealing visual metaphor

5
. That is, ÒhotÓ colours such as red and orange are used to represent strong

requirements to specialise (c.f. hotspots), whilst other, ÒcoolerÓ colours represent less stringent requirements to
specialise. Figure 5 illustrates this.

4.3 Interactions and collaborations
A UML collaboration diagram documents the relationships between roles that may be played by instances (objects
etc.). An interaction may be shown on a collaboration diagram by adding messages. The resulting interaction diagram
is normally used to demonstrate how the functionality documented in a use case diagram is realised by the designed
system. Some consistency between the static structure and the interactions is ensured, because in UML both are views
of the same model. The use of these diagrams for documenting architectures is discussed in [RMRR98]. Here we
consider documenting hotspots; especially, how to show abstract collaborations and interactions which may be
instantiated or refined later.

We may use mechanisms consistent with those described for static structure to describe the hotspots in a collaboration
or interaction documenting a PLA. For example, in Figure 6 (i) message a is pale because it is optional (it involves
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but do not address it here.



communicating with an optional element of the architecture) and message b is on a ÒredÓ background because it must
be replaced by a more complex protocol. In the specialisation case two different situations arise:

1. instances which exist at PLA and at product level might carry out a more complex interaction at the product level;
for example, a single message may be replaced by a (perhaps conditional) sequence of messages.  Figure 6 (ii)
illustrates.

2. there may also be more instances involved at the product level, because a single instance at PLA level has been
reified by a collaboration of instances at the product level.

1:a()
2:b()

Figure 6: Protocol Specialisation

 (We avoid using generalisation of Collaborations here not only for the technical reasons mentioned earlier but also
because we consider the oval Collaboration notation more useful for demonstrating the use and refinement of small
design patterns or frameworks, which is what it was intended for.)

Some architectures will require sophisticated documentation of real-time and synchronisation aspects. UML includes a
reasonable set of features to support this, in the form of notation for timing constraints on interaction diagrams and
support for different threading models. However this is still an area of active work, particularly in the embedded system
community, e.g. [DlJ99].

4.4 State diagrams
The most likely use of state diagrams in connection with PLAs is as an adjunct to interaction diagrams to demonstrate
protocols which might be refined in products using the PLA. In order to support the PLA maintainer in understanding
uses of the PLA, or the product developer in understanding the relationship between the PLA and the product, the
structure of the PLA state diagram needs to be recoverable from the representation of the product state diagram. In case



1 this is easily achieved by using nesting of states: the PLA state appears as a superstate, with product-specific
substates, as shown in Figure 7. (We have chosen to omit the existence/specialisation information in the product
diagram to illustrate the possibility of doing so.)

In case 2 this is more challenging. The collection of instances at the product level needs to be represented as an instance
of some suitable classifier in its own right; then its state diagram can be represented using nested states as in case 1.
Whether this is desirable is dubious.

PLAState1

PLAState1
PLAState2

entry/o.b()

a()

a()

(i)

(ii)

ProductState1

ProductState2

entry/o.c()

d()

PLAState2

Figure 7: UML Statechart

4.5 Further Diagrams
The notations described are easily extended to activity diagrams; and deployment and component diagrams do not raise
any further interesting issues. For reasons of space we omit making the notation explicit here.



4.6 Non-diagrammatic elements
We have mentioned that there is naturally a need for supporting text to document things like the purpose of a PLA, the
details of a use case, etc., as well as any other constraints or decisions not conveniently documented in UML. There is
also a need to maintain the connections between the different diagrams; for example, to show what collaboration
implements a given use case. [Hof99] recognising this suggests tables as the solution. In a computer supported
environment there is an additional possibility which may be useful instead of or as well as tables: hyperlinks, as
suggested by the standard [UML].

5 Related Work
Previous studies of diagrams have typically examined two differing dimensions through which diagrammatic
representations ÒnaturallyÓ embody semantic information. Firstly logical analyses such as [MK95,Shi95,Sow93] and
the collection in [AB96] have examined the inherent constraints of diagrams (topological, geometric, spatial and so
forth) to explicate their computational benefits. The second dimension which has been studied concerns features and
properties which impact upon the cognition of the user. These more cognitive studies have typically studied either users
of highly specialised diagrams (such as Venn diagrams, and simple visual programming languages
[BWGPss,Goo99,SO91,ZN94]), or generic HCI issues [BG99,Gre89,Pet95]. Our approach is based on the studies of
[GLS98,Gur99], which seek to unify the two dimensions of these earlier studies. More recent work has demonstrated
the potential, and benefits, of formalising certain pragmatic aspects of diagrammatic software engineering languages
[GT99].

We are not aware of any other published work discussing the use of UML in notating product lines, though we are
informally aware that a number of companies are making use of UML and a variety of ad hoc extensions to it and
conventions in it for this task; this was of course part of the motivation for this work. Before discussing previous work
applying UML to the description of architectures and frameworks, which is relevant, we should deal with a possible
objection: it would be absurd to claim that UML cannot be used to model architecture in the sense in which the term is
used by most practitioners. The inventors of UML are also enthusiastic advocates of Òarchitecture-centric
developmentÓ and descriptions of architecture are integral parts of methodologies developed alongside UML. The
Unified Process book [JBR99] uses standard UML; but it does not address PLAs, and its view of architecture is
(simply) as a strict subset of the model of the system, containing only the Òarchitecturally significantÓ elements. (Note
that the Unified Process is not standardised by the OMG: UML is a modelling language intended to be free of process.)
Catalysis [DW98] considers frameworks explicitly, using a conception of architecture with explicit connectors.
However it uses a version of UML which is different in many ways from the standard, so we will not consider it further
here.

There are two related questions whose answers may be helpful:

1. What are good notationsÑand how good is UMLÑfor describing architecture (as understood by the architecture
community, which arguably has more stringent requirements than most of industry at present)?

2. What are good notationsÑand how good is UMLÑfor describing frameworks?
Work on Question 1 has been done by [RMRR98, MR99, Ber98, Hof99], though doubtless more remains to be done.

Without duplicating their work, a couple of comments are:

1. [RMRR98, MR99] use the UML metamodel element Class to represent components (and connectors) in an
architecture, acknowledging that this is not a perfect fit but not explicitly considering alternatives. The UML
metamodel element Subsystem may well be more suitable. Like a Class, a Subsystem is a Classifier and a
GeneralizableElement, so a Subsystem may realise interfaces, may be refined, may take part in collaborations etc.
It is also a PackageÑthat is, a namespaceÑwith the ability to be instantiable or not; and UML builds in the idea
that a Subsystem may have specification and realisation parts (cf e.g. [BGK+97] for use of such a feature in
architectural modelling), with collaborations to demonstrate how the realisation matches the specification. On the
whole, this seems like a more natural match for an architectural component, and less likely to lead to confusion. In
other circumstances Component itself may be worth considering, although UMLÕs intention is that a Component is
a separately distributable, run-time replaceable entity. Of course this choice points up one of the disadvantages of
using a general purpose rather than a special purpose language: more choices to make.

Similarly, it is in principle possible to use a subsystem to represent a connector in a component/connector
view of architecture. However, this is to use the elements in a way not envisaged by the inventors of UML and not
well supported by the semantics.

2. Section 6.2 of [MR99] cites as a disadvantage of UML that it forces messages shown in a collaboration diagram to
be ordered, which is inappropriate if in fact the participants in a collaboration may have their own threads of
control. This is incorrect; UML provides quite sophisticated and extensible notation for concurrent activity, which
seems adequate for their purposes.



These papers naturally do not address the special issues of PLAs, in particular the need to model hotspots.

A good survey of approaches to Question 2 is Chapter 5 of [Mat96]. We do not know of any previous work addressing
ÒpureÓ UML for this purpose.

[DW98] (which heavily modifies UML) is relevant; the draft paper [dFdLAC] says that it is proposing an extended
version of UML, but in fact many diagrams in the paper are in OMT, not UML, and the proposal is not related to the
UML standard. In any case the issues are not identical, for example because in the case of PLAs there is less need for
potential readers to be able to evaluate whether to use a PLA fast; they are not likely to be considering large numbers of
competing PLAs.

6 Conclusion
We have demonstrated how using a cognitive and semantic theory of diagrammatic languages we can evaluate ways of
using UML to represent product line architectures and their instantiations, and have proposed a coherent set of notation.
We stay within standard UML, making use of stereotypes as our customisation mechanism. For a CASE tool to allow
the user to use our notions the main thing that would be required is the implementation of UMLÕs existing stipulation
that users can define new graphic elements to correspond to stereotyped model elements. This ability is not mainstream
in tools at the time of writing, but it can be expected to become so very soon. Our plans for future work include
applying cognitive theory to tool support for extending UML.

The work reported here is based on theory of diagrammatic languages, backed by an understanding from the literature
and our experience of the needs of PLA. The next step is for somebody to take the recommendations given here and put
them to use in a real product line situation, investigating to what extent our theoretically-based expectations are borne
out in practice and what unexpected problems exist. We would be most interested to hear from practitioners interested
in collaborating on such a venture.
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