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Abstract. Bidirectional transformations are important for model-driven
development, and are also of wide interest in computer science. In this
paper we present early work on an algebraic presentation of bidirectional
transformations. In general, a bidirectional transformation must main-
tain consistency between two models, either of which may be edited, and
each of which may incorporate information not represented in the other.
Our main focus here is on lenses [2, 1, 3] which provide a particularly
well-understood special case, in which one model is an abstraction of
the other, and either the abstraction or the full model may be edited.
We show that there is a correspondence between lenses and short exact
sequences of monoids of edits. We go on to show that if we restrict at-
tention to invertible edits, very well-behaved lenses correspond to split
short exact sequences of groups; this helps to elucidate the structure of
the edit groups.

1 Introduction

Fundamental to the idea of graph transformations is the idea that a change in
one structure can correspond to a change in another in a precise sense. This
fundamental idea appears in different guises in many areas of informatics; the
guise most familiar to the present author is that of bidirectional model trans-
formations, as they appear in the OMG’s Model-Driven Architecture (or, as it
is now usually more suggestively called, Model-Driven Development) initiative.
A bidirectional transformation R between two classes of models, say M and N ,
incorporates a precise notion of what it is for m ∈ M to be consistent with
n ∈ N :

R ⊆M ×N

It also specifies how, if one model is changed, the other can be changed so as to
restore consistency. The forward transformation

−→
R : M ×N −→ N

takes a pair of models (m,n) which are not (necessarily) consistent. Leaving m
alone, it calculates how to modify n so as to restore consistency. It returns this
calculated n′ such that R(m,n′). Symmetrically,

←−
R : M ×N −→M



explains how to roll changes made to a model from N back to a change to make
to a model from M .

For practical reasons, it is preferable that all three elements of the transfor-
mation – R,

−→
R and

←−
R – be expressed in one text; but this will not be essential

to our semantic treatment here.

This basic framework is flexible enough to explain a wide range of languages
for bidirectional transformations, including for example the OMG’s QVT-R
(Queries Views and Transformations – Relations) language. That language is
discussed in [5], as are the postulates that a bidirectional transformation may
be expected to satisfy. The reader is referred to that paper for details. In brief,
the two main postulates are correctness and hippocraticness. Correctness has
already been mentioned: it states that the forwards and backwards transforma-
tions really do restore consistency, e.g. that the returned n′ above really does
satisfy R(m,n′). Hippocraticness (“first do no harm”) states that the transfor-
mation must not modify a pair of models which is already consistent (not even
by returning a different consistent model). Correctness and hippocraticness go a
long way to ruling out “silly” transformations, but something else still seems to
be required. In [5] a third postulate, undoability is proposed, but this is arguably
too strong.

The crucial point to notice is that there may be a genuine choice about
how consistency is restored. In the absence of defensible way to define which is
the “best” option, we want that choice to be in the hands of the person who
designs the transformation. Given m ∈ M , there may be many n′ ∈ N such
that R(m,n′). Given a model n such that R(m,n) does not hold, the designer of
the transformation

−→
R should be able to choose which of the possible n′ will be

returned. Although it may be that our transformation language imposes some
limitations, for it to be practically useful it will have to permit considerable
choice.

Thus far, our framework, like those typically used in graph transformations,
is completely symmetric in M , N . Neither model is necessarily an abstraction
of the other: each may contain information which is not contained in the other.
We will begin with this general situation, but later we shall specialise to the
particular case where N is an abstraction of M . This is the situation studied
by the Harmony group and reported on in a series of papers including [2, 1].
Much of the present paper can reasonably be seen as “just” a translation into
algebraic language of that work, sometimes with generalisation, sometimes with
restriction. At the end of the paper we will discuss why this may be a useful
undertaking; at the very least, it is hoped that it may amuse the algebraically-
inclined reader.

The rest of this paper is structured as follows. In Section 2 we introduce some
important equivalence relations that a bidirectional transformation imposes on
the sets of models it relates. In Section 3 we discuss edits and introduce some
basic algebraic ideas. Section 4 shows how to construct a short exact sequence
of monoids (or groups) from appropriate lenses, while Section 5 shows how to



go the other way, from a suitable sequence to a lens. Finally Section 6 concludes
and briefly mentions future work.

A recent survey of bidirectional transformation approaches is found in [6];
these are many, so this paper will not attempt to summarise again, but will stick
to the technical focus.

2 Transformations and equivalences

Let R (comprising, by abuse of notation, a consistency relation R, a forward
transformation

−→
R and a backward transformation

←−
R ) be a transformation which

is correct and hippocratic.
We will always assume that there is a trivial or content-free element of each

set of models; for example, we will write the trivial element of M as ΩM . If M
is a set of models defined by a metamodel, this might be the model containing
no model elements, if that is a member of M , i.e. permitted according to the
metamodel. However, it might not be literally empty; if for example all models
in M are required to contain some basic model elements, then ΩM will contain
these and nothing else. We will assume that R(ΩM , ΩN ).

Definition 1. The equivalence relations
−→
B and

←−
B on M , and

−→
F and

←−
F on N ,

are defined as follows:

– m ∼→
B

m′ ⇔ ∀n ∈ N.
−→
R (m,n) =

−→
R (m′, n)

(Intuitively, this says “m and m′ do not differ in any way that is visible on the
N side”. The reader familiar with lenses will recognise that this generalises
∼g.)

– m ∼←
B

m′ ⇔ ∀n ∈ N.
←−
R (m,n) =

←−
R (m′, n)

(Intuitively, “the only differences between m and m′ are those visible on
the N side, so that they become indisinguishable after any synchronisation
with an element of N”. The reader familiar with [1] will recognise that this
generalises ∼max, the coarsest equivalence with respect to which a lens is
quasi-oblivious.)

and dually,

– n ∼→
F

n′ ⇔ ∀m ∈M.
−→
R (m,n) =

−→
R (m,n′)

– n ∼←
F

n′ ⇔ ∀m ∈M.
←−
R (m,n) =

←−
R (m,n′)

We can also, in the obvious way give versions of these definitions which are
parameterised on subsets of M , N , respectively, the above then being given
by plugging in the largest available set, getting the finest available equivalence
relations. We do not need any of the coarser equivalences in this paper, however.

Thus, the transformation defines two different equivalences on M (and dually
on N). Of course, any element m ∈M can then be viewed as a representative of
its equivalence class [m]∼→

B
, or as a representative of its other equivalence class

[m]∼←
B

. These are the co-ordinates of m in the sense that m is uniquely defined
by its two classes; this was already remarked in the case of lenses in [1]:



Lemma 1. Let m1,m2 ∈M . If both m1 ∼→
B

m2 and m1 ∼←
B

m2 then m1 = m2.

Proof. We have that for any n ∈ N ,
−→
R (m1, n) =

−→
R (m2, n) and

←−
R (m1, n) =

←−
R (m2, n).

Pick n ∈ N such that R(m1, n) (which is possible by the existence of trivial el-
ements and correctness of

−→
R ; we could take n =

−→
R (m1, ΩN )). Then

−→
R (m1, n) =

n by hippocraticness, so
−→
R (m2, n) = n by assumption, so R(m2, n) by correct-

ness. Then
←−
R (m1, n) = m1 by hippocraticness; but also

←−
R (m1, n) =

←−
R (m2, n)

by assumption, and the latter is m2 by hippocraticness, so m1 = m2. �

A useful picture to bear in mind – although, of course, since M need not be
finite or even countable, it is only an informal idea – is of the elements of M laid
out on a grid whose columns represent ∼→

B
-equivalence classes and whose rows

represent ∼←
B
-equivalence classes. We have just shown that no square on the grid

can contain more than one element of M . In general, not every square need be
occupied; indeed, the equivalence classes might have different cardinalities.

The closure of M with respect to transformation R, denoted by M̄ , is the
cartesian product of the two sets of equivalence classes, which “contains” M :
informally, the set of all squares in the grid. We will have M = M̄ in the special
case that R is an undoable transformation (again, this corresponds to a remark
in [1] for lenses).

Since we are, so far, in the completely symmetric case of general bidirectional
transformations, the same remarks and result apply to N . In the special case of
lenses, which we shall come to, the grid for N , which in that setting is a strict
abstraction of M , is degenerate, since then ∼→

F
is universal and ∼←

F
is trivial.

In the even more special case of a bijective transformation (or oblivious lens, in
the terminology of [2]), the grid for M is also degenerate.

3 Edits and algebraic basics

We will assume that the reader is familiar with the standard notions of group,
monoid, mono-, epi- and isomorphisms of groups and monoids, subgroup, sub-
monoid, and normal subgroup. Other definitions from algebra will be reproduced,
marked (Standard).

In order to discuss how transformations behave it is useful to have a notion
of an edit : a way in which a model is changed by its user. When an edit has
been done on a model, restoring consistency between it and another model is a
matter of performing the “corresponding” edit on the other model. The task of
a transformation is then to specify what it means for an edit on one structure
to correspond to an edit on the other structure.

The notion of an edit, though, is a little trickier than at first appears. What is
an “edit” on a model? Intuitively, it is a thing you can do to an model, changing
it into another model. Doing nothing is certainly an edit; edits can be undone;
two edits can be done in sucession. Can the same edit be done on any model



from a given model set; in other words, if we model an edit as an endofunction

g : M −→M

should it be total? It is easy to come up with reasonable examples we might
want to model that are (“add a class with a new name in the top level package”)
but also easy to come up with examples that at first sight are not (“delete the
class called Customer”). We can get around the problem of edits which are not
obviously total by decreeing that if an edit is not naturalistically applicable to a
given model, then it should leave the model unchanged (“delete the class called
Customer if there is one, otherwise do nothing”). In this way, we can model only
total edits without imposing any real restriction.

To say that doing nothing is an edit is simply to say that the identity function
is an edit. Then to say that edits can be composed is to say that the set of edits
is a monoid. We will give the definition in order to set up some notation.

Definition 2. (Standard) A set G provided with an operation

∗ : G×G −→ G

(written infix, e.g. g1 ∗ g2, and in practice normally omitted: g1g2) is a monoid
if

1. G contains an identity element, written 1G, such that for any g ∈ G

1G ∗ g = g ∗ 1G = g

2. ∗ is associative: that is, for any g1, g2, g3 ∈ G, we have

(g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3)

Given a set S, we will often be interested in the monoid of all endofunctions
S −→ S, in which the operation is function composition and the identity is the
identity, “do nothing” function. We will write this M(S).

What about the fact that edits can be undone? It is tempting to say that this
means we have a group of edits, but this is premature. To say that an edit can
be undone in the sense that a modelling tool will allow simply means that the
tool will retain enough information to reverse any change that the user makes.
It does not mean that there will necessarily be an edit g−1 which always undoes
the effect of edit g, regardless of which model it was applied to. For example, in
the case of our edit “delete the class called Customer if there is one, otherwise
do nothing”, there is no inverse, because the edit is not injective.

Definition 3. (Standard) Let G be a monoid. If in addition G has inverses;
that is, for any g ∈ G there is an element g−1 ∈ G such that

g−1 ∗ g = g ∗ g−1 = 1G

then G is a group. In that case, inverses are necessarily unique.



Let us pause to observe that an edit can be total without being invertible,
and vice versa. For example,

– “delete everything” is total, but not invertible
– “delete package P and everything in it” is neither total nor invertible
– “add 1 to constant MAX” is not total, but it is invertible where defined
– “swap true and false wherever they occur” is both total and invertible (as

it happens, it is self-inverse).

Given any monoid M of endofunctions on a set S, we will sometimes be
interested in the set of all invertible – that is, bijective – elements of M , which
of course forms a group. We will write this G(M). Then in particular G(M(S))
is the full permutation group on S.

Let us also note that if our transformation engine only sees models, before
and after edits, it does not have access to information about what edit the user
was doing, in the sense that we do not find out what s/he would have done on
a different model; we only see what was done in one instance. Since the user
may be thinking of a permutation, the transformation certainly has to behave
sensibly in that case. Thus let us proceed, for now not committing ourselves to
whether we have a group or only a monoid of edits.

Definition 4. (Standard) Let G be a group or a monoid. The action of G on a
set M is a function

· : G×M −→M

such that for any g, h, m

1. 1G ·m = m
2. (gh) ·m = g(h ·m)

We normally omit the dot and just write gm.

If G is a group, i.e. has inverses, it is easy to see that g−1n = m iff gm = n.
This is why any group action on a set is a permutation action.

3.1 Lenses

We now switch to the restricted setting of lenses, in which one of the models is
a strict abstraction of the other. We will use the notation of [1].

The basic premise is that we have two (maybe structured) sets, C and A,
connected by an abstraction function get : C −→ A. We consider c and a to be
consistent iff get c = a.

The get function, as well as specifying consistency, also provides the forwards
transformation. Because of the restricted framework there is no choice, in the
sense that the forward transformation is completely determined by the consis-
tency relation: given c, there is a unique consistent a. Thus a lens l corresponds
to a special bidirectional transformation R in which R(c, a) holds iff a = get c,
and
−→
R (c, a) = get c (note that in this special case

−→
R ignores a).



We will also need the two equivalence relations on C denoted ∼→
B

and ∼←
B

above, which as remarked are called ∼g and ∼max in [1]. In the special case of
lenses, we will refer to these equivalences as ∼A and ∼L respectively, for reasons
which will become apparent. Thus c1 ∼A c2 iff get c1 = get c2, while c1 ∼L c2

iff for every a ∈ A we have put a c1 = put a c2.
Where the lens designer has a genuine choice is in the put function, which

corresponds to the backward transformation. A lens also provides

put : A −→ C −→ C

Note that in [2] lenses are for technical reasons not required to be total on
their domains, in order that a language of lenses can be defined using recursion;
the lenses eventually written by a lens programmer will be total. In this paper,
where we consider only semantic issues and do not concern ourselves with the
language in which lenses are defined, we are only considering total lenses.

We will, as remarked in the symmetric setting, always assume that there is a
trivial or content-free element of C, written ΩC , and similarly for A. We require
get ΩC = ΩA (thus ensuring that ΩC and ΩA are consistent, as required) and
we derive a function

create : A −→ C

a 7−→ put a ΩC

To complete the definition, lenses are (in this paper) required to satisfy two
basic lens laws, as follows.

Definition 5. (adapted from [2]) Let C and A be sets, containing trivial ele-
ments ΩC and ΩA respectively. A lens from C to A consists of a pair of functions,
get : C → A and put : A→ C → C, such that the following conditions hold:

get ΩC = ΩA

put (get c) c = c GetPut

get (put a c) = a PutGet

Note that the lens law CreateGet from [1], viz that for any a ∈ A we have
get (create a) = a, follows from the definition and PutGet.

In general create (get c) need not of course be c (it could be something else
in the same ∼A equivalence class), but we do have (and will later use):

Lemma 2. create ΩA = ΩC

Proof. By definition create ΩA = put ΩA ΩC = put (get ΩC) ΩC , which is ΩC

by GetPut. �



This framework is equivalent to a restricted version of the model transforma-
tion framework in which the right hand model is required to be an abstraction
of the left hand model, and transformations are required to be correct and hip-
pocratic but not undoable. The curious thing is how little those two conditions
alone actually restrict the transformation writer: there is an enormous amount
of choice about what the put function should do, and many such choices will be
in no way defensible as “sensible” behaviour. Formally:

Lemma 3. Let get : C −→ A be a surjective function, and let fc : A −→ C
be a family of injective functions, one for each c ∈ C. Then provided only that
fc(get c) = c for each c ∈ C, get together with the function put defined by
put a c =def fc(a) is a lens.

Proof. GetPut is true by assumption. Suppose PutGet were violated, so
that we have some a, c with get (put a c) = a′ 6= a. But then fc(a′) =
fc(get (put a c)) = fc(get fc(a)) = fc(a) by assumption, contradicting injec-
tivity of fc. �

Basically, the lens laws force put to behave correctly if putting back an ab-
stract element against the concrete element of which it is an abstraction – it is
not allowed to break things if nothing has changed – but once any modification
has been made in the abstract view, all bets are off. The corresponding issue
in the model transformation framework is that hippocraticness requires a trans-
formation not to fix something that isn’t broken, but as soon as it is broken in
even a trivial detail, the transformation is allowed to do whatever it wants. This
is intuitively all wrong: we generally want a tiny change to one model to cause
a tiny change to another, or at the very least, only certain enormous changes
will seem reasonable! The question of how this should best be captured in a lan-
guage framework is still open. As discussed in [5], we currently have no entirely
satisfactory candidate condition. See also the discussion in [2]. Most convincing,
although for some applications too strong, is the law called PutPut in [2]: it
states (modulo totality) that for any a, a′ ∈ A and c ∈ C,

put a′ (put a c) = put a′ c PutPut

Definition 6. (from [2]) A lens is called very well-behaved if it satisfies Put-
Put.

4 Building sequences from lenses

Suppose we are given a lens: that is, sets C and A, each with their trivial element,
with functions get and put satisfying the lens laws (and derived function create).
In this section we will show how to represent this lens algebraically.

Now, fundamentally what we want to do is to say what edit on one model
corresponds to an edit on the other, and we want to do this in such a way that
composition of edits is respected and obviously so that doing nothing on one
model corresponds to doing nothing on the other.



Lenses, however, do not come equipped with a notion of edit: we have to add
that. What should the edits on C be? Our first thought might be to use the whole
monoid of functions from C to itself: but in fact, we will need a compatibility
condition in order for get, which is supposed to be an abstraction function, to
work as one. The condition is that for any g in our monoid of edits, and for any
c, c′ ∈ C:

get c = get c′ ⇒ get gc = get gc′ Compat

– in other words, an edit should act on C/∼A. Let ΠC ⊆ M(C) be the set
of all functions from C to itself that satisfy this compatibility condition. It is
easy to see that ΠC is itself a monoid, and that it acts transitively on C, which
reassures us that it is expressive enough to model anything the user does to an
actual model. In fact, an element g of ΠC is defined by:

1. a function ḡ : C/∼A−→ C/∼A, together with
2. for each [c] ∈ C/∼A, a function g[c] : [c] −→ [gc].

Essentially the compatibility condition says that the abstraction embodied in
get respects the edits which are allowed, in the sense that if two concrete states
look the same in the abstract view before a concrete edit, they will also look the
same in the abstract view after the edit. Although this may repay further study,
it seems a plausible requirement, in order for there to be a notion of edit on
the abstract domain which is compatible with the notion of edit on the concrete
domain.

Lemma 4. Any lens induces a monoid homomorphism

µ : ΠC −→M(A)

defined as
(µg)(a) = get (g(create a))

Proof. We have to show that µ preserves identity and composition. Considering
identity:

(µ1G)(a) = get (1G(create a))
= get create a by definition of 1G

= a by CreateGet

For composition, we have to show that for any g1, g2, a

(µ(g1g2))(a) = (µg1)(µg2)(a)

By definition of µ we have:

(µ(g1g2))(a) = get ((g1g2)(create a))



and

(µg1)(µg2)(a) = get (g1(create get (g2(create a))))

By CreateGet,

get g2(create a) = get create get (g2(create a))

So by the compatibility condition,

get g1g2(create a) = get g1create get (g2(create a))

which is what we had to prove.

�

Let us write K and H for the kernel and image of µ, respectively.

Lemma 5. H acts transitively on A.

Proof. Given a1, a2 in A, we need to show that there is some g ∈ ΠC such that
(µg)a1 = a2. Let c be any element of C such that get c = a2. Since the action of
ΠC on C is transitive, there is some g ∈ ΠC such that g(create a1) = c. Then
(µg)a1 = a2 as required. �

Lemma 6. If g1ΩC = g2ΩC then µg1ΩA = µg2ΩA

Proof. Suppose g1ΩC = g2ΩC . Then (µg1)(ΩA) = get (g1(create ΩA)) = get (g1ΩC)
by Lemma 2. Similarly, (µg2)(ΩA) = get (g2ΩC), and we are done by hypothesis.
�

Next, consider the function (in the absence of PutPut it is not necessarily
a homomorphism, as we shall discuss):

λ : H −→ ΠC

given by
(λh)(c) = put h(get c) c

This is the function that captures how to “put back” information introduced by
a user editing an abstract model, to give a corresponding edit on the concrete
model.

Lemma 7. λ is well-defined.



Proof. We have to show that for any h ∈ H, the function λh is an element of
ΠC : that is, that it satisfies the compatibility condition. Suppose get c1 = get c2.
Then

get ((λh)c1) = get (put h(get c1) c1) = h(get c1)

by definition of λ and PutGet. Similarly, get ((λh)c1) = h(get c2), so we are
done by assumption. �

Lemma 8. µλ is the identity on H.

Proof. We have to show that for any h ∈ H we have µ(λh) = h. Let a be any
element of A.

(µ(λh) a = get ((λh)create a)
= get (put h(get create a) create a)
= get (put h(a) create a) by CreateGet

= h a by PutGet

�

Thus, the function λ is a right inverse for the epimorphism µ.
Although in general λ may not be a monoid homomorphism, it does behave

as such on the identity:

Lemma 9. (λ1H) = 1ΠC

Proof. For any c ∈ C, GetPut gives (λ1H)c = c. �

Later, we shall want:

Lemma 10. For all g ∈ ΠC and for all h ∈ H, we have

h(µg)ΩA = (µg)ΩA ⇒ (λh)gΩC = gΩC

Proof. Expanding the definitions, we may assume h(µg)ΩA = (µg)ΩA, that
is, that h(get (g(create ΩA)) = get (g(create ΩA). Since create ΩA = ΩC

(Lemma 2), our assumption becomes h(get (gΩC) = get (gΩC . Now using
this, we have to show that (λh)gΩC = gΩC . Again expanding the definition,
(λh)gΩC = put (h(get (gΩC))) (gΩC) = put (get (gΩC)) (gΩC) by assumption,
which is gΩC by GetPut. �

To sum up what we have done so far, we need two more standard definitions:

Definition 7. (Standard) A sequence of groups or monoids

...→ Gi−1
λi→ Gi

λi+1→ Gi+1 → ...

is exact if for each i,
img λi = ker λi+1

– that is, the elements of Gi which are the images under λi of elements of Gi−1

are exactly those elements of Gi which are mapped by λi+1 to the identity element
of Gi+1.



Definition 8. (Standard) A short exact sequence is an exact sequence of length
5, whose ends are trivial:

1→ K → G→ H → 1

Therefore we may rephrase what we have shown so far as

Proposition 1. Let l be a lens from C to A, consisting of functions put and
get. Let ΠC be the monoid of endofunctions on C which satisfy Compat. Then

1→ K → ΠC
µ→ H → 1

is a short exact sequence of monoids, where the monoid homomorphism µ is
defined by

(µg)(a) = get (g(create a))

Moreover, the function λ : H −→ ΠC defined by (λh)(c) = put h(get c) c is
a right inverse for µ.

However, the usual reason in algebra for considering short exact sequences
is that they often encode useful information about the structures in them; un-
fortunately, in the case of general monoids, they are not so informative. The
rephrasing above is suggestive, but not yet very useful. In order to go further,
we have to restrict the setting. There are two obvious ways to do this: we can
consider only very well-behaved lenses (those which satisfy PutPut), and/or
we can restrict attention to invertible edits. Let us consider the first of these
restrictions first.

4.1 Very well-behaved lenses

It turns out that insisting that the lens be very well-behaved corresponds exactly
to insisting that λ be a monoid homomorphism.

Lemma 11. If PutPut holds then λ is a monoid homomorphism.

Proof. We have already shown (Lemma 9) that λ preserves identity; now we
have to show that it preserves composition.

(λh1)(λh2) c = (λh1)(put h2(get c) c)
= put (h1(get (put h2(get c) c)) (put h2(get c) c)
= put (h1(get (put h2(get c) c)) c) by PutPut

= put (h1(h2(get c)) c by PutGet

= λ(h1h2) c

�

Lemma 12. If λ is a homomorphism then PutPut holds.



Proof. Let a, a′ ∈ A and c ∈ C. We have to show that

put a′ (put a c) = put a′ c

By transitivity, we can pick h such that a = h(get c) and then h′ such that
a′ = h′a = h′h(get c). Then put a c = λhc and put a′ c = λ(h′h)c = λh′λhc
since λ is a homomorphism. Thus

RHS = λh′λhc = λh′(put a c) = put h′(get (put a c)) (put a c)

which is put (h′a) (put a c) by PutGet, which is the LHS by choice of h′. �

This is a very interesting correspondence, particularly in view of the difficulty,
mentioned earlier, in choosing an appropriate condition to complement the basic
lens laws and ensure “sensible” behaviour. The fact that PutPut corresponds
to so basic an algebraic phenomenon as homomorphism is encouraging. Let us
now consider the restriction to invertible edits.

4.2 Invertible edits

Recall that for any monoid M , G(M) is the collection of invertible elements of
M , which forms a group. Using exactly the same definition as above, we can
define µ : G(ΠC) −→ G(M(A)).

However, it turns out that the development we did for monoids will fail in
two ways if we try to use an arbitrary lens in conjunction with considering only
invertible edits. Firstly, the action of G(ΠC) will not necessarily be transitive on
C, because if c1 and c2 are in ∼A equivalence classes of different cardinalities,
then no invertible element of ΠC can map c1 to c2. A consequence of this is that,
if we restrict to invertible edits but still consider an arbitrary lens, there might
be cases were we could not handle the situation in which a user modified a model
c1, turning it into c2, and the changes were rolled through to a corresponding
model. Since the original lens, which is independent of any notion of edit, can
roll through any change a user might make, our algebraic framework would then
be failing to describe the full behaviour of the lens. Secondly, our function λ
might not be well-defined, since if it is not a monoid homomorphism, it might
map an invertible edit to one which is not invertible.

Both of these problems are solved if we assume, for the remainder of the
section, that l is a very well-behaved lens, so that PutPut holds. (This may not
be the only way to proceed, however.) The development done for monoids now
goes through smoothly, using

Lemma 13. (from [1]) If l is a very well-behaved lens, then there is a bijection
between C and the cartesian product C/∼L ×C/∼A.

In particular, all the equivalence classes in C/∼A have the same cardinality:
according to the informal grid picture we suggested before, there is exactly one
element of C occupying every square of the rectangular grid whose columns are
labelled by elements of C/∼A and whose columns are labelled by elements of
C/∼L.

Thus an element g of G(ΠC) is defined by:



1. a permutation ḡ : C/∼A−→ C/∼A, together with
2. for each [c] ∈ C/∼A, a bijection g[c] : [c] −→ [gc].

First, we need to check that for any g ∈ G(ΠC), the endofunction µg is
indeed invertible. This is immediate from the fact that µ is a monoid homo-
morphism. Recall that any monoid homomorphism between groups is a group
homomorphism. Finally we have to check that λ remains well-defined when re-
stricted. Since λ is a monoid homomorphism, the image of any invertible element
is invertible, so it is a group homomorphism.

We will now write G instead of G(ΠC).
Now that we are considering groups rather than just monoids, let us return

to our short exact sequence. The crucial standard result is

Lemma 14. (Standard) Let

1→ K → G→ H → 1

be a short exact sequence of groups. Then K E G and G/K ' H; we say that G
is an extension of H by K.

That is, the short exact sequence tells you how G is in a certain sense built
from its substructure K together with the extending structure H. Notice, though,
that H need not embed in G, i.e., there need not be any group monomorphism
from H to G; if these are edit structures, there need not be a systematic way
to regard an edit done on an abstract model as an edit done on the concrete
model. That is, we cannot necessarily express the edits that can be done on the
concrete domain, in terms of edits done on the abstract domain together with
other information. Algebraically, this is because – in general – a short exact
sequence does not necessarily split.

Definition 9. (Standard) A short exact sequence of groups

1→ K → G
σ→ H → 1

is said to split if there exists a group monomorphism λ : H → G which composes
with σ to the identity on H:

∀h ∈ Hσ(λh) = h

In that case, λ is said to split the sequence, and G ' K o H.

Definition 10. (Standard) Let G be a group, with subgroups KEG and H ≤ G.
G is the (internal) semi-direct product K o H if:

– KH = G
– K ∩H = 1G

In this case, we observe that

– every element g of G can be written uniquely as the product g = kh of
elements k ∈ K and h ∈ H;



– (kh)−1 = (h−1k−1h)h−1 (note that h−1k−1h ∈ K by normality of K);
– (k1h1)(k2h2) = (k1h1k2h

−1
1 )(h1h2) (noting again that this is the product of

an element of K and one of H, by normality).

The product is direct if in addition H and K commute.

Our restriction to very well-behaved lenses gives us that λ is a monoid and
hence a group homomorphism, which is exactly what is needed to ensure that
the short exact sequence splits. That is, we have (summarising)

Theorem 1. Let l be a very well-behaved lens from C to A, consisting of func-
tions put and get. Let G be the group of invertible endofunctions on C which
satisfy Compat. Then

1→ K → G
µ→ H → 1

is a short exact sequence of groups, where the group homomorphism µ is defined
by

(µg)(a) = get (g(create a))

Moreover, the function λ : H −→ G defined by (λh)(c) = put h(get c) c is a
right inverse for µ, and a group homomorphism. Therefore it splits the sequence
and we have an isomorphism

K o H ' G

We can now discuss the action of G on C in terms of what K, H do to C/∼L

and C/∼A.

Lemma 15. The subgroup λH of G acts, trivially, on C/∼L: that is, for any
c ∈ C and h ∈ H, (λh)c ∼L c.

Proof. We have to show that for any a ∈ A,

put a ((λh)c) = put a c

The LHS is by definition put a (put (h(get c) c) which is the RHS by PutPut.
�

To put it another way, λ(H) stabilises the ∼L-equivalence classes.
In particular, λ(H) ≤ G acts on create A ⊆ C just as H acts on A.
Let us identify A with the set create A and take this as the transversal of ∼A;

and let L be the set put ΩA C, and take these elements as the transversal of ∼L.
Observe that (in this restricted setting) create a ∼L create b for any a, b ∈ A,
and also get (put ΩA c) = get (put ΩA d)(= ΩA) for any c, d ∈ C, so we can
picture the elements of create A laid out as the bottom row and the elements
of L in the left-hand column of our grid, respectively. We can identify C with
L×A via the bijection c 7→ (put ΩA c, create (get c)).

Let us from now on elide λ and regard H as a subgroup of G via λ. 1

In terms of our informal grid, elements of H stabilise the rows, permuting
the elements of each row. Each row is permuted identically. Formally:
1 That is, as usual we can safely elide the distinction between internal and external

semi-direct products.



Lemma 16. For any h ∈ H and (l, a) ∈ L×A we have h(l, a) = (l, ha).

Proof. Let h(l, a) = (l′, a′). We must have l′ = l by Lemma 15. By definition
h′ = get λhc where c = (l, a) and a = get c; but this is get (put (h(get c) c) =
h(get c) = ha by PutGet as usual. �

Next we consider the role of K.

Lemma 17. The normal subgroup K of G acts, trivially, on C/∼A: that is, for
any c ∈ C and k ∈ K, kc ∼A c.

To put it another way, K stabilises the ∼A-equivalence classes. In particular, K
acts on L. In terms of our informal grid, elements of K stabilise the columns,
possibly permuting the elements of each column individually. Unlike H acting on
rows, however, K does not necessarily do the same permutation on each column.
Suppose for a moment that we are not given G with its action on L × A = C,
but instead are given just H and K, together with K’s action on L (that is, on
the left-hand column of the informal grid only) and H’s action on A (that is, on
the bottom row of the grid). We may ask, does this information determine the
full action of G on L× A? If not, to what extent does it constrain it? Since we
know that H acts in the same way on every row, so its action on C is determined
by its action on A, the interesting part is how K can act on a general element.

Lemma 18. Let k ∈ K and (l, a) ∈ L × A. Then k(l, a) can be written as
((hkh−1)l, a) where h ∈ H satisfies ha = ΩA.

Proof. Observe that

k(l, a) = h−1(hkh−1)h(l, a)

= h−1(hkh−1)(l, ha) by Lemma 16

= h−1((hkh−1)l, ha) since ha = ΩA and hkh−1 ∈ K by normality
so this is just the action of K on L

= ((hkh−1)l, a) by Lemma 16 again

as required. �

Putting these calculations together, we see that the action of G on C can be
composed from the actions of H on A and of K on L, thus:

(kh)(l, a) = ((h1kh−1
1 )l, ha)

where h1a = ΩA.
In general there is a genuine choice of element of H – or equivalently, a gen-

uine choice of semidirect product, that is, of homomorphisms in our short exact
sequence – so that the actions of H on A and K on L, devoid of information
about how the two groups are connected, do not completely determine G with



its action on C. We also need an oracle to make the necessary choices, or, equiv-
alently, to be given the homomorphism µ which determines which of the various
semidirect products of H with K is intended.

We should, however, observe two special cases. First, if the action of H on
A is such that there is always a unique element h such that ha = ΩA, then
each choice is unique, and the actions of H and K on A and L respectively will
completely determine the action of G on C. Second, if G is actually the direct
product K×H – that is, elements of K commute with elements of H – then the
action of G on C simplifies to the pointwise action

(k, h)(l, a) = (kl, ha)

as expected, there is no choice to be made, and again the actions of K and H on
L and A do completely determine the action of G on C. This means, informally,
that in this special case an edit acts independently on the part of the concrete
model from C that’s retained in the abstract view A and on the part which is
discarded by the abstraction.

5 Building lenses from sequences

To show that we really do have an alternative way of looking at this world, we
now need to consider the other direction.

Suppose we are given a short exact sequence of monoids

1→ K → G
µ→ H → 1

in which G acts on a set C (equipped with a trivial element ΩC) and H acts on a
set A (equipped with trivial element ΩA). We can read this as telling us how to
translate edits on C to edits on A: that is, it already gives us a (unidirectional)
model transformation.

If we are given, additionally, an injective function λ : H −→ G such that µλ is
the identity function on H, we can regard this as a bidirectional transformation:
it tells us how to translate edits in both directions.

However, it does not necessarily correspond to a lens. Fundamentally the
issue is this. Lenses work in the absence of any intentional information about
the edits a user has made to the models: the lens only sees the modified models.
In principle, there is no reason why we should not define a different kind of
bidirectional transformation that does take notice of how the user achieved their
changes. Two different edits might have the same effect on a model in C (rsp.
A), but their images under µ (rsp. λ) might legitimately have different effects
on a corresponding model in A (rsp. C).

We will always require that the action of G on C and the action of H on A
are transitive, so that there always is some edit that will take the current model
to the desired modified model. Beyond this, different choices might represent
different means of editing models.

For the rest of this section we restrict attention to those sequences from which
lenses can be defined:



Definition 11. A sequence of monoids as described above is lens-like if it sat-
isfies the following two conditions:

LL1: if g1ΩC = g2ΩC then µg1ΩA = µg2ΩA

LL2: for all g ∈ G and for all h ∈ H, we have

h(µg)ΩA = (µg)ΩA ⇒ (λh)gΩC = gΩC

Note that any sequence which arises from a lens by the construction in Sec-
tion 4 is lens-like, as expected, by Lemmas 6 and 10.

Given a lens-like sequence, we can define a get function as follows. Given
c ∈ C, let g ∈ G be any element such that gΩC = c; then

get c =def µgΩA

Lemma 19. get is well-defined

Proof. There is at least one suitable choice of g by transitivity. LL1 suffices to
show that different choices of g give the same result for get c. �

Lemma 20. get and the group action of G on C satisfy the original compatibility
condition Compat.

Proof. Suppose get c1 = get c2. Expanding the definition, this means that we
have elements of G, say g1 and g2, such that

g1ΩC = c1

g2ΩC = c2

µg1ΩA = µg2ΩA

We need to show, for an arbitrary g ∈ G, that get gc1 = get gc2. Expanding the
definition again, we have elements of G, say g′1 and g′2, such that

g′1ΩC = gc1

g′2ΩC = gc2

and we need to show that µg′1ΩA = µg′2ΩA. Now,
g′1ΩC = gg1ΩC rearranging the above, so
µg′1ΩA = µgg1ΩA by LL1

= (µg)(µg1ΩA) since µ is a homomorphism
= (µg)(µg2ΩA) by assumption
= (µ(gg2))ΩA since µ is a homomorphism
= (µg′2)ΩA by LL1, since g′2ΩC = gg2ΩC

�

Our definition of put involves making a choice, for each pair a ∈ A and c ∈ C,
of an element of the group H which has the desired effect; different choices may
give different put functions, so our definition is parameterised on an oracle. This



is not surprising, in the light of the many choices of put function discussed earlier
(Lemma 3).

Suppose we have an oracle which, given arguments a and c, returns h ∈ H
such that a = h(get c). (At least one such element is always guaranteed to exist
by transitivity of the action of H on A.) Then

put a c =def λhc

Theorem 2. The put and get functions defined above comprise a lens (for any
oracle).

Proof. GetPut: we have to show that put (get c) c = c for any c. By definition,
the LHS is λhc for some h such that get c = h(get c); that is, such that (µg)ΩA =
h(µg)ΩA where gΩC = c. By LL2 we have (λh)gΩC = gΩC ; that is, the LHS is
c, as required.
PutGet: we have to show that get (put a c) = a. Expanding the definitions,
we have get (put a c) = µgΩA for some g such that gΩC = put a c, which in
turn is λhc for some h such that a = h(get c) = h(µg′ΩA) for some g′ such that
g′ΩC = c.

Since gΩC = put a c = (λh)g′ΩC , LL1 gives µgΩA = µ((λh)g′)ΩA. Since µ
is a homomorphism, and µλh = h, this is equivalent to

µgΩA = h(µg′)ΩA

But we had already showed that the LHS of this equation is get (put a c) while
the RHS is a. �

Theorem 3. If this sequence was in fact constructed from a lens l as described
in Section 4, then the lens we construct from the sequence is exactly l (and in
particular, it does not then depend on our choice of oracle).

Proof. We write l.get and l.put for the components of l, get and put for our
constructed components.

get c = (µg)ΩA where gΩC = c

= l.get (gl.create ΩA)
= l.get (gΩC)
= l.get c

put a c = (λh)c where h(get c) = a

= l.put (h l.get c) c by definition of λ

= l.put (h get c) c by the above
= l.put a c by choice of h

�



Lemma 21. If, further, λ is a group homomorphism, so that it splits the se-
quence, and in addition either of the following holds,

1. G and H are groups; or
2. we have the property that h(get c) = h′(get c)⇒ (λh)c = (λh′)c

then the lens is very well-behaved.

Proof. We have to show that PutPut holds; that is, that for any a, a′ ∈ A and
c ∈ C we have

put a′ (put a c) = put a′ c

Expanding the definition, the LHS is λh′(λhc) where a′ = h′(get (put a c)) =
h′a by PutGet and a = h(get c). Putting these together, we see that a′ =
h′h(get c). Expanding the RHS, it is λh′′c where a′ = h′′(get c).

Since λ is a homomorphism, we have

LHS = λh′(λhc) = λ(h′h)c

If we can show that this is λh′′c, we are done. If condition 2. in the statement
holds, it shows exactly this.

Alternatively, if G and H are groups, then LL2 gives us what we need,
for then there is (by transitivity) some g such that gΩC = c, and we have
(h′′−1h′h)(µg)ΩA = (µg)ΩA, so by LL2, c = gΩC = λ((h′′−1h′h))gΩC =
λ(h′′−1)(λh′)(λh)gΩC = λ(h′′−1)(λh′)(λh)c. Multiplying on the left by λ(h′′)
and using (again) the fact that λ is a homomorphism gives the result. �

6 Conclusions and further work

In this paper we have described an algebraic framework in which to think about
bidirectional transformations between sets of models. We have focused on an im-
portant special case, where one of the models is an abstraction of the other, and
we have shown how to translate key elements of the body of work on lenses into
algebraic terms. The lens framework was invented with the pragmatic needs of
transformation programmers in mind: yet, that it fits so neatly into the algebraic
framework suggests that the choice of laws it embodies are canonical within its
region of the transformation language design space.

Much remains to be done, especially in exploiting the algebraic framework to
give new (and/or easier) insight into how edit structures and transformations can
be composed, and to explore beyond the boundaries of the lens framework. On
the other hand, within those boundaries, it would be interesting to incorporate
the work on dictionary and skeleton lenses from [1] (where wreath products
clearly have a role to play) and on lenses up to equivalences from [3]. Looking
more widely, it is to be hoped that the algebraic approach will also be useful in
integrating different approaches to bidirectional transformations, including those
from the graph transformation community; this may shed light on the design
space of bidirectional transformation languages and thus contribute, ultimately,
to the development of more useful languages for model-driven development.



From a theoretical point of view, it would be interesting to widen the search
for connections into the fields of topology and category theory, and to understand
the connections with earlier work such as [4] better. Finally, a major area of
future work is to understand the connections with graph grammars, especially
triple graph grammars.
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