A simple game-theoretic approach to checkonly
QVT Relations

Perdita Stevens

Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh
Thank to ITI Scotland Ltd. for funding my attendance at ICMT

June 2009

Plan

Background: QVT-R and its definitions
Inconsistency of the definitions
Game definition, formalising standard direct definition

Consequence: non-existence of bidirectional trace objects

vV v v v Y

Possible variant semantics and other ongoing work

QVT Relations (QVT-R)

OMG standard language,

QVT Relations (QVT-R)

OMG standard language,

dating back several years,

QVT Relations (QVT-R)

OMG standard language,
dating back several years,

years in which MDD has become increasingly mainstream

QVT Relations (QVT-R)

OMG standard language,
dating back several years,
years in which MDD has become increasingly mainstream

yet QVT-R is not in serious use.

+ Clear, usable syntax.

Declarative, bidirectional, based on specifying relations on parts of
models.

QVT Relations (QVT-R)

OMG standard language,
dating back several years,
years in which MDD has become increasingly mainstream

yet QVT-R is not in serious use.

+ Clear, usable syntax.

Declarative, bidirectional, based on specifying relations on parts of
models.

- But little tool support: nothing industrial-strength and
standards-compliant.

Medini QVT (ModelMorf, MOMENT-QVT)

QVT Relations (QVT-R)

OMG standard language,
dating back several years,
years in which MDD has become increasingly mainstream

yet QVT-R is not in serious use.

+ Clear, usable syntax.

Declarative, bidirectional, based on specifying relations on parts of
models.

- But little tool support: nothing industrial-strength and
standards-compliant.

Medini QVT (ModelMorf, MOMENT-QVT)

Why? Sufficient problem:
this kind of language really needs clear semantics!

How QVT-R is used

A QVT-R transformation is a single text, defined in terms of
metamodels.

You run the transformation:

> in a direction: examine one model, regarding other(s) as
authoritative
> in
» checkonly mode: is m2 OK according to authoritative m27 Say
m1 and m2 are consistent if both directions succeed.

» enforce mode: modify m2 so that it is OK according to
authoritative m1.

“Check then enforce”: enforce must not do anything if checkonly
returns true.

The paper concerns checkonly.

All the QVT languages

Operational

Mapping

Relations

Relations
to Core
Transformation

Core

uoljeuawa|dw|

X0g ¥oe|gd

How the semantics of QVT-R is defined

The spec attempts to define QVT-R in two ways:

1. By translation into QVT-Core, whose semantics are directly
defined

2. Directly
Both direct definitions (of QVT-R and QVT-Core) are informal.
No specification of what happens if they don't agree.
And they don't...

Translation of QVT-R to QVT-Core

To demonstrate inconsistency between the two semantics, we

1. give a very simple transformation T whose meaning is
absolutely clear under the direct semantics

2. show that no QVT-Core transformation can behave the same
way as T, i.e., QVT-Core cannot express T

Then it doesn't matter if I've misunderstood the particular
translation given in the spec - no translation to QVT-Core could
give semantics consistent with the direct semantics of QVT-R.

SimplestMM

ModelElement

SimplestMM

ModelElement

And, err, that's it.

Models are zero, one, two...

The transformation

transformation T (ml : SimplestMM ; m2 : SimplestMM)
{

top relation R
{
checkonly domain ml mel:ModelElement {};
checkonly domain m2 me2:ModelElement {};
}
}

Pick a direction to run it in, for the sake of argument towards m2.
T simply implements a function N x N — B.
Which function?

According to the direct semantics

T, evaluated in the direction of m2, must return true iff

for every valid binding of some model element from m1
to variable mel,

there exists a valid binding of some model element from m2
to variable me2.

According to the direct semantics

T, evaluated in the direction of m2, must return true iff

for every valid binding of some model element from m1
to variable mel,

there exists a valid binding of some model element from m2
to variable me2.

The only way this can fail is m1 # zero and m2 = zero.
So checking in direction of m2:

false if ml # zero and m2 = zero
true otherwise

T:(ml,m2)'—>{

Overall consistency (conjoin checks in both directions):

false if exactly one of ml, m2 is zero

T:(ml,m2)— { .
true otherwise

According to the translation to QVT-Core

module SimpleTransformation imports SimplestMM {
transformation Translation {...imports...}

class TR {
theMlelement : ModelElement;
theM2element : ModelElement;

map R in Translation {
check m1() {anMlelement : ModelElement}
check m2() {anM2element : ModelElement}
where () {
realize t:TR|
t.theMlelement = anMlelement;
t.theM2element anM2element;

Uniqueness of bindings in QVT-Core

Translation (two, one) will return Falsel
Why? QVT-Core, unlike QVT-R:
» performs checkonly transformations without specifying a
direction
» insists that a valid binding in each domain must be uniquely

determined by a choice of valid binding in the other.

Some ambiguity (see paper), but certainly, no QVT-Core
transformation could return true on both (one,two) and
(two,one) but false on (one,zero).

That is, QVT-Core cannot express our original T.

And this is not a curiosity: there are many useful transformations which it cannot express.

So let’s forget the translation

> Relations

Operational
Mapping

uoieIuaws|dw|

xog oe|g

So let’s forget the translation

> Relations

Operational
Mapping

> Core

uoieIuaws|dw|

xog oe|g

QVT-R: the direct semantics

Informal, but fairly clear how to interpret a single relation.
Main problem is interpretation of when and where clauses.

Potentially ill-founded recursive definition of relationship
satisfaction.

To express a top relation logically, we need (at least) arbitrary
quantifier alternation depth (possibly fixpoints or equivalent).

Let’s learn from logic and concurrency, and use games to explain
what's going on.

See paper for details: here will explain using an example.

A basic relation

relation ThingsMatch

s : String;

checkonly domain ml thingl:Thing {value = s};

checkonly domain m2 thing2:Thing {value = s};
}

Relation ThingsMatch holds of bindings to thingl in model m1
and thing?2 in model m2 provided that

thingl.value = thing2.value

A basic relation

transformation Basic (ml1 : MM ; m2 : MM)
{
top relation ThingsMatch
{
s : String;
checkonly domain ml thingl:Thing {value = s};
checkonly domain m2 thing2:Thing {value = s};
b

Transformation Basic returns true when executed in the direction
of m2 iff for every binding to thingl in model m1 there exists a
binding to thing?2 in model m2 such that

thingl.value = thing2.value

Invoking relations: where and when clauses

relation ClassToTable

{
domain uml c:Class { ... stuff involving p...}
domain rdbms t:Table { ... stuff involving s... }
when { PackageToSchema (p, s); }
where { AttributeToColumn(c, t); }

“The when clause specifies the conditions under which the relationship needs
to hold, so the relation ClassToTable needs to hold only when the
PackageToSchema relation holds between the package containing the class and
the schema containing the table. The where clause specifies the condition that
must be satisfied by all model elements participating in the relation, and it may
constrain any of the variables in the relation and its domains. Hence, whenever
the ClassToTable relation holds, the relation AttributeToColumn must also
hold.”

Put when on hold for a moment...

Example transformation

transformation Sim (m1 : MM ; m2 : MM) {
top relation ContainersMatch {
interl,inter2 : MM::Inter;
checkonly domain ml cl:Container {inter = interi};
checkonly domain m2 c2:Container {inter
where {IntersMatch (interl,inter2);}
}

inter2};

relation IntersMatch {
thingl,thing2 : MM::Thing;
checkonly domain mil il:Inter {thing = thingl};
checkonly domain m2 i2:Inter {thing = thing2};
where {ThingsMatch (thingl,thing2);}

}

relation ThingsMatch {
s : String;
checkonly domain ml thingl:Thing {value = s};
checkonly domain m2 thing2:Thing {value = s};
}
}

The pair of models we'll check

xc:Thing

xd:Thing

tc1:Thing

value="c

value="d"

value="¢"

Model m1

Model m2

QVT Relations checking as a game

Take:

> a pair of metamodels
» a QVT-R transformation;
» models m1 and m2 conforming to the metamodels.

Assume we have an oracle for checking conformance to metamodel
and "“local” checking inside relations.

Simplification: let when and where clauses contain only relation
invocations.

QVT Relations checking as a game

Take:

> a pair of metamodels
» a QVT-R transformation;
» models m1 and m2 conforming to the metamodels.
Assume we have an oracle for checking conformance to metamodel

and "“local” checking inside relations.

Simplification: let when and where clauses contain only relation
invocations.

Let's define game G to check in the direction of model m2.

Two players, Verifier who wants the check to succeed, Refuter who
wants it to fail.

Semantics: return true if Verifier has a winning strategy, false if
Refuter does.

Refuter

top relation ContainersMatch

checkonly domain ml cl:Container {inter
checkonly domain m2 c2:Container {inter

{
interl,inter2 : MM::Inter;
where {IntersMatch (interl,inter2);}
}
:Container
:Thing :Thing
value="c" value="d"

value="c"

interi};
inter2};

Refuter;Verifier

top relation ContainersMatch

{

interl,inter2 :
checkonly domain ml cl:Container {inter
checkonly domain m2 c2:Container {inter
where {IntersMatch (interl,inter2);}

MM: :Inter;

}
:Container
:Thing :Thing
value="c" value="d"

value="c"

interi};
inter2};

Refuter;Verifier;Refuter

top relation ContainersMatch

{

interl,inter2 :
checkonly domain ml cl:Container {inter
checkonly domain m2 c2:Container {inter
where {IntersMatch (interl,inter2);}

MM: :Inter;

}
:Container
:Thing :Thing
value="c" value="d"

value="c"

interi};
inter2};

Refuter;Verifier;Refuter

relation IntersMatch

{
thingl,thing2 : MM::Thing;
checkonly domain ml il:Inter {thing = thingl};
checkonly domain m2 i2:Inter {thing = thing2};
where {ThingsMatch (thingl,thing2);}

}
:Container -Contai
:Inter :nter
: ! : - : ! "o n
value="c" value="d" value="c

Refuter;Verifier;Refuter;Verifier

relation IntersMatch

{
thingl,thing2 : MM::Thing;
checkonly domain ml il:Inter {thing = thingl};
checkonly domain m2 i2:Inter {thing = thing2};
where {ThingsMatch (thingl,thing2);}

}
:Container -Contai
:Inter :Inter
: ! : - . : "o n
value="c" value="d" value="c

Refuter;Verifier;Refuter;Verifier;Refuter

relation IntersMatch

{
thingl,thing2 : MM::Thing;
checkonly domain ml il:Inter {thing = thingl};
checkonly domain m2 i2:Inter {thing = thing2};
where {ThingsMatch (thingl,thing2);}

}
:Container -Contai
:Inter :nter
: ! : - . : "o n
value="c" value="d" value="c

Refuter;Verifier;Refuter;Verifier;Refuter

relation ThingsMatch
{
s : String;
checkonly domain ml thingl:Thing {value = s};

checkonly domain m2 thing2:Thing {value = s};
}
: iner. :Container
zInter :Inter
-Ihing 'II - -I:hlng' _
value="¢c" value="d" value="c¢

Refuter;Verifier;Refuter;Verifier;Refuter; VERIFIER LOSES!

relation ThingsMatch

{
s : String;
checkonly domain ml thingl:Thing {value = s};
checkonly domain m2 thing2:Thing {value = s};
}
:Container :Container.
:Inter :nter
- - : - : v "
value="c" value="d" value="c

Summary of moves (missing out when)

Position

Next position

Notes

Initial (Ref.)

(Verifier, R, B)

R is any top relation; B com-
prises valid bindings for all vari-
ables from m1 domain

(Verifier, R, B)

(Refuter, R, B)

B’ comprises B together with
bindings for any unbound m2 vari-
ables.

(Refuter, R, B)

(Verifier, T, D)

T is any relation invocation from
the where clause of R; D com-
prises B's bindings for the root
variables of patterns in T, to-
gether with valid bindings for all
m1 variables in T.

Adding when-clauses

relation ClassToTable
{
domain uml c:Class { ... stuff mentioning p ...
domain rdbms t:Table { ... stuff mentioning s
when { PackageToSchema(p, s); }
where { AttributeToColumn(c, t); }

Adding when-clauses

relation ClassToTable

{
domain uml c:Class { ... stuff mentioning p ...}
domain rdbms t:Table { ... stuff mentioning s ... }
when { PackageToSchema(p, s); }
where { AttributeToColumn(c, t); }

Allow player to “counter-challenge” a when-clause...

You challenge me to find a match for your bindings: | have a
choice. Either | find one, or | accuse you of cheating by making an
unfair challenge, one that doesn't satisfy the when clause. To do
that | counter-challenge a relation from the when clause, and we
swap roles and play in that relation

(see paper for details)

Winning conditions

You win if your opponent can't go.

But what about infinite plays?

Winning conditions

You win if your opponent can't go.
But what about infinite plays?

Could just forbid: insist graph of relations with when and where
edges be a DAG.

Or, could define winning conditions on infinite plays (cf parity
games etc.) - something like, you lose if it's your fault the play's
infinite? (Future work!)

Winning conditions

You win if your opponent can't go.
But what about infinite plays?

Could just forbid: insist graph of relations with when and where
edges be a DAG.

Or, could define winning conditions on infinite plays (cf parity
games etc.) - something like, you lose if it's your fault the play's
infinite? (Future work!)

NB QVT spec doesn't address the issue at all — corresponds to
infinite regress of its definitions.

Transformations on pairs of boolean model elements

transformation PwhereQ (ml : BoolMM ; m2 : BoolMM) {
top relation SameValue {
i : Boolean;
checkonly domain ml sl1:ABoolean {value=il};
checkonly domain m2 s2:ABoolean {value=il};
where {FirstIsTrue(si,s2);}
}

relation FirstIsTrue {
i : Boolean;
checkonly domain ml s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};

3

Mutatis mutandi, PwhenQ, QwhereP, QwhenP.

Apply each transformation to each pair of models ((T,T),
(T,F), (F,T), (F,F)), in each direction. Compare our
semantics with ModelMorf.

In direction of m1

Reminder: P is SameValue, Q is FirstIsTrue. The invoked
relation is not top.

— ‘ (T,T) (T,F) (F,T) (FF)
PwhereQ V R R R
PwhenQ Vv R \Y V
QwhereP V R R R

QwhenP \Y \ V R

Our semantics and ModelMorf agree, hooray!

In direction of m2

Reminder: P is SameValue, Q is FirstIsTrue. The invoked
relation is not top.

— ‘ (T,T) (T,F) (F,T) (FF)
PwhereQ V R R V
PwhenQ Vv R R V
QwhereP V R \Y/ V

QwhenP \Y \ V \Y,

Our semantics and ModelMorf agree except on one point.

PwhenQ on (F,T) in direction —

» Refuter challenges in SameValue with F.

» Verifier can't match, so she'd like to challenge the when
clause, FirstIsTrue.

» But to do that, she must find a valid binding of value in the
F domain, i.e., satisfying the local constraint value = true.

» She can’t, so she has no legal move, so Refuter wins.

Instantiating the QVT Ch 7 definition, should be true iff

FirstIsTrue(sl,s2) = sl.value = s2.value

But what does FirstIsTrue(s1,s2) mean? Standard doesn't
say. | say: for all valid completions of s1 ... there exists a valid
completion of s2...

(Could change the game so that choosing bindings is optional for
the challenger: that would save Verifier here, but cause other
problems.)

Trace objects and the game

Our semantics decrees the target to be OK, according to the
transformation and relative to the authoritative source, iff Verifier
has a winning strategy for the game.

What does such a winning strategy look like?

Formally, a* strategy is a sufficiently-defined partial map from
{positions where Verifier is to move} to {legal moves}. It's a
winning strategy if Verifier wins every play in which she follows it,
regardless of what Refuter does.

For transformations without when clauses, that's a set of trace
objects: given a relation, and a valid binding challenge, Verifier's
response is to pick matching bindings.

This is a bit like correspondence graph in TGGs, but not the same!

* complete, deterministic, history-free

Consistent: checkonly returns true in both directions

Thi

value="c¢"

value="d"

te2:Thing td:Thing tc1:Thing
value="c" value="d" value="¢"

Model m1

Model m2

But with no bidirectional trace objects

xc:Thing

value="c"

value="d"

_i2:Inter il:Inter
tc2:Thing td:Thing tc1:Thing
value="c" value="d" value="¢c"

Model m1

Model m2

What if we fiddle the game? (Bisimulation fashion!)

Let the player who's choosing bindings also choose which domain
to choose them from. Then the other player has to match from
the other domain.

Refuter then has a winning strategy for the previous example.

At least for transformations without when clauses, a Verifier
winning strategy would “be" a set of bidirectional trace objects.

NB this is definitely not an interpretation of the QVT spec: it's
new semantics for existing syntax. Q: is it useful? Too strong?
(Future work!)

Why use a game-theoretic approach?

Claims:

» basis for discussion of what the semantics of QVT-R should
be, because

» gives useful separation between local and global checking
» precise, without needing heavy machinery
> intuitive way to understand alternation

» winning strategy is solid evidence of result, which can be
checked independently from the means of finding it.

Non-claims:

» a free lunch of any kind

» necessarily exactly the meaning practitioners want, in current
form

Ongoing and future work

» Investigation of bisimulation-based interpretation of QVT-R,
especially, is it useful?

» Winning conditions for infinite plays: what’s sane,
implications?

» What about enforce mode? Given a Refuter winning strategy,
change one model so that Verifier has a winning strategy
instead... restrictions needed?

» Implementation — on Medini as basis, using Java version of

generic game engine from the Edinburgh Concurrency
Workbench?

