Towards a
Principle of Least Surprise
for bidirectional transformations

James Cheney, Jeremy Gibbons, James McKinna
and Perdita Stevens

Universities of Edinburgh and Oxford, UK

July 2015



Plan

©

Why do we need such a Principle?

©

Optimality: Least Change via metrics

()

Why isn't that just the right answer?

©

Reasonableness: Least Surprise
What next?

©



Model-driven development

Definition
A model is an abstract, usually graphical, representation of some
aspect of a system.



Model-driven development

Definition
A model is an abstract, usually graphical, representation of some
aspect of a system.

Definition
MDD is software development in which models are important.



Model-driven development

Definition
A model is an abstract, usually graphical, representation of some
aspect of a system.

Definition
MDD is software development in which models are important.

Motivation

Manage information overload, by separating concerns and providing
representations suitable for each set of decisions.



Model-driven development

Definition
A model is an abstract, usually graphical, representation of some
aspect of a system.

Definition
MDD is software development in which models are important.

Motivation

Manage information overload, by separating concerns and providing
representations suitable for each set of decisions.



Managing information overload means...

...avoiding distracting the expert with information that isn't
relevant to them.



Managing information overload means...

...avoiding distracting the expert with information that isn't
relevant to them.

In an ideal world, their model would contain all and only the
information that's relevant to them

and would change only because of things they need to know
anyway.



Managing information overload means...

...avoiding distracting the expert with information that isn't
relevant to them.

In an ideal world, their model would contain all and only the
information that's relevant to them

and would change only because of things they need to know
anyway.

The world is not ideal, and that's why software development is
hard.



Managing information overload means...

...avoiding distracting the expert with information that isn't
relevant to them.

In an ideal world, their model would contain all and only the
information that’s relevant to them

and would change only because of things they need to know
anyway.

The world is not ideal, and that's why software development is
hard.

Least Surprise is the whole point of MDD.



Managing information overload means...

...avoiding distracting the expert with information that isn't
relevant to them.

In an ideal world, their model would contain all and only the
information that's relevant to them

and would change only because of things they need to know
anyway.

The world is not ideal, and that's why software development is
hard.
Least Surprise is the whole point of MDD.

So we'd better get it right.



Informal idea

Meertens' formulation

The action taken by the maintainer of a constraint after a violation
should change no more than is needed to restore the constraint.

Extreme case is easy to formalise (and, usually, agree on):
Hippocraticness
If nothing needs to be changed, change nothing.



Naive approach

Let X be how much we need to change to restore the constraint.
Let Y be how much the bx actually changes.

Require Y < X.

Oh,so Y = X.

Now: how do we measure X and Y7



Metrics

Given m and m’, need to be able to say how much changed from
mto m'.

A sensible way to do this is called a metric.

Definition

A metricon Misd: M x M — R
satisfying

dm,m')=0iff m=nm'

d(m,m') = d(m’', m)
d(m,m')+d(m',m") > d(m,m")

E.g. minimal edit distance (typically).



Metric least change

Assume given:
%
o abx (R, R, R): M N,
o metrics dy, dy on M and N.
Then
Definition
R is metric-least if for all m € M and for all n,n" € N

R(m,n") = dn(n,n") > dn(n ﬁ(m n)

and dually.



Implementing metric least change

Macedo and Cunha implemented this approach, providing a new
semantics to the syntax of QVT-R.

Given consistency relation R, and models m, n, with the task to
find a new n’ consistent with m:

@ setd =0;
@ search exhaustively for consistent n’ € N at distance d from n;
@ if there are any, present them all to the user as options;

@ else, increment d and goto 2.



Problems with metric least change

@ Scalability. Clever solutions? Probably not (cf Buneman
Khanna and Tan PODS'02).

@ Usability: no easy way to ensure unique closest model, or to
allow bx programmer to specify the choice.

@ Doesn’'t compose (even where that makes sense).
@ Inflexibility (+/—?).

Can mitigate inflexibility by allowing bx programmer to choose
metrics: but hmm.



Example where inflexibility bites

M = UML models
N = test suite (in JUnit say)

R(m, n) iff every ((persistent)) class in m has a test class of the
same name in n, containing an “appropriate” set of tests for each
public operation...



Example where inflexibility bites

M = UML models
N = test suite (in JUnit say)

R(m, n) iff every ((persistent)) class in m has a test class of the
same name in n, containing an “appropriate” set of tests for each
public operation...

You modify the test class for a ((persistent)) class: int — long
throughout.



Example where inflexibility bites

M = UML models
N = test suite (in JUnit say)

R(m, n) iff every ((persistent)) class in m has a test class of the
same name in n, containing an “appropriate” set of tests for each
public operation...

You modify the test class for a ((persistent)) class: int — long
throughout.

Propagate back to UML model. What happens?

o int — long throughout?



Example where inflexibility bites

M = UML models
N = test suite (in JUnit say)

R(m, n) iff every ((persistent)) class in m has a test class of the
same name in n, containing an “appropriate” set of tests for each
public operation...

You modify the test class for a ((persistent)) class: int — long
throughout.

Propagate back to UML model. What happens?

o int — long throughout?

o remove ((persistent)) 7



Mitigation attempt 1

Use a different metric: make removing the ((persistent)) be seen as
an enormously expensive change.

But now we have a metric defined specifically for this bx.



Mitigation attempt 2

Why do we feel that removing ((persistent)) is not as cheap as it
looks?

Because it disrupts the connection between the two models: breaks
links.

It's a small change to the model, but a large change to the witness
structure explaining their consistency?



Witness structures

Definition

A witness structure is a structure whose intention is to capture
something about the relationship between the models being kept
consistent.

o Relational bx: “they’re consistent because | say so”

o TGGs: “they're consistent because this is how they are built
up together using the TGG rules”

o MDD with trace links: “they're consistent because this part of
this links to that part of that”

o QVT-R game: “they're consistent because here’s how Verifier
wins a consistency game on them”

o Or even: “they're consistent because Coq gave me this proof
that they are”.



So metric least change may yet be useful

in some settings, or when its deficiencies can be mitigated as
mentioned.

But it does not deserve to be seen as the sole Right Answer.

Back to the drawing board.



Principle of Least Surprise

or Least Astonishment, for user interface design, adapted to
language design, etc. E.g.

Saltzer and Kaashoek, via Wikipedia

People are part of the system. The design should match the user's
experience, expectations, and mental models.



Principle of Least Surprise

or Least Astonishment, for user interface design, adapted to
language design, etc. E.g.
Saltzer and Kaashoek, via Wikipedia

People are part of the system. The design should match the user's
experience, expectations, and mental models.

The essential point is not that user should always know what will
be on the next screen.
Rather, that they should seldom be surprised, i.e., taken aback.

Despite “least”, we really seek reasonable, rather than optimal,
behaviour.






OINIY,

Q>



Continuity

Definition
f:S — T is continuous at s iff

Ve >0.36 > 0.Vs' .ds(s,s’) < § = dr(f(s),f(s')) < e

We say just “f is continuous” if it is continuous at all s.



Continuity of R at (m, n)

Definition

R is continuous at (m, n) iff
Ve >0.30 >0.Vm' .dy(m,m') <é= dN(ﬁ(m, n), ﬁ(m’, n)) <e

i.e. iff ﬁ(,, n) : M — N is continuous at m.



Where do we want continuity?

Well, at the points where we want guarantees... e.g.

o Everywhere: strong continuity
o Only at consistent (m, n): weak continuity
o Something else? Where we can get it? On “good” subspace

pair?
In the history ignorant (vwb, PUTPUT) case, strong = weak.

+ Strongly (rsp. weakly) continuous bx compose, where
composition makes sense.



On good subspace pairs?



The problem with continuity

— Every function is continuous at an isolated point :-(
Variants with better overall behaviour? See paper. Holder
continuity quite promising.

Prediction: way too strong to expect it everywhere in realistic bx,
but identifying subspace pairs on which a bx is Holder continuous
may be worthwhile.



Other approaches/Future work

category theory

topology

dependent type theory (HoTT?7?)
subspaces

partiality

heuristics?

Lagrangian/Hamiltonian mechanics?

simulated annealing?



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose

2 [z




Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



Why the metric approach doesn’'t compose



