
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Functional Programming Languages for Verification Tools:
A Comparison of ML and Haskell

Martin Leucker1?, Thomas Noll2, Perdita Stevens3, Michael Weber2??

1 Department of Computer Systems, Uppsala University, Box 337, SE-75105 Uppsala, Sweden
e-mail: leucker@docs.uu.se

2 Lehrstuhl für Informatik II, RWTH Aachen, Ahornstr. 55, Aachen, Germany
e-mail: {noll,weber}@i2.informatik.rwth-aachen.de

3 School of Informatics, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
e-mail: Perdita.Stevens@ed.ac.uk

Received: October 23, 2002/ Revised version: date

Abstract. We compare Haskell with ML as program-
ming languages for verification tools, based on our ex-
perience developing the verification platform Truth in
Haskell and the Edinburgh Concurrency Workbench
(CWB) in ML. We discuss not only technical language
features but also the “worlds” of the languages, for ex-
ample, the availability of compilers, tools, and libraries.

1 Introduction

Concurrent software and hardware systems play an in-
creasing role in today’s applications. Due to the large
number of states and to the high degree of non–determin-
ism arising from the dynamic behavior of such systems,
testing is generally not sufficient to ensure the correct-
ness of their implementation. Formal specification and
verification methods are therefore becoming more and
more popular, aiming to give rigorous support for the
system design and for establishing its correctness prop-
erties, respectively (cf. [1] for an overview).

In view of the inherent complexity of formal meth-
ods it is desirable to provide the user with tool sup-
port. It is even indispensable for the design of safety-
critical concurrent systems where an ad hoc or conven-
tional software engineering approach is not justifiable.
For example, model checking is a particularly successful
automated approach to verification, in which one em-
ploys decision procedures to prove that (a model of) a
system has certain properties specified in a suitable logic.

One major concern in the development of model
checking tools and other verification tools is correctness.

? supported by European Research Training Network “Games”
?? supported by the graduate college “Software für Kommunika-

tionssysteme”

Since a verification tool is employed for verifying hard-
ware, protocols, and software, it would be useless if it
were not trustworthy. Thus, a programming language
employed for developing a verification tool should sup-
port the task of verifying the code, at least in the infor-
mal sense of satisfying oneself that the code is correct.
In general, functional languages are often considered to
provide this feature, especially if the language disallows
side effects.

Considering the broad range of functional languages
which have been designed in the past, it is surprising,
and in our view unfortunate, that there is little litera-
ture comparing different functional languages. The Pseu-
doknot benchmark paper [3] studies several implemen-
tations of functional programming languages (Haskell

and ML among them) with respect to their runtime and
memory performance, and [7] compares the module sys-
tems of Haskell and ML. However, the developer try-
ing to choose between the languages needs to be con-
cerned about a much wider class of issues, including both
technical language features and “environmental” aspects
such as the availability of libraries, documentation, sup-
port and multi-platform compilers. We did not find good
sources of help for a developer trying to choose between
the languages based on a larger collection of relevant as-
pects like this. By contrast, many comparisons of Java
with C++ are readily available.

It is unsurprising, therefore, that developers (those
who choose a functional language at all) often choose
the language most used in their institution, without se-
riously considering alternatives. The difficulty of getting
information to guide an informed choice may also con-
tribute to developers, whose workplaces do not have a
history of functional programming language use, decid-
ing against experimenting with one.

Why is there so little material to help developers
make an informed choice? Part of the reason must be
that it is very hard to do convincing comparisons of lan-



2 M. Leucker, T. Noll, P. Stevens, M. Weber: Functional Programming Languages for Verification Tools

guages without being vulnerable to the criticism that
one is not comparing like with like. We think that a fair
comparison needs to be based on real experience of peo-
ple using the languages to build real systems in the same
domain; otherwise it is almost impossible to be sure that
differences are not due to differences in the domains of
application. The systems themselves need to be broadly
comparable in size and complexity, need to be more than
toys, and should preferably have been developed and
maintained over years (since a language that makes de-
velopment easy might nevertheless encourage the devel-
opment of code which is unmaintainable). Moreover, the
domain should be one where either of the languages is
a reasonable choice, and the comparison should be done
by people with a reasonably typical level of experience in
the languages. A comparison is probably most generally
useful to developers when it is done neither by novices
in the languages compared nor by people intimately fa-
miliar with the compiler internals.

This paper recounts our experiences in using ML

and Haskell for two broadly comparable applications
in the domain of verification tools, on which the authors
have worked for some years: the Edinburgh Concurrency
Workbench (CWB), in ML, and the verification plat-
form Truth, in Haskell. The domain of verification
tools is eminently suited to the use of a statically typed
functional language such as ML and Haskell, and both
languages are popular choices in this domain. All of the
authors have accumulated considerable experience with
the languages we use, but we are not functional program-
ming researchers.

Thus our primary motivation for writing this paper
is that we believe we are in an unusually good position to
produce a comparison of Haskell with ML which may
be useful to developers choosing between the language.
A secondary motivation is to be helpful to language de-
signers and developers who work to support languages,
by providing a record of our experiences, good and bad,
with ML and Haskell.

The rest of this paper is structured as follows. Section
2 discusses the domain of verification tools, and intro-
duces the two systems. Section 3 discusses the class of
languages from which ML and Haskell are drawn, and
briefly introduces the two languages for readers who may
not be familiar with them. Sections 4 and 5 are the main
body of the paper; Section 4 compares Haskell and ML

on the basis of their technical language design features,
whereas Section 5 considers the equally important “en-
vironment” aspects. Finally, Section 6 concludes.

2 Verification tools

The domain on which we compare ML and Haskell

is that of verification tools. The term “verification tool”
covers any tool whose task it is to assist in checking
the correctness of some artefact. Usually the artefact

concerned is (an abstraction of) something produced in
the software or hardware development process.

We introduce Truth and the CWB and briefly sum-
marise their histories, before discussing the characteris-
tic features of verification tools in general.

2.1 The Edinburgh Concurrency Workbench, in ML

Work on the CWB1 began in 1986. The CWB’s key
strength is its breadth: a variety of different verification
methods are supported for several different process alge-
bras. In particular, it allows users to:

– define behaviours given either in an extended ver-
sion of Milner’s CCS (Calculus of Communicating
Systems; [5]) or in its synchronous version, SCCS,
and to perform various analyses on these behaviours,
such as analysing the state space of a given process,
or checking various semantic equivalences and pre-
orders;

– define propositions in a powerful modal logic and
check whether a given process satisfies a property
formulated in this logic;

– play Stirling-style model-checking games to under-
stand why a process does or does not satisfy a for-
mula;

– derive automatically logical formulae which distin-
guish nonequivalent processes;

– interactively simulate the behaviour of an agent, thus
guiding it through its state space in a controlled fash-
ion.

One major focus of the CWB was always research;
it was a platform which researchers (especially those
at Edinburgh) could use to experiment with new rela-
tions between processes and new algorithms. In the early
years all of these changes were retained in the main tool,
even those which had been added experimentally with-
out much consideration for the integrity of the CWB

overall. This contributed to the architectural degrada-
tion of the CWB and its increasing fragility: an im-
portant task faced by Stevens on taking over the main-
tenance of the CWB in 1994 was to reverse this pro-
cess. The current version of the CWB consists of around
25kloc in ML, plus several thousand in other languages
for various supporting utilities.

The CWB was developed in Standard ML, but vari-
ations were long maintained for several major ML com-
pilers because different compilers provided different ex-
tensions to the SML’90 standard, and especially because
they had different system build facilities. We settled on
Standard ML of New Jersey (SML/NJ) because most
users of the CWB used that compiler and the effort
in maintaining build scripts (the major point of differ-
ence) for several compilers did not seem well spent. Per-
haps we should once again target Poly/ML2, for exam-

1 http://www.dcs.ed.ac.uk/home/cwb/
2 http://www.polyml.org/



M. Leucker, T. Noll, P. Stevens, M. Weber: Functional Programming Languages for Verification Tools 3

ple, in future. This paper, however, inevitably considers
SML/NJ more than any other ML compiler. The contri-
bution made by the language to both the architectural
degradation problem and its solution are discussed later.

2.2 The verification platform Truth, in Haskell

In terms of features, Truth3 is similar to the CWB.
In its current version, it supports tableau–based model
checking for the full µ–calculus and game–based model
checking for the alternation–free subcalculus. Both op-
erate on finite transition systems, given in terms of CCS
processes. The latter can be visualized and simulated
in an interactive fashion, to help the user understand
Truth’s answers. Current development activities con-
centrate on the parallel implementation of model check-
ing on a cluster of workstations and on a specification
language compiler generator which, given the definition
of a language, automatically generates a corresponding
parser and a semantic evaluator.

Truth’s initial version dates back to 1997, and its
development could benefit a lot from the progression
made in the design of verification tools over the years. As
a consequence, its architecture is quite modular and easy
to understand, and a deep change of the module struc-
ture was not necessary so far. It now consists of approx-
imately 18kloc in Haskell. Although there are several
Haskell compilers, Truth is written for the Glasgow
Haskell Compiler4 (GHC), and since it uses some non-
standard Haskell extensions and libraries only present
in the GHC, we have not tried to port it.

Moreover Truth employs the parser generator
Happy5 and many of the available Haskell libraries,
and it integrates several standalone systems such as the
daVinci6 graph visualization tool and the GraphViz
package7. Furthermore it uses existing C and Java li-
braries to provide functionality such as textual and
graphical user interfaces and network communication,
comprising approximately 13000 lines of code. It is one
of the bigger real–world applications registered in the
official Haskell pages8. It is worth mentioning that
Truth is one of the few tools listed there which was
developed using but not for functional programming.

2.3 Characteristics of verification tools in general

The peculiarities of the verification tool domain from the
point of view of software engineering were considered by
Stevens in [9]. Here we briefly summarise, and then focus
on the implications for language choice.

3 http://www-i2.informatik.rwth-aachen.de/Research/Truth/
4 http://www.haskell.org/ghc/
5 http://haskell.cs.yale.edu/happy/
6 http://www.davinci-presenter.de/
7 http://www.research.att.com/sw/tools/graphviz/
8 http://www.haskell.org/practice.html

Verification tools answer precisely defined questions
about precisely defined systems. Thus it is compara-
tively easy to understand what it means for the tool’s
behaviour to be correct. The downside is that certain
classes of bugs are unacceptable in a verification tool;
semantic correctness is vital. Thus any language fea-
tures supporting the development of correct programs
are highly desirable.

A further characteristic is that verification tools tend
to be developed in research environments, where it is eas-
ier to be recognised for novel theoretical contributions,
or new applications of theory, than for the application
of “best practice” in software engineering, which is likely
to be discounted because it is not new. Anything that
speeds up development is an advantage, as it enables the
developers to spend a higher proportion of their time on
the work which is most valued. In such environments,
it is also difficult to justify spending large amounts of
effort on academically uninteresting aspects of the tool,
such as a GUI, or on “invisible” areas such as testing(!),
documentation, and ensuring portability. Nevertheless,
the usability and ultimately success of the tool depends
heavily on such aspects. Therefore those planning to de-
velop verification tools will do well to choose a language
in which professional results can be achieved with a min-
imum of effort.

It is perhaps instructive to note that in some cases,
the same considerations may apply to those developing
languages and their associated tools.

3 The space of programming languages

Clearly Haskell and ML, the languages of Truth and
the CWB, have a great deal in common: both are ba-
sically functional languages, and both have static type
systems which are strong in the sense that a well-typed
program will be free of certain classes of run-time er-
rors. Moreover, both are minority languages, with their
origins in academia. What is the significance of these
features for verification tools?

The functional paradigm Essentially, a functional pro-
gramming language is one in which the natural pro-
gramming style includes treating functions as first-class
concepts. For example, one expects to write higher or-
der functions ; that is, functions which take other func-
tions as arguments. There is, however, no universally
agreed definition of what it is to be a functional program-
ming language, although no reasonable definition would
exclude either ML or Haskell. The difficulty stems
from the impure nature of most languages, which stems
in turn from the need to permit the use of whichever
paradigm is most appropriate for a particular problem.
It is possible, for example, to write higher order functions
in C; the reason why C is not included in definitions of
functional programming language is that this is not the
natural, normal way to solve problems in C.



4 M. Leucker, T. Noll, P. Stevens, M. Weber: Functional Programming Languages for Verification Tools

The main reason, in our view, for using a functional
language for a verification tool is that the paradigm
is a good match for the domain, as the most impor-
tant concepts in the domain tend to be algorithms. It is
often claimed that programs written in functional lan-
guages are easier to reason about, and hence are more
likely to be correct, than those in one of the impera-
tive paradigms (procedural or object oriented). The the-
oretical concept on which the claim rests is referential
transparency, essentially the fact that identifiers are used
for values, rather than for references whose values may
change. Where this property holds, it can indeed facili-
tate reasoning, at least in small piece of code. However,
we have found that in practice, building a verification
tool in a way which provides reasonable modularity and
efficiency necessitates the use of “impure” features of the
languages, so that referential transparency is lost.

Today the most obvious alternative to the functional
paradigm for a verification tool writer is the object ori-
ented paradigm. The main argument in favour of the
functional paradigm is that the most important concepts
in the domain tend to be algorithms, rather than objects.
In this respect the verification tool domain differs from
most business domains, and the use of a less popular lan-
guage may be justified. However, as we shall see, being
out of the mainstream carries disadvantages sufficient to
give one pause.

Static typing In a statically typed language, the com-
piler carries out certain checks to ensure that the pro-
gram is free from certain type errors which might oth-
erwise cause incorrect behaviour at runtime. This does
not, of course, ensure that the program is free of errors,
but it can enable errors to be caught early and easily cor-
rected, thus speeding up the development process. Static
typing is often criticised for being inflexible; but when
such criticisms are investigated, they turn out to be crit-
icisms of the inflexibility of a particular type system.
We argue that a coherent understanding of a solution
to a problem includes an understanding of the types of
the entities involved; if these fit the type system of the
language concerned, it is hard to see how having errors
caught by the compiler can fail to be a benefit, although
one could still argue about the size of the benefit.

It is clear from the successes achieved by certain
groups working with dynamically typed languages such
as Erlang (in the functional world) and Smalltalk (in the
object oriented world) that it is possible to write com-
plex, correct software without static typing. However,
none of the authors would willingly give up the benefits
of static typing. We will discuss particular features of
the type systems of ML and Haskell below.

3.1 ML

ML ([6]) is an essentially functional language in the
sense discussed above. By “essentially” we mean that

it is not a pure functional language: for example, refer-
ences are permitted. It originated at Edinburgh in the
late 1970s. A major rewrite of the language definition re-
sulted in the new definition of Standard ML, sometimes
referred to as ML97; this is what we shall mean by ML

in the rest of this paper. The clarification is needed be-
cause there is a family of ML-like languages, including
most notably Caml and its variants such as O’Caml.

Technically, the revision has been a substantial im-
provement; but it has led, temporarily at least, to dif-
ficulties of tools and libraries not all being updated at
once; old ML programs cannot be compiled by new com-
pilers and vice versa.

A variety of compilers is available for Standard ML;
by far the most widely used is Standard ML of New Jer-
sey (SML-NJ), and this is the only compiler supported
by the CWB.

The definition of Standard ML includes the Standard
Basis library, providing such things as string manipula-
tion, operating system interfaces and basic data struc-
tures. SML-NJ comes with a more extensive library.

3.2 Haskell

Haskell is a purely functional programming language
([8]). The current standard is Haskell98 which fixes the
syntax and semantics as well as a large set of standard
libraries.

Until recently the embedding of input and output op-
erations, which have to be considered as side effects, in
purely functional programming languages was generally
poor. Monadic I/O is a very elegant approach to over-
come this problem ([11]). Haskell supports this con-
cept and supplies versatile I/O libraries offering excep-
tion handling and file manipulation operations, which
were of great help in building a user–friendly and reli-
able tool.

4 Comparison of language design features

We begin by considering and comparing the more tech-
nical aspects of ML and Haskell, before going on to
consider non-technical questions in the next section.

4.1 Typing

As semantic correctness is crucial to any verification
tool, it is natural to believe that a strong static type
system, enabling a large class of errors to be caught at
compile time, is a good thing in a language for verifica-
tion tools. Our experience supports this; although ver-
ification tools have been written in Lisp, for example,
we would not like to give up the static typing provided
by both ML and Haskell. To go further, we consider



M. Leucker, T. Noll, P. Stevens, M. Weber: Functional Programming Languages for Verification Tools 5

two related features which Haskell and ML have in
common: parametric polymorphism and type inference.

Extensive type inference is convenient especially in
functional programming where identifiers often have
complex higher-order types. However, it has serious
drawbacks for maintainability of code. The human
reader of code needs to understand the types involved,
and it is frustrating to know that the compiler has
worked out information which is not available to the
reader. The natural response is that good programming
practice is then to include type annotations; but we
have found this hard to put into practice. An annoy-
ance is that the syntax of the languages and the pres-
ence of identifiers with complex types sometimes makes
this awkward (ML) or impossible (Haskell). A more
serious point is that if type annotations are included
which are descriptive enough to be helpful, their pres-
ence hinders reuse by parametric polymorphism. There
is a tension between trying to enable code reuse on the
one hand, and on the other hand trying to make code
understandable and trying to maintain appropriate en-
capsulation barriers. We find that these last two, though
different, often go together: one encapsulates the defi-
nition of an important type together with appropriate
functions for manipulating it, and then uses the new
type name in type annotations to elucidate the code.
However, in doing so one loses the power of parametric
polymorphism for code reuse in clients of this new type,
because clients cannot see the structure of the type.

For example, processes in the process calculi we work
with can have restrictions applied to them. A restriction
is conveniently implemented as a list of actions, but cer-
tain invariants need to be maintained. If we allow clients
to see that a restriction is a list of actions, then when
they manipulate processes they can use the standard list
functions on the restriction, but we cannot easily enforce
the invariants. On the other hand if we use encapsula-
tion to make available only a type restriction so that we
can enforce the invariants we have to provide all nec-
essary functions for manipulating this type. This is not
unreasonable: it is the same work, for example, that we
would have to do if we worked in an object oriented lan-
guage and created a class Restriction. However, when we
have a variety of slightly different kinds of restriction, we
have to implement the manipulating functions afresh ev-
ery time; to gain encapsulation we have lost parametric
polymorphism as a reuse mechanism, and we do not have
inheritance available to us as an alternative mechanism.
This kind of situation arises very frequently in both the
CWB and Truth, because we write code to deal with
variants of process algebras and logics and with vari-
ously processed versions of them. An additional issue in
ML is that it is sometimes difficult to decide whether a
conceptual type should be implemented at the module
level or only at the core level; in the CWB we generally
resolve this by using both but not revealing that deci-
sion outside the module where it is made, so that, for

example, the signature for processes exports only a type
restriction whereas an implementation of that signature
typically builds a structure Restriction, exporting a type
from the content of that structure.

Further, we find that the powerful type systems of
ML and Haskell are a mixed blessing, often leading
to complex type errors which are understandable only
to people who are familiar with the subtleties of the re-
spective type system. Recent work on more informative
error messages, such as [4], is to be welcomed, but has
yet to make a difference to the compilers. Furthermore,
an interactive type analyzer would be desirable, a tool
which, requested by the user, would visualize the types
of certain subexpressions. In the meantime, our advice is
that there is little to choose between ML and Haskell

in this respect.

4.2 Strictness vs. laziness

The most obvious difference between ML and Haskell

is that ML is strict whilst Haskell is lazy. For dis-
cussion of the concepts in general see for example [10].
Basically, laziness means that values are only computed
on demand, allowing the implementation of infinite data
structures. In contrast, strictness refers to the fact that
e.g. the arguments of a function call have to be evalu-
ated before executing the call, no matter whether they
are required or not.

In the context of verification tools, laziness seems
to be an appealing feature because one might hope to
get “for free” certain “on-the-fly” verification techniques
that normally have to be worked out in each special case.
For example, consider a class of verification questions
concerning a system, such as the model-checking prob-
lem “does this system satisfy this property”. To answer
some questions in the class it will be necessary to calcu-
late the entire state space of the system. For others, only
a small part of the state space, perhaps that reachable
within three transitions from the starting state, will be
relevant. A global algorithm is one which always calcu-
lates the whole state space; a local one does not. Local
algorithms are generally harder to design and verify than
global ones, and often have poorer worst-case complex-
ity, though in practice they may perform much better.
One might hope to be able to get a local algorithm from
a global one “for free” using laziness, because the code
for calculating certain parts of the state space would sim-
ply never be evaluated if its results were not called for.
In practice however the Truth team found that one has
to implement the algorithm generating the state space
carefully in order to guarantee the desired behaviour.
For example, the use of monads (cf. Section 4.3) or of
accumulator techniques can easily destroy the on-the-fly
property. Altogether the effort which is required to pre-
serve the locality of a lazily evaluated, global algorithm
often corresponds to the design of an algorithm which is
local by nature.



6 M. Leucker, T. Noll, P. Stevens, M. Weber: Functional Programming Languages for Verification Tools

Summarizing, lazy evaluation is an attractive feature,
but the Truth team would have liked a flexible mecha-
nism with which to specify parts of the program which
should be evaluated eagerly or lazily.

4.3 Imperative features

Both the Truth and the CWB team have found imper-
ative features to be essential. Sometimes the concern is
efficiency, but more often it is understandability: many
of the algorithms we wish to implement are conceived
imperatively and in such cases to implement them func-
tionally makes the implementation more difficult to read
and hence more likely to contain errors. Prominent ex-
amples of algorithms with an imperative character are
graph algorithms, which play an important rôle in tools
such as ours which deal with transition systems.

Here ML scores by providing imperative features in
the core language in a reasonable and powerful way, al-
though they can be syntactically awkward. I/O is sup-
ported by the Standard Basis Library. Haskell uses
monads for destructive updates and I/O; they add a
restricted form of stateful computation to a pure lan-
guage, retaining referential transparency ([11]). The dis-
advantage is that programs become more complicated.
Also, if imperative elements of a given application were
not taken into account during its design but turn out
to be necessary later on, often major parts have to be
redesigned or (at least) reimplemented, especially be-
cause types change significantly. This is clearly undesir-
able from a software engineering or economical point of
view. Indeed for certain parts of the Truth system a re-
design turned out to be necessary in the past, mostly in
order to implement more efficient versions of algorithms
by introducing imperative constructs. The Truth team
considers this point as one of the biggest drawbacks of
the purely functional paradigm as followed by Haskell.

4.4 Architecture support

The architecture of a system makes a vital contribution
to its correctness. We hope to study module systems in
this context, building on [7], in future; in this paper we
can only indicate the main issues.

A Haskell module defines a collection of values,
datatypes, type synonyms, classes, etc., as well as their
import/export relationship with other modules. Over-
loaded functions are provided in a structured way in the
form of type classes, which can be thought of as families
of types (or more generally as families of tuples of types)
whose elements are called instances of the class. In the
instantiation the definitions of the overloaded operations
are given.

In Standard ML, structures provide the main name-
space management mechanism; they may contain sub-
structures, functions, values, types, etc. A structure may

be coded directly, or produced by the application of a
functor, which may be thought of as a generic or pa-
rameterized structure. The programmer may define sig-
natures which act as the types for structures; for ex-
ample, a functor may be defined to take, as argument,
any structure matching a given signature. The mod-
ule system is separate from the core language; one can-
not, for example, apply a functor conditionally. Whilst
this keeps the language definition clean, in the CWB it
has often caused problems leading to code duplication.
The changes made to ML in SML’97 are welcome; the
elimination of structure sharing and the introduction of
“where” clauses have solved several long-standing prob-
lems for the CWB.

A basic facility which is desirable in a module sys-
tem is that it should be possible to define an interface to
a module separately from the module itself. This helps
developers to understand the system, as they can read
interfaces to modules without being distracted by im-
plementation information. We also want to be able to
apply the same interface to several modules and to pro-
vide several interfaces to the same module. In both the
CWB and Truth this need arises, for example, because
we often work with several variants of a process algebra,
logic or algorithm which share an interface. We want the
compiler to do the work of making sure that the modules
stay consistent, and we want to avoid duplicating code.
ML’s signatures support this way of working reasonably
well, although not without problems. The Truth team
has found that Haskell does not support this situation
so well: inside the module export list, entities cannot be
annotated with types, so a common practice is to add
them in comments. However, this is error prone, since
there is no way for the compiler to enforce their correct-
ness or check their consistency with the implementation
in the module body.

We feel that ML’s architectural features are better
suited than Haskell’s to our purposes; neither is ideal,
however, and this seems an interesting area for future
study, especially as we do not think that the class and
package systems of C++ or Java would be ideal either.

4.5 Exceptions

The CWB used to make heavy use of exceptions as a
control flow mechanism. This led to correctness prob-
lems because the compiler cannot check whether excep-
tions are always handled or not. Thus a bug could lead
to an exception rising to the top level, where nothing
sensible could be done to handle it. To make matters
worse in SML’90, although one could write a handler
that would catch all exceptions, one could not then tell
which exception was actually being handled. Therefore
such bugs would result in a message to the user of the
CWB along the lines of “Sorry, an ML exception has
been raised. This is a bug: please report it.” The excep-
tion mechanism has been improved in SML’97 compared



M. Leucker, T. Noll, P. Stevens, M. Weber: Functional Programming Languages for Verification Tools 7

with SML’90: it is now possible to interrogate an excep-
tion for its identity, which at least enables the CWB to
give a fuller error message which is useful for debugging.

Still, in a language with type safety as a strength, it is
a pity to use a programming style in which the program-
mer cannot be certain that all exceptions are handled.
From the point of view of the user of a verification tool, it
is not very much better for the application to terminate
because of an unhandled exception than it would have
been for it to terminate because of a run-time type error.
Therefore the CWB now uses exceptions in a more dis-
ciplined way which seems to work well. A small number
of specified exceptions (corresponding to such things as
“error in user input”, “assertion violated”, etc.) are al-
lowed to rise to the top level and are individually handled
there. All other exceptions are kept within small pieces
of code (e.g., within one ML module) and in each case
the programmer verifies by eye that the exception can-
not escape. Because the latter is hard work, exceptions
are only used where the alternative is really painful.

The Truth team found that exceptions interacted
badly with laziness: as a rather disturbing effect, partial
evaluation enables exceptions to escape from an enclos-
ing exception handler. In order to get the exceptions
actually raised inside the handler, initially the Truth

team had to resort to code like if x==x then x else x

to enforce the evaluation of x at the right time. Recently,
better ways to trigger full evaluation have been pro-
vided (deepSeq $! x), but they are non-standard and of
course destroy laziness. We think it would be much more
natural to avoid situations of this kind by adopting strict
rather than lazy evaluation as the standard strategy in
the language. Laziness, which is a very costly feature,
could then be provided upon request, using annotations
of the function and constructor symbols.

We have often seen programming languages com-
pared on the basis of how many lines of code it takes
to implement some piece of functionality. We consider
this a poor metric. The length of a piece of code is not
well correlated either with the time it takes to write it or
with the time it takes to understand it; a short piece of
code may well be harder to write and to maintain than
a longer one. This is why we have not tried to compare
ML and Haskell on this point.

5 Comparison of non-language design features

5.1 The available compilers and their characteristics

There are now three main freely available SML’97 com-
pilers, SML/NJ, Poly/ML and Moscow ML. (Harlequin
MLWorks ceased to be available when Harlequin was
bought: there was hope that it might become open
source, but this now appears unlikely.) SML/NJ can now
produce native code for many platforms, which is impor-
tant for a widely-distributed verification tool. However,

it needs a third-party utility to produce stand-alone ap-
plications, and even then there is a problem with running
the application from outside its directory. This is hard to
explain to users of the CWB and causes embarrassment.

For Haskell too, three compilers are available, all of
them freely: NHC98, HBC, and GHC. For Truth, only
GHC was considered feature-complete enough; it also
provides some extensions to the Haskell98 language
which have proven helpful, for example multi-parameter
classes and existential types.

5.2 Libraries and associated tools

Good libraries and tools can help to ensure correctness
(e.g. because well-used libraries have been debugged by
others) and can cut down development time. We consider
and compare what is available for Haskell and for ML.

General purpose libraries Both Haskell and ML come
along with standard libraries specified alongside the
language. SML’97 defines the Standard Basis Library9

(ML97SBL); Haskell98’s libraries are described in the
Library Report10 (H98LR). Broadly similar, these pro-
vide basic data structures, interface to the operating sys-
tem etc. Both GHC and SML/NJ ship with some extra,
non-standard libraries.

GUI libraries There is an X Window System toolkit,
eXene11, written in Concurrent ML, though for a long
time this was apparently not usable with SML’97 (be-
cause of a signal-handling bug, fixed more recently than
the last major CWB changes). Research projects have
provided portable GUI library facilities for use with
Standard ML, such as sml tk12. Thus one can imple-
ment a GUI in ML; but really good high-level toolkits
are still lacking. The CWB has made no serious attempt
to do this. For Haskell too, some bindings for common
GUI toolkits are available, but at the time GUI support
was added to Truth, none of them was regarded as sta-
ble or feature-complete enough to be usable for what
was planned. In the end, the process simulation GUI for
Truth was written in Java and was interfaced to the
Haskell part via Unix pipes. (The CWB followed a
similar path in a student project, as yet unreleased.)

Associated tools A debugger is invaluable in program
development, especially when experimenting with ver-
ification algorithms which may contain bugs. Unfor-
tunately, writing debuggers for functional languages
turned out to be harder than for imperative languages
like C. This is even more true for a lazily evaluated lan-
guage like Haskell, where the inspection of a value

9 http://cm.bell-labs.com/cm/cs/what/smlnj/doc/basis/
10 http://www.haskell.org/definition/
11 http://cm.bell-labs.com/cm/cs/who/jhr/sml/eXene/
12 http://www.informatik.uni-bremen.de/~cxl/sml_tk/



8 M. Leucker, T. Noll, P. Stevens, M. Weber: Functional Programming Languages for Verification Tools

would sometimes change the evaluation order. Never-
theless there have been made some attempts in this di-
rection, mostly resulting in so-called tracers (like Freya,
Hood, or Hat), which can record program runs for later
analysis. None of them were used during Truth devel-
opment, because they were either not available at that
time, or did not support some of the GHC features used
in Truth. There is no debugger available for SML/NJ.
There is, however, a debugger for Poly/ML, which is a
welcome development. We have not yet used it.

There is a lexer (ML-Lex) and a parser genera-
tor (ML-Yacc) for ML. These were long unavailable in
SML’97 versions, but do now seem to work (see below re
documentation). The CWB uses ML-Lex but does not
use ML-Yacc. At a very early stage a hand-built parser
was produced, and by the time the major reengineering
work was done on the CWB its syntax (perhaps unfor-
tunately, but understandably) included features which
were not supported by ML-Yacc, so that to move to ML-
Yacc at that point would have involved a user-visible
syntax change. This is an example of the problems that
can arise when a suitable third-party component is not
available at the right moment; users may not have the
option of adopting it later. As mentioned, Truth uses
the Happy parser generator.

Overall there is little to choose between Haskell

and ML in this category, but both suffer from being mi-
nority languages. There are few providers of libraries and
tools, and key developers are often more concerned with
compilers. This is understandable, but to us libraries and
tools are just as important.

5.3 Documentation and other sources of help

Famously, Standard ML has a formal specification [6],
but this is impenetrable to most programmers. Fortu-
nately there are also several accessible books and tu-
torials available. The official specification of Haskell

is given by the Haskell98 Language Report13 which
defines the syntax of Haskell programs and gives an
informal abstract semantics. For such a technical doc-
ument it contains much plain text and the general im-
pression of local Haskell developers was that it is quite
readable. On the other hand, as was noted elsewhere14:
“The informal specification in the Haskell report leaves
too much room for confusion and misinterpretation. This
leads to genuine discrepancies between implementations,
as many subscribers to the Haskell mailing list will
have seen.”

Regarding the compilers’ and associated tools’ docu-
mentation, the overall impression of the authors is that
GHC’s documentation is slightly better than that of
SML/NJ. (The ML-Lex documentation has not been
updated for SML’97, for example.) This has not always

13 http://www.haskell.org/onlinereport/
14 http://www.cse.ogi.edu/~mpj/thih/

been the case, but the GHC developers have improved
the documentation quite a lot in the recent past.

In both cases documentation for libraries is patchy,
especially in the case of compiler-specific libraries, where
it sometimes happens that the programmer must con-
sult the source code to get more information than the
signature of a function. The H98LR and the ML97SBL
are better documented. From 1997 to 2001 there was no
complete and up-to-date documentation of the latter,
which was a serious problem. Now, however, an updated
web page is available; the documentation will appear in
book form [2] in 2003, which is a welcome development.
The CWB and Truth teams each had the impression
initially that the other’s language’s libraries were better
documented: this may reflect that one notices faults only
on close acquaintance. A plus for Haskell is that the
GHC library documentation has a consistent history of
being frequently updated and improved.

Moving from documents to people as sources of
help, we have found the newsgroups comp.lang.ml and
comp.lang.functional and the GHC mailing lists to be
useful. Naturally it is easier to get help with problems
which can be described briefly. When we have needed
help with, for example, making architectural decisions,
local language experts have been invaluable; this is some-
thing that developers should bear in mind.

Last but not least the home pages of Standard ML

of New Jersey15 and of Haskell16 provide useful collec-
tions of links and references to other resources.

5.4 Foreign function interfaces

We have made no serious attempt to bind C and ML

code within the CWB, because the Standard ML foreign
function interfaces were perceived (and experienced in a
student project) as hard to use and inefficient. Matthias
Blume’s new “NLFFI” foreign-function interface may
well change the situation.

The foreign function interface in Haskell has under-
gone a major redesign and is now quite usable. Truth

has been extended by a parallel model checking algo-
rithm, which uses the FFI layer to call C functions from
the MPICH resp. LAM libraries, both well-known imple-
mentations of the Message Passing Interface standard.
For this application the marshalling required to convert
between Haskell and C data formats turned out to
be very inefficient, however. Another problem was the
instability of the FFI interface at the time the Truth

team were using it: it changed rapidly between releases of
GHC. The Truth team made extraordinary use of pre-
processor directives and autoconf magic in an attempt
to allow Truth to support many compiler versions, but
were eventually forced to give up.

15 http://cm.bell-labs.com/cm/cs/what/smlnj/
16 http://www.haskell.org/



M. Leucker, T. Noll, P. Stevens, M. Weber: Functional Programming Languages for Verification Tools 9

5.5 Stability of languages and their implementations

The current stable version of Haskell is Haskell98,
dating from 1997. This is the fifth major version of the
language definition (the next will be Haskell 2 !). Com-
pilers, of course, provide the effective definition of the
language. There have been many changes in what GHC
supports (e.g. multi-parameter classes, implicit parame-
ters). Not all changes to extensions have been backwards
compatible, which is inconvenient for programmers who
need those extensions.

Regarding the stability of Haskell implementations,
only GHC has been thoroughly examined, since the other
implementations have been ruled out by other issues, as
stated before. GHC is under steady development and
the quality of released versions differs greatly. Some are
quite stable, but for others patchlevel releases have to
be made quickly to fix the worst bugs. Unsurprisingly
bugs often accompany new features. In fairness, bugs are
fixed promptly by the GHC developers once they are re-
ported to the relevant mailing list. However, faced with
a show stopper, an application programmer must choose
between waiting for an official release of GHC including
a fix, or becoming expert in building the compiler it-
self, which is non-trivial, time consuming, and will not
further his/her aims.

Standard ML was subject to a major revision, from
ML’90 to ML’97. The SML/NJ compiler has undergone
many releases, but now seems fairly stable. As men-
tioned, tools and libraries tend to lag. The ML2000
project intended to develop a future version of ML. Lit-
tle has been heard of the project recently and many of
its early ideas have been incorporated in O’Caml. We
believe that SML’97 will increase, rather than decrease,
in stability over the next few years.

5.6 Performance

This is a controversial topic, but it is an important one
for developers of verification tools. Both speed and space
usage are important, with space usage often being more
important, as the amount of memory used by a verifi-
cation is normally the limiting factor. Our experience
with both ML and Haskell suggests that performance
is particularly poor with respect to memory usage. Also,
as noted, the key feature of Haskell, lazy evaluation,
comes at a high cost.

6 Conclusion

There have been positive and negative aspects to both
our sets of experiences with Haskell and ML, as there
would doubtless have been with whatever language we
had chosen. Overall, we consider Standard ML to be a
slightly better choice for our kind of application than

Haskell, more because of a more stable environment
of supporting tools than because of language features.
Of course, there are many alternatives including other
functional languages of which we have less experience;
O’Caml might be a strong candidate. However, it turned
out in our discussions that none of us were enthusiastic
about the idea of using a functional language for a fu-
ture verification tool, because of their impoverished envi-
ronments compared with mainstream programming lan-
guages. Our conclusion is that if/when we develop new
verification tools, these will be written in “a Java-ready
subset of C++”. That is, we would prefer to be writ-
ing in Java, but at present this appears premature for
performance reasons. We would write therefore in C++,
trying to avoid using features (such as multiple inheri-
tance, non-virtual functions, “friends”) which cannot be
readily translated into Java.

We hope that reporting our experience using major
functional languages will help the community to improve
such languages and their worlds in future.

References

1. Edmund M. Clarke and Jeanette M. Wing. Formal meth-
ods: State of the art and future directions. ACM Com-
puting Surveys, 28(4):626–643, December 1996.

2. Emden R. Gansner and John H. Reppy. The Standard
ML Basis Manual. Cambridge University Press, Septem-
ber 2003. To appear.

3. Pieter H. Hartel et al. Benchmarking implementa-
tions of functional languages with ‘Pseudoknot’, a float-
intensive benchmark. Journal of Functional Program-
ming, 6(4):621–655, July 1996.

4. Bruce McAdam. Repairing Type Errors in Functional
Programs. PhD thesis, Division of Informatics, Univer-
sity of Edinburgh, 2002.

5. Robin Milner. Communication and Concurrency. In-
ternational Series in Computer Science. Prentice–Hall,
1989.

6. Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition of Standard ML (Revised).
The MIT Press, 1997.

7. Jan Nicklisch and Simon L. Peyton Jones. An Explo-
ration of Modular Programs. In Glasgow Workshop on
Functional Programming, July 1996.

8. John Peterson, Kevin Hammond, et al. Report on
the programming language Haskell, a non-strict purely-
functional programming language, version 1.3. Technical
report, Yale University, May 1996.

9. Perdita Stevens. A verification tool developer’s vade
mecum. Software Tools for Technology Transfer, 2(2):89–
94, 1999.

10. Philip Wadler. Lazy versus strict. ACM Computing Sur-
veys, 28(2):318–320, June 1996.

11. Philip Wadler. How to declare an imperative. ACM
Computing Surveys, 29(3):240–263, September 1997.


