
Bidirectional model transformations in QVT:
semantic issues and open questions

Perdita Stevens?

School of Informatics, University of Edinburgh

Abstract. We consider the OMG’s Queries, Views and Transforma-
tions (QVT) standard as applied to the specification of bidirectional
transformations between models. We discuss what is meant by bidirec-
tional transformations, and the model-driven development scenarios in
which they are needed. We analyse the fundamental requirements on
tools which support such transformations, and discuss some semantic
issues which arise. We argue that a considerable amount of basic re-
search is needed before suitable tools will be fully realisable, and suggest
directions for this future research.

Keywords: bidirectional model transformation, QVT

1 Introduction

The central idea of the OMG’s Model Driven Architecture is that human intelli-
gence should be used to develop models, not programs. Routine work should be,
as far as possible, delegated to tools: the human developer’s intelligence should be
used to do what tools cannot. To this end, it is envisaged that a single platform
independent model (PIM) might be created and transformed, automatically,
into various platform specific models (PSMs) by the systematic application of
understanding concerning how applications are best implemented on each spe-
cific platform. The OMG’s Queries, Views and Transformations (QVT) standard
[12] defines languages in which such transformations can be written.

In this paper we will discuss bidirectional transformations, focusing on basic
requirements which such transformations should satisfy.

The structure of the paper is as follows. In the remainder of this section, we
motivate bidirectional transformation, and especially, the need for non-bijective
bidirectional transformations; we then discuss related work. Section 2 briefly
summarises the most relevant aspects of the QVT standard. Section 3 discusses
key semantic issues that arise. Section 4 proposes and motivates a framework
and a definition of “coherent transformation”. Finally Section 5 concludes.

In order to justify the considerable cost of developing a model transformation,
it should ideally be reused; perhaps a vendor might sell the same transformation
to many customers. However, in practice a transformation will usually have to
be adapted to the needs of a particular application. Similarly, whilst we might

? Email: perdita@inf.ed.ac.uk. Fax: +44 131 667 7209



like to argue that only the PIM would ever need to be modified during develop-
ment, with model transformation being treated like compilation, the transformed
model never being directly edited, nevertheless in practice it will be necessary
for developers to modify both the source and the target models of a transforma-
tion and propagate changes in both directions. The interesting albeit unfinished
document [14] makes these and other points, emphasising especially that bidi-
rectional transformations are a key user requirement on QVT, and that ease of
use of the transformation language is another key requirement.

Even in circumstances where it is in principle possible to make every change
in a single source model, and roll changes down to target models by reapplying
unidirectional transformations, in practice this is not desirable for a number of
reasons. A human reason is that different developers are familiar with different
models, and even different modelling languages. Developers are less likely to
make mistakes if they change models they are comfortable with. A technical
reason is that some changes are most simply expressed in the vocabulary, or
with respect to the structure, of one model. For example, a single change to
one model might correspond, semantically, to a family of related changes in the
other.

Given the need for transformations to be applied in both directions, there are
two possible approaches: write two separate transformations in any convenient
language, one in each direction and ensure “by hand” that they are consistent, or
use a language in which one expression can be read as a transformation in either
direction. The second is very much preferable, because the checking required
to ensure consistency of two separate transformations is hard, error-prone, and
likely to cause a maintenance problem in which one direction is updated and the
other not, leaving them inconsistent. QVT Relational takes this second approach:
a transformation written in QVT Relational is intended to be able to be read
as a specification of a relation which should hold between two models, or as a
transformation function in either direction.

1.1 Bidirectional versus bijective transformations

A point which is vital for the reader to understand is that bidirectional trans-
formations need not be bijective. A transformation between metamodels M and
N given by a relation R is bijective if for every model m conforming to M there
exists exactly one model n conforming to N such that m and n are related by R,
and vice versa (for every model n conforming to N there exists exactly one ...).
This is an important special case because there is then no choice about what
the transformation must do: given a source model, it must return the unique
target model which is correctly related to the source. Ideally, the developer writ-
ing a bijective transformation does not have to concern herself with how models
should be transformed: it should suffice to specify the relation, which will in fact
be a bijective function. (In practice, depending on exactly how the relation is ex-
pressed, it might be far from trivial for a tool to extract the functions, however.)
Modulo information encoded in the transformation itself, both source and target
models contain exactly the same information; they just present it differently. The



classic example in the QVT standard of transformation between a UML class
diagram and a database schema is a case where both models contain almost (but
not quite) the same information, so it happens not to be a clear illustration of
the inadequacy of bijective transformations. More realistically we might express
the requirement as the synchronisation of a full UML model, including dynamic
diagrams, with a database schema, which makes it obvious that there will be
many UML models which might be related to a given schema. More generally,
bijective transformations are the exception rather than the rule: the fact that one
model contains information not represented in the other is part of the reason for
having separate models. The QVT standard [12] is somewhat ambivalent about
whether it intends all bidirectional QVT transformations to be bijective. On the
one hand, the requirements of MDD clearly imply that it should be possible
to write non-bijective transformations (see also [14]): for example, in general,
the development of a PSM will involve the addition of information concerning
design decisions on a particular platform. On the other hand, it is technically a
consequence of statements made in the QVT Relations chapter that all “valid”
transformations expressed in that language must be bijective, as we will show
below. We take the latter to be a bug in the document, or at least, a restriction
which needs to be relaxed for the promise of MDD to be fully realised.

1.2 Related work

In the context of model transformations, almost all formal work on bidirectional
transformations is based on graph grammars, especially triple graph grammars
(TGGs) as introduced by Schürr (see, for example, [7]). Indeed, the definition
of the QVT core language was clearly influenced by TGGs. A master’s thesis
by Greenyer [4] studies the relationship between QVT (chiefly QVT core) and
TGGs, defining a translation from (a simplified subset of) QVT core into a
version of TGGs that can be input into a TGG tool. More broadly, the field of
model transformations using graph transformation is very active, with several
groups working and tools implemented. We mention in particular [8, 13]. Most
recently, the paper [2] by Ehrig et al. addresses questions about the circumstances
in which a set of TGG rules can indeed be used for forward and backward
transformations which are information preserving in a certain technical sense. It
is future work to relate our approach to TGGs.

In this context, it may seem foolhardy to write a paper which approaches
semantic issues in bidirectional model transformations from first principles. How-
ever, there is currently a wide gap between what is desired for the success of MDD
and what is known to be soundly supportable by graph transformations; the use
of QVT-style bidirectional transformations has not spread fast, despite the early
availability of a few tools, partly (we think) because of uncertainty among users
over fundamental semantic issues; and moreover, there is a large body of quite
different work from which we may hope to gain important insights. Here we give
a few pointers.

Benjamin Pierce and colleagues in the Harmony group have explored bidirec-
tional transformations extensively in the context of trees [3], and more recently



in the context of relational databases [1]. In their framework, a lens, or bidirec-
tional transformation, is a pair of functions (a “get” function and a “putback”
function) which are required to satisfy certain properties to ensure their coher-
ence. They define a number of primitive lenses, and combinators with which to
build more complex lenses. Thus, they define a programming language operating
on trees in which a program can be read either forwards or backwards. Coherence
of the forward and backward readings of the program follows from properties of
the primitives and combinators. Their framework is asymmetric, however: their
forward transformation is always a function on the source model only, which,
in conjunction with their coherence conditions, implies that the target model is
always an abstraction of the source model: it contains less information. This has
advantages and disadvantages. It is insufficiently flexible to serve as a framework
for MDA-style model transformations in general, but the restriction permits cer-
tain constructs, especially composition, to work in a way which does not seem
to be possible in the more general setting. We shall return to this work later in
the paper.

Bidirectional programming languages have been developed in various areas,
and a survey can be found in [3]. Notably Lambert Meertens’ paper [9] addresses
the question of developing “constraint maintainers” for use in user interface de-
sign, but his approach is far more general. His maintainers are essentially model
transformations which, in terms we shall introduce below, are required to be
correct and hippocratic, but not undoable. In [6], Kawanaka and Hosoya develop
a bidirectional programming language for XML. In Tokyo, Masato Takeichi and
colleagues Shin-Cheng Mu and Zhenjiang Hu have also worked extensively on
an algebraic approach to bidirectional programming: see [10, 11, 5].

2 QVT

The OMG’s Queries, Views and Transformations (QVT) standard [12] addresses
a family of related problems which arise in tool-supported model driven devel-
opment. Not all information which is modelled is relevant at any one time, so
there is a need to be able to abstract out the useful information; and models
need to be held in meaningful relationships with one another. Provided that we
permit non-bijective transformations (required to support model views), trans-
formations subsume views.

The QVT standard describes three languages for transformations: the Op-
erational, Relational and Core languages. The Relational language is the most
relevant here. In the Operational language, someone wishing to specify a bidi-
rectional transformation would have to write a pair of transformations and make
them consistent by hand, which we have already said is undesirable. QVT Core
is a low level language into which the others can be translated; an example trans-
lation from QVT Relational to QVT Core is given in the standard. Since we are
concerned with transformations as expressed by users, we will work with QVT
Relational.



The issue of whether transformations expressed in QVT Relational are sup-
posed to be bijective is not explicitly discussed, but it seems to be a – possibly
unintended – consequence of statements made in [12] that they must be. Specif-
ically, QVT transformations are given a “check then enforce” semantics which
means that a transformation must not modify a target model if it is already
correctly related to the source model. At the same time, [12] page 18 states:

In relations, the effect of propagating a change from a source model to a tar-
get model is semantically equivalent to executing the entire transformation
afresh in the direction of the target model.

This seems to imply that if a transformation is to propagate changes made in a
source model m to a target model n, the new target model that results must be
independent of the old one: the result of the transformation must depend only
on m, since it is equivalent to “executing the entire transformation” on m. In
other words given m, there is a unique target model n which must result from
executing the transformation. Now suppose that there is also a different model
n′ which is correctly related to m. Of course, this is quite compatible with the
functional interpretation of transformation given in the above quotation: it could
happen that even though n′ would be a correct target model, n is the one which
happens to be produced when the transformation is run on m. In this case, if
the transformation is run in a situation where the source model is m and the
target model is n′, the target model must be transformed into n, even though n′

was already correctly related to m. This, however, is exactly what is forbidden
by the “check then enforce” semantics: given that n′ is already correctly related
to m, it must not be modified by running the transformation. If the situation of
running a transformation on models which are already correctly related seems
too artificial, the reader may prefer to consider a situation in which a target
model may be put in correct relation with a source model in two different ways:
either by making a tiny change to turn it into one correctly related model, or by
making a large change to turn it into a different correctly related model. It will
be natural to want the transformation to make the minimal possible changes to
ensure relatedness (and, indeed, the text in [12] immediately following the above
quotation suggests that this is intended). Interpreting the quoted text literally,
though, forbids the transformation to give different results depending on how
close the existing target model is to each correctly related target model.

It might be possible to interpret “semantically equivalent” in the above quo-
tation so as to resolve this problem, but this seems forced (since it would require
being able to regard models which contained very different information as being
“semantically equivalent”). A better solution seems to be to assume that the
above quotation is unintentionally restrictive, and disregard it.

3 Semantic issues

In this section we raise a variety of issues which we consider to need further
study: they are settled neither by the QVT standard, nor as far as we know by
existing related work.



3.1 What exactly it makes sense to write

The QVT Relational language is designed to be easy for someone familiar with
related OMG standards such as OCL to learn and use; this has clearly been a
higher design goal than ensuring that only safe transformations can be written.
There are several places (when and where clauses, among others) where arbitrary
OCL expressions are permitted, even though only certain expressions make sense
as part of a bidirectional transformation. For example, a transformation may
in one direction give an attribute a value using an non-invertible expression.1

Specifying exactly what language subset is permitted, however, is likely to run
quickly into a familiar problem: that any reasonably easy-to-define language
subset which is provably safe will also exclude many safe expressions of the full
language. It may well be preferable to be permissive, and rely on users not to
choose to write things that don’t make sense. They will, however, require a clear
understanding of what it means for a transformation to “make sense”. In Section
4 we propose first steps in this direction and give simple postulates which, we
argue, any bidirectional model transformation should obey.

3.2 Determining validity of a transformation

Let us suppose that the reader and the developer accept that model transfor-
mations will be written in an expressive, unsafe language, but that the trans-
formations written should obey our proposed postulates (even though this has
to be verified on a case-by-case basis, lacking a language in which any trans-
formation is guaranteed to satisfy the postulates). How can developers become
confident that their transformations do indeed obey these postulates? Ideally,
the language and the postulates should be so clearly understandable that the
developers can be confident in their intuition: tool support is no substitute for
this kind of clarity. However, it is also desirable that a tool should be able to
check, given the text of a transformation and the metamodels to which it ap-
plies, that it obeys the postulates. That is, this transformation should be able
to be verified statically at the time of writing it, as opposed to failing when it is
applied to arguments which expose a problem. Whether or to what extent this
can be done is an open question.

A major danger with bidirectional transformations is that one direction of
the transformation may be a seldom used but very important “safety net”. It
will be unfortunate if the user only finds out that their transformation cannot
be executed in the less usual direction long after the transformation has been
written, in circumstances where the reverse transformation is really needed...

1 Note that permitting non-bijective transformations does not make this unproblem-
atic: since transformations are to be deterministic, where there are several relation-
ally possible choices of value the language needs to provide a way to specify which
should be chosen.



3.3 Composition of relations in QVT: when and where clauses

Most of this paper takes a high level view of transformations, in which a whole
transformation text specifies a relation and a pair of transformational functions.
We have not yet considered the details of how simpler relations are combined
and built up into transformations in QVT. This is interesting, however, and not
least because it gives another justification for considering non-bijective transfor-
mations. A QVT relational transformation has an overall structure something
like this:

transformation ... {
top relation R {
domain a...
domain b...
when {...}
where {...}

}
top relation S ...
relation ...
relation ...
...
}

In order to understand when and where clauses, note that [12] uses two different
notions of a relation holding. At the top level, a relation holds of a pair of mod-
els – checking will return TRUE – if they are consistent. E.g. if a UML model
m is consistent with an RDBMS model s according to relation ClassToTable,
we will write ClassToTable+(m,s). The + is intended to distinguish this no-
tion from the following: the consistency between m and s is demonstrated by
matching individual classes in m to individual tables in s: then the class c and
table t (or more formally, the corresponding valid bindings of domain variables
in the text of ClassToTable) may also be said to be related. We will write
ClassToTable(c,t). Note that the relation on models ClassToTable+ is a lifted
version of the relation on bindings ClassToTable: a UML model is related to an
RDBMS model by ClassToTable+ iff for every class there is a table related to
it by ClassToTable and vice versa.

The when and where clauses can contain arbitrary OCL, but are typically
expected to contain (if anything) statements about relations satisfied by vari-
ables of the domain patterns. Thus in fact, the relation R holds if for every
valid match of the first domain, there exists a valid match of the second do-
main such that the where clause holds. The when clause “specifies the conditions
under which the relationship needs to hold”. The example used in the stan-
dard is the relation ClassToTable with domains binding c:Class (and hence
p:Package etc.) and t:Table (and hence s:Schema etc.), the when clause being
PackageToSchema(p,s) and the where clause being AttributeToColumn(c,t).

Now, what does this mean in relational terms, and specifically, what is the
difference between the when clause and the where clause, both of which ap-



pear at first sight to impose extra conditions on valid matches of bindings,
thus forming an intersection of relations? Unfortunately, this is not straight-
forward to express relationally. Operationally, the idea is that the variables in
the when clause “are already bound” “at the time this relation is invoked”.
Roughly speaking, when a relation ClassToTable has domain patterns with
variables including p : Package and s : Schema, and a when clause which
states PackageToSchema(p,s), the QVT engine is supposed to have already pro-
cessed the PackageToSchema relation (if not, it will postpone consideration of the
ClassToTable relation). The matchings calculated for PackageToSchema provide
bindings for variables p and s in ClassToTable. Evaluation of ClassToTable
now proceeds, looking for compatible valid bindings of all the other variables.

We have sketched the operational view of what happens in one example, but
an open problem is to give a clean compositional account of even the relation
(let alone the transformation) defined by a whole QVT transformation. Making
this precise would involve a full definition of R+ taking account of when and
where clauses, and an account of the relationship between properties of R and
properties of R+. As an example of the complications introduced by dependen-
cies between relations, suppose that there are two ways of matching pairs of
valid bindings (skolem functions) for one relation, one of which leads to a com-
patible matching for a later-considered relation and one of which does not. If a
QVT engine picks “the wrong” matching for the first relation considered, is it
permitted to return the result that the models are inconsistent, even though a
different choice by the tool would have given a different result? Surely not: but
then there is a danger that the tool will need to do global constraint solving
or arbitrarily deep backtracking to ensure that it is not missing a solution. Not
only is this inefficient, but it will be very hard for the human user to understand.
Now, looking at the examples in [12], it seems clear that this kind of problem
is not supposed to arise, because when clauses are used in very restricted cir-
cumstances. However, it is an open question what can be permitted, and we can
expect to encounter the usual problem of balancing expressivity against safety.

For a simple example of “spatial” composition of relations where we can lift
good properties of simple relations to good properties of a more complex relation,
see the next section.

3.4 Sequential composition of transformations

We have discussed the ways in which relations are composed in QVT to make up
transformations. A different issue is the sequential composition of whole transfor-
mations. We envisage a bidirectional QVT tool which does not retain information
between uses: it simply expects to be given a pair of models, a transformation,
and a command telling it in which direction to apply the transformation and
whether to check or enforce.2

2 If the tool is allowed to retain trace information – the correspondence graph in TGG
terms – between executions, the problem becomes more tractable. But this is a severe
pragmatic limitation.



We naturally expect to be able to define a transformation to be the sequential
composition of two other transformations, and then treat the composition as a
first-class transformation in its own right. In this case, the pair of models given
to the tool will be the source of the first transformation and the target of the
second: the tool will not receive a version of the intermediate model, the one
which acts as target of the first transformation and source of the second. In
order to define a general way to compose transformations, we need to suppose
that we are given transformations R from M to N and S from N to P and show
how to construct a composed transformation T = R;S, giving the relational and
functional parts of the composed relation in terms of the parts of the constituent
relations.

We will return to this issue in the next section, after introducing appropriate
notation.

4 Requirements for bidirectional model transformations

In this section we discuss bidirectional model transformations which are not nec-
essarily bijective, and discuss under what circumstances these will make sense.
We will give postulates which are clearly satisfied by bijective transformations,
but also by certain non-bijective transformations.

First let us set some basic notation. We will use capital letters such as R, S, T
for the relations which transformations are supposed to ensure. That is, if M and
N are metamodels (or sets of models) to be related by a model transformation,
the relation R ⊆ M ×N holds of a pair of models – and we write R(m,n) – if
and only if the pair of models is deemed to be consistent. Associated with each
relation will be the two directional transformations:

−→
R : M ×N −→ N

←−
R : M ×N −→M

The idea is that −→R looks at a pair of models (m,n) and works out how
to modify n so as to enforce the relation R: it returns the modified version.
Similarly, ←−R propagates changes in the opposite direction.

In practical terms, what we expect is that the programmer writes a single text
(or set of diagrams) defining the transformation in the QVT relational language
(or indeed, in another appropriate language). This same text can be read in three
ways: as a definition of a relation which must hold between pairs of models; as
a “forward” transformation which explains how to modify the right-hand model
so as to make it relate to the left-hand model; as a “backward” transformation
which explains how to modify the left-hand model so as to make it relate to
the right-hand model. By slight abuse of notation, we will use capital letters
R, S etc. to refer to the whole transformation, including both transformational
functions as well as the relation itself, when no confusion can result.



Our notation already incorporates some assumptions, or rather assertions,
which need justification.

First, and most importantly, that the behaviour of a transformation should
be deterministic, so that modelling it by a mathematical function is appropriate.
The same transformation, given the same pair of models, should always return
the same proposed modification. This is a strong condition: it proscribes, for
example, transformation texts being interpreted differently by different tools.
An alternative approach, which we reject, would have been to permit a tool to
modify the target model by turning it into any model which is related to the
source model by the relation encoded in the transformation. There are several
good reasons to reject that approach. Most crucially, the model transformation
does not take place in isolation but in the presence of the rest of the development
process. Even though certain aspects of one model may be irrelevant to users
of the other – so that the transformation will deliberately abstract away those
aspects – this does not imply that the abstracted away aspects are not important
to other users! Usually, it will be unacceptable for a tool to “invent information”
in any way, e.g. by making the choice of which related model to choose. The
developer needs full control of what the transformation does. Even in rare cases
where certain aspects of the transformation’s behaviour (say, the choice of name
for a newly created model element) might be thought of as unimportant, we
claim that determinism is necessary in order to ensure, first, that developers will
find tool behaviour predictable, and second, that organisations will not be unac-
ceptably “locked in” to the tool they first use. Experience shows that even when
a choice is arbitrary, people find it important that the way the arbitrary choice
is made be consistent. One example of this is the finding that, even though the
spatial layout of UML diagrams does not (generally) carry semantic information,
it is important for UML tools to preserve the information.

Our second assertion is that the behaviour of a transformation may reason-
ably depend on the current value of the target model which will be replaced,
as well as on the source model. This follows from our argument in Section 1
that restricting bidirectional transformations to be bijective is too restrictive.
Of course, the fact that we choose a formalism which permits the behaviour of
a transformation to depend on both arguments does not force it to do so. In the
special case of a bijective transformation, the result of −→R may be independent
of its second argument, and the result of ←−R independent of its first argument.
Another important special case is when the transformation in one direction uses
only one of its arguments, while the reverse transformation uses both. Pierce
et al.’s lenses fall into this category, and we will discuss how they fit into this
framework below.

A technical point is that we require transformations to be total, in the sense
that −→R and←−R are total functions, defined on the whole of M×N . We may want
to define, for a metamodel M , a distinguished “content-free” model εM to be
used as a dummy argument e.g. in the case that a target model is created afresh
from a source model. Note that since the model containing no model elements
might not conform to M , εM might not literally be empty.



Correctness Our notation is chosen to suggest that the job of −→R and ←−R is to
enforce the relation R, and our first postulates state that they actually do this.
We will say that a transformation T is correct if

∀m ∈M ∀n ∈ N T (m,
−→
T (m,n))

∀m ∈M ∀n ∈ N T (←−T (m,n), n)

These postulates clearly have to be satisfied by any QVT-like transformation.

Hippocraticness, or “check-then-enforce” The QVT standard very clearly states
that a QVT transformation must not modify either of a pair of models if they
are already in the specified relation. That is, even if models n1 and n2 are both
properly related to m by R, it is not acceptable for −→R , given pair (m,n1), to
return n2. Formally, we say that a transformation is hippocratic3 if for all m ∈M
and n ∈ N , we have

T (m,n) =⇒ −→
T (m,n) = n

T (m,n) =⇒ ←−
T (m,n) = m

These postulates imply that if the relation T is not bijective, then (at least
one of) the transformations must look at both arguments. As a consequence,
applying a transformation to a source model in the presence of an existing target
model will not in general be equivalent to applying it in the presence of an empty
target model.

Undoability Our final pair of postulates is motivated by thinking about the
following scenario. The developer, beginning with a consistent pair of models m
(the source) and n (the target, perhaps produced by a model transformation),
makes a modification to the source model, producing m′, and propagates it using
the model transformation tool (so that target model n is replaced by −→T (m′, n)).
Immediately, without making any other changes to either model, our developer
realises that the modification was a mistake. She reverts the modified model to
the original version m, and propagates the change. The developer reasonably
expects that the effect of the modification has been completely undone: just as
the modified model has been returned to its original state m, so has the target
model been returned to its original state n.

Formally, we will say that transformation T is undoable if for all m,m′ ∈M
and n, n′ ∈ N , we have

T (m,n) =⇒ −→
T (m,

−→
T (m′, n)) = n

T (m,n) =⇒ ←−
T (←−T (m,n′), n) = m

3 First, do no harm. Hippocrates, 450-355BC



It turns out that this requirement is hard to meet in general, and arguably
too strong. However, we find the scenario compelling: a model transformation
which did not allow one’s changes to be undone in this way would be quite
confusing. Therefore, in the present paper, we take it to be essential (we shall
shortly show that we can still write non-bijective transformations).

Definition 1. Let R be a transformation between metamodels M and N , con-
sisting of a relation R ⊆M×N and transformation functions −→R : M×N −→ N
and ←−R : M × N −→ M . Then R is a coherent transformation if it is correct,
hippocratic and undoable.

4.1 Examples and consequences

Having presented a framework for bidirectional transformations and argued for
a set of postulates that they should obey, let us explore the consequences of
our choices. (Proofs, all easy, are omitted for space reasons; as are various other
small results.) First we state two reassuring trivialities:

Lemma 1. Let M be any metamodel. Then the trivial transformation, given by:

– R(m,n) if and only if m = n

– −→R (m,n) = m

– ←−R (m,n) = n

is a coherent transformation.

Lemma 2. Let M and N be any metamodels. Then the universal transforma-
tion, given by:

– R(m,n) always
– −→R (m,n) = n

– ←−R (m,n) = m

is a coherent transformation.

Note that the latter lemma already proves that our postulates permit bidi-
rectional transformations which are not bijective. We would of course expect
that any bijective transformation is coherent, and so it is:

Lemma 3. Let M and N be any metamodels. Then any bijective transforma-
tion, given by:

– R(m,n) if and only if n = r(m)
– −→R (m,n) = r(m)
– ←−R (m,n) = r−1(n)

where r : M −→ N is a bijective function, is a coherent transformation.

The relationship between our framework and that of [3] is close. Note that it
is our undoability postulates which prevent more general lenses being coherent.



Lemma 4. Any very well behaved lens l can be regarded as a coherent trans-
formation.

The reader familiar with [3] may be surprised that our postulates do not
include analogues of the GETPUT and PUTGET laws from that work. They
are in fact immediate consequences of correctness and hippocraticness:

Lemma 5. Let M and N be any metamodels, and let R be a correct and hip-
pocratic (but not necessarily undoable) transformation. Then for any m ∈ M ,
n ∈ N :

– ←−R (m,
−→
R (m,n)) = m

– −→R (←−R (m,n), n) = n

4.2 Composition of metamodels

Let us say that a metamodel M is the direct product of metamodels M1 and
M2 if any model m conforming to M can be written in exactly one way as
a pair of a model m1 conforming to M1 and a model m2 conforming to M2,
and conversely, any such pair conforms to M . For example, perhaps M1 and
M2 comprise disjoint sets of metaclasses, with no relationships or constraints
between the two sets. (This is admittedly an artificially constraining scenario:
we will discuss relaxations in a moment.)

Now suppose that we have coherent transformations R on M1 × N1 and S
on M2 × N2. We can construct a transformation which we will call R ⊕ S on
M ×N pointwise as follows:

– (R⊕ S)(m1 ⊕m2, n1 ⊕ n2) if and only if R(m1, n1) and S(m2, n2)
–
−−−−−→
(R⊕ S)(m1 ⊕m2, n1 ⊕ n2) = (−→R (m1, n1))⊕ (−→S (m2, n2))

–
←−−−−−
(R⊕ S)(m1 ⊕m2, n1 ⊕ n2) = (←−R (m1, n1))⊕ (←−S (m2, n2))

Then

Lemma 6. If R and S are coherent transformations, R ⊕ S is also a coherent
transformation.

The proof is a straight application of the definitions. This captures the intu-
ition that transformations on parts of models which are completely independent
ought to be able to be combined without difficulty. One would expect to be able
to extend this result to cover carefully-defined simple dependencies between the
metamodel parts, perhaps sufficient to justify, for example, applying a transfor-
mation defined only for class diagrams to a complete UML model, rolling the
resulting changes to the class diagram through to the rest of the model. Even
here, though, the issues are not entirely trivial.



4.3 Sequential composition revisited

The relation part of the sequential composition of transformations must be given
by the usual mathematical composition of relations: (R;S)(m, p) if and only if
there exists some n such that R(m,n) and S(n, p). Mathematically this is a fine
definition, but we already see the core of the problem: a tool has no obvious way
to find a relevant n. What about the associated transformations? For example,−→
T may be given models m and p such that there does not exist any n such that
R(m,n) and S(n, p). It is required to calculate an update of p; that is, to find
a new model p′ such that such an intermediate model does exist, and in general
the choice of intermediate model will depend on both m and p. However, −→R
“does not understand” p, etc., so there does not appear to be any way to do this
in general.

We may consider two special cases in which it is possible to define composition
of transformations.

1. If R and S are bijective transformations, then the intermediate model is
unique, and is found by applying −→R just to the first argument m. Composi-
tion of transformations in this case is just the usual composition of invertible
functions.

2. More interestingly, the Harmony group considers transformations in which−→
R is a function of the source model only, even though ←−R still uses both
source and target model. Here −−→R;S must clearly be defined to be −→R ;−→S , and
we can define ←−−R;S using a trick: use the function −→R to bring the source
model forward into the middle in order to use it to push the changes back.
Formally (and translating into our notation)

←−−
R;S(m,n) =←−R (m,

←−
S (−→R (m), n))

5 Conclusion

We have explored some fundamental issues which arise when we consider re-
lationally defined transformations between models which are bidirectional and
not necessarily bijective. We have motivated our work from the current QVT
standard, and some of the issues we raise are specific to it, but most are more
general. We have suggested a framework and a set of postulates which ensure
that bidirectional transformations will behave reasonably for some definition
of “reasonable”, and explored some consequences of our choice. Future work in-
cludes relating our framework to triple graph grammars, and further exploration
of the relation with bidirectional programming.

Acknowledgements The author would like to thank Reiko Heckel, Conrad Hughes,
Gabriele Taentzer and especially Benjamin Pierce for helpful discussions.



References

1. Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce. Relational lenses:
A language for updateable views. In Principles of Database Systems (PODS),
2006. Extended version available as University of Pennsylvania technical report
MS-CIS-05-27.

2. Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele
Taentzer. Information preserving bidirectional model transformations. In In pro-
ceedings of Fundamental Approaches to Software Engineering (FASE 2007), num-
ber 4422 in LNCS, pages 72–86. Springer, March/April 2007.

3. J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bi-directional tree transformations:
A linguistic approach to the view update problem. ACM Transactions on Pro-
gramming Languages and Systems, 2007. to appear: preprint available from
http://www.cis.upenn.edu/ bcpierce/papers/index.shtml.

4. Joel Greenyer. A study of technologies for model transformation: Reconciling
TGGs with QVT. Master’s thesis, University of Paderborn, Department of Com-
puter Science, Paderborn, Germany, July 2006.

5. Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor
for developing structured documents based on bidirectional transformations. In
In Proceedings of the 2004 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-based Program Manipulation (PEPM’04), pages 178–189, 2004.

6. Shinya Kawanaka and Haruo Hosoya. biXid: a bidirectional transformation lan-
guage for XML. In In Proceedings of the International Conference on Functional
Programming, ICFP’06, pages 201–214, 2006.

7. A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars - A
Survey. In R. Heckel, editor, Proceedings of the SegraVis School on Foundations
of Visual Modelling Techniques, volume 148 of Electronic Notes in Theoretical
Computer Science, pages 113–150, Amsterdam, 2006. Elsevier Science Publ.

8. Alexander Königs. Model transformation with triple graph grammars. In In pro-
ceedings, Workshop on Model Transformations in Practice, September 2005.

9. Lambert Meertens. Designing constraint maintainers for
user interaction. Unpublished manuscript, available from
http://www.kestrel.edu/home/people/meertens/, June 1998.

10. Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to bi-
directional updating. In In Proceedings of Programming Languages and Systems:
Second Asian Symposium, APLAS’04, pages 2–20, 2004.

11. Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective language for
reversible computation. In In Proceedings of Mathematics of Program Construction
(MPC’04), pages 289–313, 2004.

12. OMG. MOF2.0 query/view/transformation (QVT) adopted specification. OMG
document ptc/05-11-01, 2005. available from www.omg.org.

13. Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan de Lara, Laszlo Lengyel,
Tihamer Levendovsky, Ulrike Prange, Daniel Varro, and Szilvia Varro-Gyapay.
Model transformation by graph transformation: A comparative study. In Workshop
on Model Transformations in Practice, September 2005.

14. Steven Witkop. MDA users’ requirements for QVT transformations. OMG docu-
ment 05-02-04, 2005. available from www.omg.org.


