UML for describing product-line architectures?

Perdita Stevens*
Division of Informatics, University of Edinburgh
JCMB, King’s Buildings, Edinburgh EH9 3JZ, Scotland, UK

June 4, 1999

Abstract

This position paper reports some work in progress on the use of
UML, the industry standard object oriented modelling language, as a
notation for describing product line architectures. We draw on a great
deal of previous work on notations for architectures and PLAs, and on
UML as a notation for architectures and for frameworks, attempting
to identify the salient points of this particular question.

1 Scope

As UML becomes more widely accepted, it is inevitable that some organ-
isations that use product line architectures will describe them using UML
as their diagrammatic language, alongside other description elements. This
paper attempts to identify advantages and disadvantages of doing so. As
far as possible, it tries to consider the issues specific to PLAs, and to steer
clear of more general architecture description issues. For reasons of space
we assume considerable familiarity with UML.

2 Is this the right question?

For example, why should we not put all our effort into inventing the optimal
notation for describing product line architectures and use that?
Developing optimal notations may indeed be a useful thing to do, and
this paper does not aim to discourage it. As always, the points for and
against using a special purpose language must be considered in context.

*Perdita.Stevens@dcs.ed.ac.uk

However, the following factors suggest that it is worth investigating
whether it is feasible to use UML, an industry-standard general purpose
system modelling language.

1. The users of product line architectures — those instantiating the archi-
tecture to build a product — are increasingly likely to be familiar with
UML. Familiarity with a notation is an essential ingredient in using it
correctly and efficiently.

2. There are many tools supporting UML. If we want tool support for
PLAs — and surely we do — it is likely to be easier to get extra function-
ality incorporated into existing tools than another set of tools built.
Even if it were possible to get another set of tools built, using the
same tool throughout the process is easier. (Current tools generally
implement only a subset of UML; but this is changing rapidly as the
standard matures.)

3. Although many authors (including this one) have complained about
the lack of clarity in UML’s semantics, in fact it is probably the best
specified general purpose modelling language ever. Because UML is
widely accepted by a large user community, a great deal of effort is
being put into removing the remaining areas of ambiguity. There is
strength in numbers.

Version 1.1 of UML has been accepted by the OMG. However, that
standard contained many ambiguities which have since been dealt with by
the OMG’s Revision Task Force. Therefore in this paper we use the most
recent version of UML at the time of writing (1.3 alpha 5)[13]. Some aspects
of UML have been changed, rather than just clarified, but only one such
change matters in this paper. We note that the Semantics document takes
precedence over the Notaion Guide; the significance is that many uses of
UML, including some suggested here, are covered by the Semantics, but
not explicitly discussed or illustrated in the Notation Guide. Such cases
are normally obvious extensions of things that are covered by the Notation
Guide, so that the intended notation as well as its meaning is unambiguous.
Several previous authors have made statements about the limitations of
UML based only on the Notation Guide, without considering the Semantics:
this is an error. It is, of course, a reasonable criticism of UML that it is a
large language whose limits take considerable effort to determine.

3 What does the question mean?

That is, what are the criteria against which UML should be evaluated?
Let us briefly review the reasons for documenting a PLA with a dia-
grammatic notation. There are two main reasons:

e to help users of the PLA, that is, people instantiating it for a particular
product

e to help maintainers of the PLA, that is, people who are evolving it for
future use.

(Many other views are also important though we will not consider them
explicitly here: participants at the First Nordic Software Architecture Work-
shop [3] identified as stakeholders: architects, test engineers, configuration
managers, management, maintainers, developers, API users, end users and
QA people.)

Let us consider the aspects of a PLA which may reasonably be docu-
mented diagrammatically. Both groups of people need to understand where
the hotspots of the PLA are; what kinds of modification, omission or exten-
sion are permitted, expected or required. (There are various different kinds
of hotspots: for example, instantiation of a PLA may be by composition, by
specialisation or a mixture. In general instantiation by composition is easier
to handle, and we concentrate on instantiation of PLAs by specialisation in
this paper.) Users need especially to understand the dynamics of the PLA;
how does it work to achieve its aims? Maintainers will be relatively less con-
cerned with dynamics and more concerned with the dependencies between
the parts of the architecture. Many of these concerns are common to all
architecture development: the chief difference is the concern for identifying
hotspots explicitly.

It is clear that a diagrammatic modelling notation can only be a partial
solution to the problem of documenting PLAs. For example, a concise tex-
tual description of the intention of the PLA is indispensable. Nevertheless
there is normally some diagrammatic component and it is for this role that
we examine UML.

We should deal with a possible objection: in the sense in which the term
“architecture” is used in most of industry, it would be absurd to claim that
UML cannot be used to model it. The inventors of UML are also enthu-
siastic advocates of “architecture-centric development” and descriptions of
architecture are integral parts of methodologies developed alongside UML.
The Unified Process book [8] uses standard UML; but it does not address

PLAs, and its view of architecture is (simply) as a strict subset of the model
of the system, containing only the “architecturally significant” elements.
(Note that the Unified Process is not standardised by the OMG: UML is a
modelling language intended to be free of process.) Catalysis [6] considers
frameworks explicitly, using a conception of architecture with explicit con-
nectors. However it uses a version of UML which is different in many ways
from the standard, so we will not consider it further here.

Related questions There are two related questions whose answers may
be helpful:

1. What are good notations — and how good is UML — for describing archi-
tecture (as understood by the architecture community, which arguably
has more stringent requirements than most of industry at present)?

2. What are good notations — and how good is UML — for describing
frameworks?

Work on Question 1 has been done by [12, 10, 2, 7], though doubtless more
remains to be done.
Without duplicating their work, a couple of comments are:

1. [12, 10] use the UML metamodel element Class to represent compo-
nents (and connectors) in an architecture, acknowledging that this is
not a perfect fit but not explicitly considering alternatives. The UML
metamodel element Subsystem may well be more suitable. Like a
Class, a Subsystem is a Classifier and a GeneralizableElement, so a
Subsystem may realise interfaces, may be refined, may take part in
collaborations etc. It is also a Package — that is, a namespace — with
the ability to be instantiable or not; and UML builds in the idea that
a Subsystem may have specification and realisation parts (cf e.g. [1]
for use of such a feature in architectural modelling), with collabora-
tions to demonstrate how the realisation matches the specification. On
the whole, this seems like a more natural match for an architectural
component, and less likely to lead to confusion. In other circumstances
Component itself may be worth considering, although UML’s intention
is that a Component is a separately distributable, run-time replace-
able entity. Of course this choice points up one of the disadvantages of
using a general purpose rather than a special purpose language: more
choices to make.

2. Section 6.2 of [10] cites as a disadvantage of UML that it forces mes-
sages shown in a collaboration diagram to be ordered, which is inap-
propriate if in fact the participants in a collaboration may have their
own threads of control. This is incorrect; UML provides quite sophis-
ticated and extensible notation for concurrent activity, which seems
adequate for their purposes.

These papers naturally do not address the special issues of PLAs, in partic-
ular the need to model hotspots.

A good survey of approaches to Question 2 is Chapter 5 of [9]. The
author does not know of any previous work addressing “pure” UML for
this purpose. [6] (which heavily modifies UML) is relevant; the draft paper
[4] says that it is proposing an extended version of UML, but in fact many
diagrams in the paper are in OMT, not UML, and the proposal is not related
to the UML standard. In any case the issues are not identical, for example
because in the case of PLAs there is less need for potential readers to be able
to evaluate whether to use a PLA fast; they are not likely to be considering
large numbers of competing PLAs.

4 Evaluation

How can UML as a notation for product line architectures allow the repre-
sentation of the variability which is and is not permitted? We will discuss
separately modelling the externally visible behaviour of a system, its static
structure, the collaborations and interactions, the state diagrams, and the
deployment of the system on hardware.

Externally visible behaviour This includes the coherent tasks which
figure in the requirements of the system; or indeed of any other classifier,
for example a subsystem or a class. I am grateful to a referee for the reminder
that use cases can be designed to guide application designers to hotspots.
For example, in the case of a PLA for a family of computerised games,
it might be the case that part of the functionality of a Game component,
whose primary responsibility is to enforce the rules of the game, is provided
by the PLA and part must be provided by the product designer; Figure 1
illustrates.

Static structure At the simplest level we may add user-defined stereo-
types to apply to the model elements, documenting the PLA’s constraints on

Figure 1: A use case diagram showing variability

e
A

Client

Validate move

<<include>>

{ abstract}

Validate resulting
position

{ abstract}
Move

whether the elements may/must be replaced. This form of extension is mild
within UML, and permits for example the use of different graphic elements
to represent differently stereotyped elements. It does not automatically al-
low for automatic checking of correct use, however.

Thus we may document the structure of a PLA by recording the com-
ponents and connectors which are provided, using stereotypes to indicate
where extensions are permitted or expected. How though can we document
the relationships among the elements, particularly the “knows about” or
association relations? The underlying question is what it should mean to
record an Association between two UML Classifiers. The options are:

1. the dynamic view of association: classifiers A and B are associated if
an instance of A may be associated with an instance of B. For example,
classes A and B are associated if an object of class A sends a message
to an object of class B.

2. the static view: classifiers A and B are associated if there is a data
dependency between them; roughly speaking, if each instance of A has
a “data slot” for an instance of B or vice versa.

The UML standard itself does not currently specify what the intended
meaning of an association is (hence the discussion of the issue in the au-
thor’s textbook [11]). However, James Rumbaugh, one of the originators of
UML, explained in a recent article [14] that 2 is what is intended. This is
reasonable from the point of view of the drawer of a class diagram; so for the
purposes of this paper we assume that this is how UML associations should
be interpreted, and hope that the next official standard will incorporate this
view. It has, however, some unfortunate consequences for the PLA designer.
Most notably, it is arguably incorrect to show an association which is not
implemented in the classifiers, even if a requirement of correct use of the
PLA is that the instantiations of the classifiers should always be associated.
On the other hand, since an Association is a GeneralizableElement, it may
in principle be abstract, and we may think that an abstract association is
what we need. The meaning of an abstract association is not as clear as it
might be, since elsewhere in the standard an Association is said to represent
a relation, and does not itself carry an implementation. The related question
of whether an association can in general play the role of a connector is an
interesting one not fully resolveable with respect to the current specification.

The alternative is to show dependencies between components, with a
dotted arrow. The designers of UML intended that dependency should be
free of connection with particular instances, which in this case is not true.

Figure 2: Part of a static structure diagram for a product using a PLA

e S

<<subsystem.>>. - <<subsystem>>
<<must specialise>> | <<mustassociate>> | mugt specialise>>
Game Move

] I

<<subsystem>> <<subsystem>>
<<fina>> current <<fina>>
Chess ChessMove

Rumbaugh cited this as probably a mistake for approximately this reason,
and we may expect the restriction to go away in future. The best we can
do is to use a stereotype on dependency to indicate the particular kind of
dependency, namely one that should turn into an association at lower levels.
However, doing so means that CASE tools will not be able to check that a
use of the framework is correct.

Figure 2 shows an example of part of a static structure diagram showing
two components Game and Move of a PLA, modelled as subsystems, and
specialisations of them. It is standard UML with user-defined stereotypes
“must specialise”, “may specialise” and “final”.

We will probably want the whole PLA to have its own package — and
hence namespace — separate from, but imported by, a package containing
the models of the system which uses the PLA; this is routine in UML but
not shown here.

Just what associations are legal instantiations of our abstract associa-
tion? A rather obvious point, sometimes known as the “animals eat food,
cows eat grass” phenomenon is that specialisations have to be compatible.
Compatibility is partly a semantic and partly a type-theoretic notion; on-
going work investigates it type-theoretically but that is outside the scope of
this paper. The underlying point is that of course the PLA does not consist

solely of the reusable assets; it also includes rules about how it should be
used; for example, of what it means for specialisations to be compatible.
An unsolved question which UML does not address is: How is this require-
ment for compatibility to be reflected in the diagrammatic notation? It can
of course be represented by adding OCL constraints to the diagrams, but
this is not ideal. The most important point is that representing seman-
tically important information in OCL runs the risk of its being accorded
less importance by the reader than the more obviously salient diagrammatic
information. More specifically, OCL is vulnerable to criticism as a specifica-
tion language. Its admirable aim is to be a language which is easily usable
by any developer whilst still being formal. There is no consensus that it
achieves the first aim; for example, the decision to automatically flatten all
collections (so that, for example, it is not possible to describe a set of sets
in OCL), which was apparently taken in the interests of simplicity, seems
confusing to some. On the other hand the language is not formally defined
— it has a formal syntax but no formal semantics — so it does not completely
achieve the second aim either.

Interactions and collaborations A UML collaboration diagram docu-
ments the relationships between instances of types, or more usually (at the
specification level not the implementation level) between the roles that may
be played by instances of types. An interaction may be shown on a collab-
oration diagram by adding messages. The resulting interaction diagram is
normally used to demonstrate how the functionality documented in a use
case diagram is realised by the designed system. A certain level of consis-
tency between the static structure and the interactions modelled for a system
is ensured, because in UML both are views of the same model. The use of
these diagrams for documenting architectures is discussed in [12]. Here we
are interested in documenting hotspots; the main concern is the ability to
show abstract collaborations and interactions which may be instantiated or
refined later.

There are two possible approaches. The first is to observe that UML does
not impose any completeness condition on a collaboration or interaction; so
at an informal level it is in order to use stereotypes again to describe the
parts of a collaboration or interaction documenting a PLA where refinement
or instantiation might be required.

More satisfactory particularly for documenting the use of a PLA, e.g. in
exemplars, is to observe that in UML a Collaboration is a GeneralizableEle-

ment!. The intended semantics is what we would wish — the specialising
Collaboration achieves a specialisation of the task achieved by the more
general Collaboration. However the semantics of such a Generalization are
not specified by UML, and this might prove challenging, given that Messages
in an Interaction know their predecessors and successors and that Interac-
tions are not themselves GeneralizableElements. A Collaboration may be
represented as a dashed ellipse connected by dashed lines to the Classifiers
that play the various roles in it; several such ellipses may then be related by
generalisation. This is conceptually appealing; however, the notation prob-
ably makes it more useful for demonstrating the use and refinement of small
design patterns or frameworks (which is what it was intended for).

Some architectures will require sophisticated documentation of real-time
and synchronisation aspects. UML includes a reasonable set of features to
support this, in the form of notation for timing constraints on interaction
diagrams and support for different threading models. However this is still
an area of active work, particularly in the embedded system community, e.g.

[5].

State diagrams UML has taken these over more or less wholesale from
the statechart notation; standard mechanisms suffice. For example, a clas-
sifier in the PLA (the whole system, or a component of it) may have its
behaviour documented using a state diagram, which is then refined in a par-
ticular product by the insertion of more detailed state diagrams nested in
the states of the PLA state diagram.

Deployment UML’s deployment diagrams are a frequent source of con-
fusion, and indeed they are much less well explained in the standard than
other elements of UML. However, nodes — the UML element which represents
processing elements — are Classifiers in UML, which means that they can
have instances, play roles in collaborations, realise interfaces, etc. They can
also contain instances of components. (There is a little remaining confusion
here between the Notation Guide, which suggests that a Node can contain
an instance of any Classifier, and the Semantics, which limits this to Com-
ponents, the element which UML regards as having a run time existence.
Comments on what is actually required would be interesting.)

Non-diagrammatic elements We have mentioned that there is natu-
rally a need for supporting text to document things like the purpose of a

!This is a change since UML1.1

10

PLA, the details of a use case, etc., as well as any other constraints or
decisions not conveniently documented in UML. There is also a need to
maintain the connections between the different diagrams; for example, to
show what collaboration implements a given use case. [7] recognising this
suggests tables as the solution. In a computer supported environment there
is an additional possibility which may be useful instead of or as well as
tables: hyperlinks. The standard [13] writes (3-8):

A notation on a piece of paper contains no hidden information.
A notation on a computer screen may contain additional invisible
hyperlinks that are not apparent in a static view, but that can be
invoked dynamically to access some other piece of information,
either in a graphical view or in a textual table. Such dynamic
links are as much a part of a dynamic notation as the visible
information, but this guide does not prescribe their form. We
regard them as a tool responsibility. This document attempts
to define a static notation for the UML, with the understand-
ing that some useful and interesting information may show up
poorly or not at all in such a view. On the other hand, we do not
know enough to specify the behavior of all dynamic tools, nor
do we want to stifle innovation in new forms of dynamic presen-
tation. Eventually some of the dynamic notations may become
well enough established to standardize them, but we do not feel
that we should do so now.

5 Conclusions and ongoing work

This short paper describes a small part of work in progress. The interim
conclusion is that it is reasonably to use UML as the diagrammatic com-
ponent of the description of a product line architecture, provided that its
drawbacks are understood and provided that the UML description is not
the only form of documentation, but is supplemented by appropriate text
tabular and other elements as necessary; however, that UML is not so well
adapted to the task that other approaches are superseded.

References

[1] Dirk Baumer, Guido Gryczan, Rolf Knoll, Carola Lilienthal, Dirk Riehle, and
Heinz Zillighoven. Framework development for large systems. Communica-
tions of the ACM, 40(10):52-59, October 1997.

11

[2]

[11]

[12]

[13]

[14]

Lodewijk Bergmans. A notation for describing conceptual software architec-
tures. In In FElectronic Proceedings of the First Nordic Software Architecture
Workshop, 1998. bilbo.ide.hk-r.se:8080/ bosch/NOSA98.

Jan Bosch. Electronic proceedings of the first nordic software architecture
workshop. bilbo.ide.hk-r.se:8080/ bosch/NOSA98.

Marcus Felipe M. C. da Fontoura, Carlos José P. de Lucena, Paulo S. C.
Alencar, and Donald D. Cowan. On expressiveness: Representing frameworks
at design level. Draft paper from Web.

Clement de la Jonquiere. An introduction to embedded software for system-
on-chip 1. A Cadence Design Systems Inc. seminar given on June 2.

Desmond D’Souza and Alan Cameron Wills. Catalysis: Objects, Frameworks
and Components in UML. Addison-Wesley, 1998.

Hofmeister et al. Describing software architecture with uml. In Proc. WICSA1,
1999.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software
Development Process. Addison-Wesley Longman, 1999.

Michael Mattson. Object-Oriented Frameworks: a survey of methodological
issues. PhD thesis, University College of Karlskrona/Ronneby, 1996.

Nenad Medvidovic and David S. Rosenblum. Assessing the suitability of a
standard design method for modeling software architectures. In Proc. First
IFIP Working Conference on Software Architecture, 1999.

Rob Pooley and Perdita Stevens. Using UML: software engineering with objects
and components. Addison-Wesley Longman, 1998.

Jason E. Robbins, Nenad Medvidovic, David F. Redmiles, and David S. Rosen-
blum. Integrating architecture description languages with a standard design
method. In Proc. International Conference on Software Engineering, 1998.

OMG RTF. Uml specification 1.3 alpha 5. available from
uml.systemhouse.mci.com.

James Rumbaugh. Modeling and design. Journal of Object Oriented Program-
ming, 11(4), 1998.

12

