Updating the software engineering curriculum at
Edinburgh University

Perdita Stevens *

Department of Computer Science
University of Edinburgh
The King’s Buildings
Edinburgh EH9 3JZ

Abstract. This paper reports the experience of Edinburgh University’s
Department of Computer Science in undertaking, in two stages, a major
reform of its software engineering teaching in the third and fourth years
of the degree. Our aim was to increase our students’ exposure to object
oriented and component based software engineering, aspects of modern
software engineering which are highly relevant to the careers many of
them undertake. One of our more significant decisions was to teach the
emerging standard modelling language, UML. The paper describes the
background to the decision to change the course, the changes that were
made, and the results of the changes. It does not presume to draw univer-
sal lessons from the story, but does describe what we see as the significant
features.

1 Introduction

In 1994 the University of Edinburgh introduced an honours degree in Software
Engineering to complement its existing Computer Science and other degrees.
At that time the Department of Computer Science took the view that software
engineering was a branch of computer science, and accordingly the software en-
gineering degree was a more constrained version of the computer science degree,
omitting some of the more theoretical courses and requiring the more practical
courses. It rapidly became clear, however, that there was scope for a broader
and deeper coverage of software engineering as a discipline in its own right, and
that there would be a great deal of student interest in such coverage.

The department decided to create a new final year module in Software En-
gineering in order to strengthen the software engineering content of the degree.
However, resource problems meant that a new module was not designed in time
for delivery in the academic year 95/96. This marked the beginning of the au-
thor’s personal involvement in the development of this part of the syllabus. I
had recently joined the department as a research fellow, after working for some
years as a software engineer. Moreover I had been acting as tutor on a course,
Topics in Software Engineering [3], developed by the (British distance learning)

* Perdita.Stevens@dcs.ed.ac.uk



Open University. This course seemed broadly suitable for our needs, and as the
existence of a final year software engineering module had been announced to
students, it was agreed that I would deliver a course based on it, adapting it as
necessary. Because of the availability of good self-study materials (which we pur-
chased from the OU), it was possible to depart from the more usual 18-lecture
format of our courses, replacing some lectures with tutorial-style meetings in
which students addressed problems in small groups. Lectures summarised the
material, students read the detail outside contact time, and the tutorial-style
meeting allowed them to check their understanding.

2 The first iteration: successes and problems

Topics in Software Engineering (TSE) was on the whole a success, sufficiently
so that in 96/97 I changed the course incrementally and gave it again. There
were three parts to the course: let us examine each in turn. (The original OU
course also included a section on concurrency using CSP, which we omitted:
concurrency was already well covered in our final year.)

1. Structured analysis and design using the Yourdan Structured Method. We
abbreviated the introductory section, since our students had a greater back-
ground in software than the OU course assumed, and we emphasised the solv-
ing of design problems. We (students and staff) felt that the problem solving
nature of the course was very valuable, and especially that getting students
to address problems in supervised groups was useful. However, we were less
happy about the particular paradigm and methodology involved (structured
methods, specifically YSM): we wanted to consider teaching OOA /D instead.
We had no tool support for YSM; one consequence of this seemed to be that
the weaker students, who made a large number of essentially syntactic errors
in their YSM diagrams, didn’t get as far as considering the more interesting
modelling issues.

2. Rigorous specification using VDM. This was the least successful part of the
course. The Edinburgh degree course, reflecting the research interests of the
majority of the staff, has a slightly higher than usual formal content, so this
was not the first rigorous specification language students had been exposed
to. While some students enjoyed the material, few saw it as very relevant
to their needs. In the second year of presentation I deemphasised the actual
writing of VDM specifications and emphasised instead the question of what
techniques are appropriate under various circumstances; but this was still
felt to be an unsatisfactory section.

3. Issues of large scale software development: project planning, management
and quality assurance. This section was seen as particularly relevant to the
students, especially those planning to enter a career in software engineering.
We supplemented, and in the second year of presentation replaced, the OU
material, and emphasised real world experience and the absence of silver
bullets. Final year students are mature enough to appreciate discussion of



controversies in software engineering, and it proved possible, for example, to
use different views about the réle of metrics as a starting point for discussion.
I introduced a section on reuse and components, which seemed an increas-
ingly vital area, and we discussed the organisational influence on the success
or otherwise of a reuse programme. Source material included recent research
and practice; a lecture was given over to a software engineer to tell stories
and answer questions about real projects, and students were also required
to do their own research using the Web and libraries. We find that by the
fourth year of a degree course, students have a good deal of relevant know-
ledge, but sometimes lack confidence articulating and applying it. A course
in which students are encouraged to form their own opinions and back them
up both from their own limited experience and from the writings of experts
serves to reinforce their project and coursework in this respect.

In summary, it became clear that good points were

— the practical, problem-based approach of the course

— the focus on analysis and design: there was no need for another programming
course

— the material in the final part of the course: it seemed appropriate to continue
to evolve this, rather than to replace it.

However, we wanted to move to an object-oriented paradigm and to go into
analysis and design in greater depth. We thought this study should ideally be
supported by the use of a CASE tool, both as an experience in its own right and
because the sanity-checking provided by tools could enable students to correct
some of their own mistakes. To make space for the material it was acceptable to
drop VDM.

At the same time, it was also becoming clear that we should take an overall
look at our provision of mainstream software engineering courses and see how
they fitted together and whether there was scope for improvement on a wider
scale than individual courses. At that time, besides many other courses which
had a software engineering component, the main provision was:

— The first! and second year courses lay the foundations. Students learn two

contrasting programming languages, C in the first year and Standard ML in
the second year. They are introduced to issues of programming in the large,
including the ideas of modularity and encapsulation. They are shown the
waterfall model.
In 96/97 discussion was in progress about the renewal of our first year course;
it was subsequently decided to use Java as students’ first programming lan-
guage. This influenced our subsequent discussion of the third and fourth year
courses, though we did not feel that it was essential for us to adopt Java as
a consequence.

! Scottish students typically start university at age 17



— The third year has a compulsory course in Programming Methodology. This
popular course provides a thorough grounding in the software lifecycle. On
the technical side it discusses possible structures for large systems using
the ML module system as a source of examples and exercises. It considers
reliability and safety of systems and discusses the influence of human factors.
An optional third year course was Software System Design (SSD), which its
lecturer Dr Rob Pooley was inclined to think could be improved. This course
taught the concepts of object oriented design in the context of C++, and
backed this up with semi-formal specification of C++ programs. The twin
problems were that the object concepts were tending to get swamped by de-
tailed concerns about the specification language, and that the tool associated
with the specification language was unsatisfactory. The basic motivation of
the course, to provide a good basis in object orientation, was fine.

Third year students undertake two major projects, one of which is individual,
and the other of which is done in groups.

— Fourth year students do an individual project, which normally involves some
conceptual work and the development of a system.

3 The full reform

Dr. Rob Pooley (the lecturer of the third year course, SSD) and I agreed that
it would be a good idea to replace both SSD and TSE with an integrated pair
of new courses teaching object oriented and component based analysis, design
and programming. These courses became known as Software Engineering with
Objects and Components 1 and 2, with SEOC1 being a prerequisite for SEOC2.
We produced syllabi for the courses, and the department agreed to proceed. This
section discusses the decisions we made about the new courses.

We felt that it is important for students to have a thorough understanding
of object concepts and detailed design before they can sensibly attempt analysis
and high-level design issues. Therefore SEOC1’s responsibility is to teach object
concepts in the context of an object oriented programming language, and to cover
detailed design without expecting students to be adept at making architectural
decisions. SEOC2 deepens this understanding and considers high-level design
and analysis issues, as well as addressing the process of software engineering
within an organisation, including topics such as quality, quality assurance and
management.

We wanted to use a class-based object oriented language, and because of our
intention to be seen as immediately relevant to students intending to go on to
industry, we wanted to use a well-known language. Our main options were C++
— which was obviously the favourite, since we already taught that language and
since our students already know C — Smalltalk and Java. We settled on C++
for the first year of presentation, influenced partly by the unavailability of a
CASE tool supporting Java on Solaris at that time. Although I have taught
a successful object orientation course using Smalltalk, I felt that, given their
backgrounds, our students were more likely to be happy with a typed language,



and that expecting them to make two paradigm shifts in one course — to objects
and away from static typing — on one course was probable unwise. In future we
expect to use Java, but we wish to avoid tieing the courses inextricably to any
one language. We aim to make clear to students which aspects of SEOC1 are
particular to the programming language being used, and also that most aspects
are not. SEOC2 has no explicit programming language dependency, though of
course it draws on students’ experiences with an OOPL.

The remaining questions were about methodology and modelling language.
The latter question was rather easy: at around this time it was becoming clear
that UML, the Unified Modelling Language, was going to become a standard.
We felt that if we chose any other modelling language we would have to switch
again within a few years, that UML was a very interesting development in any
case, and that UML was the best bet for the employability of our students.
Learning to use a modelling language competently, like learning a programming
language, involves understanding its syntax, semantics and idioms. It does not
automatically produce the ability to write good designs, but it facilitates the
expression of designs. Therefore we decided that one aim of the two courses was
that students should be competent in UML by the end of them. This decision
made us, in 97/98, an “early adopter” of UML, which brought its own problems
in the lack of a suitable textbook. There were good textbooks on object oriented
design, and there were books at a professional level about UML; but there was
no textbook which taught object oriented design with UML as its modelling lan-
guage. Rob Pooley and I decided to address this problem by writing such a book
ourselves; Using UML: software engineering with objects and components[l], is
to be published by Addison Wesley in November 98. Another problem was that
the UML documentation [2], which is under revision, is in places contradictory
and confusing; however, we do not feel that the problems we faced were in prac-
tice any harder than they would have been with another modelling language;
rather, the existence of a (partly) rigorous semantics document made it easier to
expose inconsistencies that otherwise might have remained hidden in less formal
documentation.

The question of a methodology to use was harder. We considered teaching
the infant Objectory (the methodology from Rational designed for use with
UML), Booch’s OOD or Rumbaugh’s OMT. However, no one of these was clearly
the most suitable. More seriously, I harboured serious doubts about whether
it was useful to label the software development process with a methodology
name. It seemed, and seems, to me that methodologies borrow greatly from
one another and that successful software development projects (including, but
not limited to, those I had been personally involved in) normally adapt and
borrow from different methodologies. I suspect that projects which “use the
Booch method” for example, often mean little more than that they use the
Booch notation; the rise of UML may make this clearer. In the end we decided
to teach some common techniques for analysis and design, and to discuss some
major methodologies briefly, but not to advocate any particular methodology or
teach one in detail. This decision is still under review, but our initial impression



is that it is correct. Techniques that we teach include among others use case
analysis (with a discussion of its disadvantages) and the use of CRC cards for
developing and validating a class model, and for studying interactions.

In the fourth year course in particular, I decided to make greater use of the
Web and to increase the extent to which students are encouraged to do their
own research. Given how fast the field of software engineering is moving, it seems
important that students should leave university with not only an up to date body
of knowledge, but also with the skills to keep up with the changing state of the
software engineering world. It is valuable for students to see for themselves that
opinions differed, and become confident evaluators of material. (For the same
reason, I encouraged a guest speaker who I knew to have different opinions from
my own on some fundamental issues to put his own views in his guest lecture.)

At the time, few CASE tools that supported UML were available, particularly
on the Sun Sparc Solaris platform that we had available. Rational Rose, however,
was available on this platform, and Rational proved able to provide an affordable
educational licence price. We went ahead using Rose.

4 Experience of the full reform

In the academic year 97/98 both SEOC1 and SEOC2 have been taught for the
first time. (Since this year’s cohort of fourth year students have not had the
opportunity to do SEQOCI, of course SEOC2 was taught in a modified form.
Almost all students taking SEOC2 had done SEQC1’s precursor SSD, however,
so the differences did not need to be very great: the main one was that it was
not possible to rely on previous knowledge of UML, so a greater proportion of
the course was given over to teaching the modelling language than will be the
case in the long run.)

SEOC2 was taught in the autumn of 1997. It seems to have been a great
success, both popular and academic: evidence for this includes:

— Nearly twice as many students took it as took the predecessor course, and
almost every student who started the course took the exam.

— Very positive feedback, both to the lecturer and on course questionnaires;
the course was seen as relevant and interesting.

— Several students have used techniques taught in the courses in their final
year projects, for example producing UML designs.

— Several students have reported that people who interview them are interested
in talking about the course, and that they have the impression it helped their
job prospects.

My subjective impression was that the quality of work, both coursework and
exam work, was higher this year than previously.
Some problems still need to be addressed:

— The CASE tool Rational Rose was found interesting, and I think it helped the
weaker students to resolve syntactic problems, but given the Solaris resources



we have (Sparc 5s with 32Mb RAM) its performance was irritating. We are
considering switching to NT.

— The only area of the syllabus that caused widespread difficulty was design
patterns. I suspect that this was purely my fault: I was immersed in patterns
in my own research, and probably failed to imagine myself into the position
of someone who hadn’t seen patterns before.

The CS3 course SEOC1, whilst popular, does not seem to have been such a
spectacular success as SEQC2, probably because it is more similar in style to
other courses. However, it is a clear improvement on the course that it replaces.

5 Conclusion

At the time of writing, these courses have been taught once each, and both
appear to be successful.

We think the main area for further improvement in the coming year is the
SEOC2 coverage of architecture, frameworks and patterns, which were squeezed
this year by the need to teach UML from scratch. These areas seem increasingly
important, and will reinforce the existing coverage of reuse and components.

We hope that readers who are involved in similar situations to our own
may find our experiences interesting. We would be interested to hear about
comparable experiences elsewhere.

5.1 Acknowledgement

I thank Rob Pooley, who was my main collaborator in the reform discussed here.

References

1. Rob Pooley and Perdita Stevens, Using UML: Software Engineering with Objects
and Components. Addison-Wesley: to appear, approx Nov. 1998.

2. UML1.1 Notation Guide and Semantics, available from
http://www.rational.com/uml/documentation.html

3. Open University course M355, Topics in Software Engineering: further informa-
tion available from http://www.open.ac.uk/OU/CourseDetails/m355.html



