
A simple game-theoretic approach to checkonly QVT Relations

Perdita Stevens
Laboratory for Foundations of Computer Science

School of Informatics
University of Edinburgh

February 2011

Abstract

The QVT Relations (QVT-R) transformation lan-
guage allows the definition of bidirectional model
transformations, which are required in cases where
two (or more) models must be kept consistent in the
face of changes to either or both. A QVT-R trans-
formation can be used either in checkonly mode, to
determine whether a target model is consistent with
a given source model, or in enforce mode, to change
the target model. A precise understanding of check-
only mode transformations is prerequisite to a precise
understanding of enforce mode transformations, and
this is the focus of this paper. In order to give seman-
tics to checkonly QVT-R transformations, we need to
consider the overall structure of the transformation
as given by when and where clauses, and the role of
trace classes. In the standard, the semantics of QVT-
R are given both directly, and by means of a trans-
lation to QVT Core, a language which is intended
to be simpler. In this paper, we argue that there
are irreconcilable differences between the intended se-
mantics of QVT-R and those of QVT Core, so that
no translation from QVT-R to QVT Core can be
semantics-preserving, and hence no such translation
can be helpful in defining the semantics of QVT-R.
Treating QVT-R directly, we propose a simple game-
theoretic semantics. We demonstrate its behaviour
on examples and show how it can be used to prove an
example result comparing two QVT-R transforma-
tions. We demonstrate that consistent models may
not possess a single trace model whose objects can

be read as traceability links in either direction. We
briefly discuss the effect of variations in the rules of
the game, to elucidate some design choices available
to the designers of the QVT-R language.

Keywords: bidirectional model transformation,
QVT Relations, QVT Core, games, semantics, con-
sistency checking

1 Introduction

Model-driven development (MDD) is widely agreed
to be an important ingredient in the development of
reliable, maintainable multi-platform software. The
Object Management Group, OMG, is the industry’s
consensus-based standards body, so the standards it
proposes for model-driven development are necessar-
ily important. In the area of MDD, a key standard is
Queries, Views and Transformations (QVT, [16]), a
specification of three different languages for defining
transformations between models, which may include
defining a restricted view of a model which abstracts
away from aspects of the model not relevant to a
particular class of intended user. Rather disappoint-
ingly, however, the Queries, Views and Transforma-
tions languages have been slow to be adopted. Few
tools are available for any of the languages: notably,
it sometimes happens that even those tools which
use “QVT” in their marketing literature do not ac-
tually provide any of the three QVT languages, but
rather, provide a “QVT-like” language. In this pa-
per we will consider QVT Relations (QVT-R), the

1

language which best permits the declarative specifi-
cation of bidirectional transformations. There have
been two main candidate implementations of this:
Medini QVT1 and ModelMorf2. ModelMorf is the
more faithful to [16]. The landscape of QVT-R tools
is discussed more fully in Section 8.1.

Why has the uptake of QVT been so low? Opti-
mistically, we may point to the fact that, while the
QVT standard has been under development for a long
time, it has only recently been standardised. How-
ever, the same applied to other OMG standards, most
notably UML, and did not prevent their adoption be-
fore finalisation. Lack of support for important engi-
neering activities like testing and debugging may also
play a role, although work is proceeding on the latter,
see for example [25]. This, however, does not explain
why there do exist several tools each of which uses
its own transformation language other than the OMG
standard ones, and case studies of successful use of
these tools. Perhaps a contributory factor is that,
whereas the UML standard was developed following
years of widespread use of various somewhat similar
modelling languages, the model transformation arena
is still far more sparsely populated. Therefore, how
to define, or recognise, a good model transformation
language for use on a particular problem is less well
understood. Especially, bidirectional languages are
insufficiently understood. As we shall discuss in Sec-
tion 8, almost all of the existing work on QVT-R
focuses on the use of the language as a unidirectional
model transformation language: although the same
transformation text is taken to embody more than
one unidirectional transformation, more than this is
required for true bidirectionality, as we shall explain
in Section 2. We consider that the difficulty devel-
opers have in understanding the semantics of QVT,
especially its bidirectional aspects, may play a role,
and we develop a game-theoretic semantics which we
hope may be more understandable than the standard
[16] itself and than any previous attempt at seman-
tics.

In this paper, we only consider transformations in

1http://projects.ikv.de/qvt/, version 1.6.0 current at time
of writing

2http://121.241.184.234:8000/ModelMorf/ModelMorf.

htm

checkonly mode. That is, we are interested in the case
where a QVT-R transformation is presented with two
or more models, and the transformation engine must
return true if the models are consistent according to
the definition of consistency embodied in the trans-
formation, or false otherwise. Perhaps surprisingly,
it turns out that this already raises some interesting
issues. We hope in future to extend this approach
to transformations in enforce mode, that is, which
modify a model in order to restore consistency.

This is an extended version of a paper [22] pre-
sented at the International Conference on Model
Transformations in June 2009. The main contribu-
tions of that paper were a new game-theoretic seman-
tics for a version of QVT-R, and a demonstration that
[16]’s translation from QVT-R to QVT Core is not
semantics-preserving. As well as giving more formal
details, this paper adds two new sections: Section 5,
which applies the new semantics to a family of exam-
ples and compares the results with those from Mod-
elMorf, and Section 6, which shows how the game
semantics can be exploited to prove results about the
(anti-)equivalence of checkonly QVT-R transforma-
tions. We also discuss the nature and role of trace
objects in QVT-R more thoroughly, showing care-
fully that it is not possible, in general, for QVT-R
trace objects to be correct independent of the direc-
tion of checking: that is, bidirectional trace objects
need not exist. The papers follow on from earlier
work by the present author, [21], in which questions
answered here, specifically the role of relation invo-
cation in when and where clauses (relation defini-
tion applied to particular arguments), were left open.
Discussion of the foundations of, and range of ap-
proaches to, bidirectionality, not specific to QVT, are
presented in [20] and [19] respectively.

The structure of the paper is as follows. In Sec-
tion 2 we give necessary background concerning the
QVT-R language itself, logic, and games. Thinking
about the meaning of a checkonly QVT-R transfor-
mation in logical terms enables us to pinpoint the dif-
ficulty with the semantics given in [16]. We can then
use games, which have a long history of use in logic,
to QVT-R in order to address this difficulty. The
QVT-R background given here is brief, and assumes
that the reader already has some acquaintance with

2

the language, and will consult [16] as needed. Sec-
tion 3 discusses translating QVT-R into QVT Core
as a means of giving semantics to QVT-R and ex-
plains why, despite this being done in [16], it is un-
successful. Section 4, the heart of the paper, gives
our semantic game. Sections 5 and 6 have already
been discussed. Section 7 discusses how variants of
the game can be used to capture different possible
semantics of checkonly QVT-R, should the commu-
nity wish, thereby demonstrating the potential of the
game approach to definining the semantics of model
transformation languages in general. Section 8 dis-
cusses related work and (Section 8.1) QVT-R tools.
Section 9 concludes.

2 Background

2.1 QVT Relations

The QVT-R transformation language allows the def-
inition of bidirectional model transformations, which
are required in cases where a two (or more3) mod-
els must be kept consistent in the face of changes to
either or both. A transformation written in QVT-R
can support scenarios in which one model is gener-
ated from another, for example, where an initial Plat-
form Specific Model (PSM) is generated from a Plat-
form Independent Model (PIM), or where an initial
UML model is generated from an existing database
schema. It can also support continued development
of both. A QVT-R transformation embodies a notion
of consistency: the choices made by the transforma-
tion writer specify the circumstances under which a
given PIM will be considered to be consistent with a
given PSM, or a given UML model consistent with a
given schema. The same QVT-R transformation text
also embodies instructions for restoring consistency
in either direction. When changes have been made
to one model, the other model can be automatically
changed to be consistent with it again. Crucially,
this does not involve simply regenerating the other
model. The changes that must be made to restore

3for clarity of exposition, we will assume just two models
in this section: the semantics in this paper is for any number
of models

consistency depend on both models. To give a simple
illustrative example, suppose that some UML design-
ers take the UML model generated from a database
schema and change it by, say, adding a use case dia-
gram. The resulting UML model may still be consis-
tent with the database schema, if (as is plausible) the
transformation does not constrain the UML model as
to the existence or nature of a use case diagram. Thus
these changes do not necessitate any change to the
database schema. Now suppose that the database
designers modify the schema in a way which does
make the schema inconsistent with the UML model,
perhaps by splitting a class into two. The QVT-R
transformation can be used to restore consistency by
modifying the UML model, perhaps by modifying the
UML class diagram to show the newly split class. It is
of course essential that the transformation does not,
in the process, delete the use case diagram! That is,
rerunning the generation process that produced the
initial UML model is not appropriate. The transfor-
mation must, in general, take into account both the
current state of the schema and the current state of
the UML model, and it must produce a new UML
model that takes both into account. (The initial gen-
eration then becomes a special case, where the cur-
rent state of the UML model is that it is a null or
empty model.)

When a QVT-R transformation is being used to
determine whether a target model is consistent with
a given source model, we say that it is being used
in checkonly mode. When it is used to change a tar-
get model, we say that it is used in enforce mode.
Naturally, immediately after enforcement, a check-
only transformation must return true. A less obvious,
but important, decision made by the designers of the
QVT-R language [16] is that it has “check before en-
force” semantics, which we might vulgarly call “if it
ain’t broke, don’t fix it”. One consequence of this
policy is that if two models are already consistent –
the transformation in checkonly mode returns true –
then the same transformation in enforce mode must
not make any change at all. This policy is invaluable
for model developers using transformations, who can
be sure that their work will not be modified without
good reason.

When a QVT-R transformation is run, it will mod-

3

ify at most one model, the target model if it is in
enforce mode, or none if it is in checkonly mode. It
has access, however, to both the source model(s) and
the current version of the target model, and it will
generally need to examine all of these models. In [21]
it was explained that this means we can formalise a
QVT-R transformation S on two sets of models M
and N as a triple:

• S ⊆M×N , the consistency relation, which holds
of a pair of models – and we write S(m,n) – if
and only if the pair of models is deemed to be
consistent;

•
−→
S : M × N −→ N , the enforce transformation
producing a modified model from the set N

•
←−
S : M × N −→ M , the enforce transformation
producing a modified model from the set M

satisfying certain constraints.
Although in general our enforcement functions

−→
S

and
←−
S need both their arguments, this may not be

so for a particular transformation if its consistency
relation has some special property. For example, an
important special case is when N consists of views
of M , so that S(m,n) holds exactly when n contains
a specified subset of the information in m. In this
case, given m there is a unique n such that S(m,n),
and the N argument to

−→
S is redundant. In the even

more special case that the consistency relation is bi-
jective the transformation may be modelled by a pair
of functions

−→
S : M −→ N and

←−
S : N −→ M . No-

tice that what this means, informally, is that a model
m ∈M contains exactly the same information as the
unique consistent model in N , simply presented dif-
ferently. We say that such a model transformation is
bijective, since it incorporates a bijective consistency
relation.

Such special cases undoubtedly arise and can be
important. However, a model transformation lan-
guage which only permitted the expression of bi-
jective transformations would not be useful in the
general MDD context, where it is usual for each
model to incorporate some information not repre-
sented elsewhere (which may indeed be the reason

for the model’s existence). QVT-R is not restricted
in this way: as stated, a QVT-R transformation has
access to instances of all models, even though it mod-
ifies at most one of them.

This paper, focusing on checkonly transformations,
formalises the consistency relation embodied in a
transformation but not the enforcement functions.
We should make explicit that, even though the same
QVT-R transformation text embodies both the con-
sistency relation and the enforcement functions, our
limitation is contentful. There can indeed be differ-
ent QVT-R transformations which embody the same
consistency relation, but which differ in the instruc-
tions they give for restoring consistency when it is
broken. For example, QVT-R provides the key key-
word which makes no difference to the behaviour of
the transformation in checkonly mode, but does make
a difference to its behaviour in enforce mode. Since
key is irrelevant to the semantics of checkonly trans-
formations, however, we do not consider it further.

Direction of transformation The framework
briefly described above is based on a direction-free
notion of consistency: a transformation between sets
of models M and N specifies, for any pair (m,n) ∈
M × N , whether or not m is consistent with n. By
contrast, an enforcement transformation has a direc-
tion, towards the target model, the one which will be
modified if changes are necessary to restore consis-
tency.

The standard [16] is slightly ambivalent about
whether a checkonly QVT-R transformation has a
direction. Compare p13, which talks about “check-
ing two models for consistency” and implicitly con-
trasts execution for enforcement, which has a direc-
tion, with execution for checking, which implicitly
does not, with the details of the QVT-R definition
which clearly assume that checking has a direction.
The resolution seems to be (p19, my emphasis):

A transformation can be executed in “checkonly”
mode. In this mode, the transformation simply checks
whether the relations hold in all directions, and reports
errors when they do not.

That is, the notion of consistency intended by the
QVT-R standard is given by conjunction: m1 is con-

4

sistent with m2 according to transformation S if and
only if S’s check evaluates to true in both directions.
The directional executions of S are, however, inde-
pendent: only their Boolean results are conjoined.
As we shall see in Section 3 this is different from how
checking transformations work in QVT Core; as we
shall see in Section 7.2, the difference is more impor-
tant than one might at first expect.

Looking at the QVT-R tools, we find that Mod-
elMorf requires a transformation execution to have
a direction specified, even when it is checkonly: to
find out what the final result of a checkonly transfor-
mation is, one has to manually run it in each direc-
tion and conjoin the results. Medini QVT, by con-
trast, makes it impossible to run a transformation
in checkonly mode: if you run a transformation in
the direction of a domain which is marked enforce,
there is no way to make the transformation engine
return false if it finds that the models are inconsis-
tent, rather than modifying the target model. This is
one of several known respects in which Medini QVT
departs from [16]; it is on Medini QVT’s bug list, and
is also mentioned by its developers in [13]. In itself
it is superficial matter, because of QVT-R’s “check
then enforce” semantics. Given a QVT engine which
was compliant with [16] except that it did not pro-
vide the ability to run transformations in checkonly
mode, it would be easy to construct a fully compliant
engine using a wrapper. The wrapper would save the
target model, run the transformation, and compare
the possibly modified target model with the original.
If the target model had been modified, it would re-
store the original version and return false; otherwise,
it would return true. In fact, as we shall discuss fur-
ther in Section 8.1, this is only one of the respects in
which Medini QVT departs from [16].

Structure of a QVT-R transformation A
QVT-R transformation is structured as a number of
relations, connected by referencing one another in
when and where clauses. The idea is that an individ-
ual relation constrains a tuple of models in an easy-to-
understand, local way, by matching patterns rooted
at model elements of particular kinds. The power,
and the complexity, of the transformation comes from

the way in which relations are connected. A rela-
tion may also have a when clause and/or a where
clause. In these clauses, other relations are invoked
with particular roots for their own patterns to be
matched. In this way, global constraints on the mod-
els being compared can be constructed from a web of
local constraints. The allowed dependencies between
the choices made of values for variables – in a typical
implementation, the order in which these choices are
made – are such that the when functions as a kind of
pre-condition, in the sense that it is expected to be
evaluated before the body of the relation to which it is
attached; the where clause imposes further constraint
on the values chosen during the relation to which it
is attached (it is, in a way, a post-condition). How-
ever, referring to when and where clauses as pre- and
post-conditions can be misleading. In ordinary pro-
gramming, pre- and post-conditions help to specify
behaviour which is actually defined separately: re-
moving the pre- and post-conditions does not alter
the behaviour of the system. In QVT-R, when and
where conditions are essential parts of the language
itself. Placing a where clause on a relation does not
document a fact about the relation which is already
true: it fundamentally alters the meaning of the re-
lation.

The reader is referred to [16] for details: the rele-
vant sections are Chapter 7 and Appendix B. A key
point is that the truth of a relation is defined using
a logical formula which states that for every legal
assignment of values to certain variables, there must
exist an assignment of values to certain other vari-
ables, such that a given condition is satisfied.4

2.2 Logic

In logical terms, this is expressed as a “for all–there
exists” formula; more precisely, such a formula is
called a Π2 formula, provided that the formula which
follows these two quantifiers is itself quantifier-free.

The difficulty in QVT-R is that actually, the truth
of a complete transformation is expressed by a much
more complex formula. Appendix B only expresses

4Very similar definitions are found elsewhere in computer
science, for example, in refinement calculus [2].

5

the truth of an individual relation, not the entire
transformation. However, the truth of one relation
is defined in terms of the truth of the relations which
may appear in its when and where clauses. On sub-
stituting the Appendix B definition of each of those
truth values, we see that, in fact, the number of alter-
nations between universal and existential quantifiers
(the length of a forall-thereexists-forall-thereexists...
formula which would be equivalent to a whole QVT-R
transformation evaluating to true) is unbounded. For
example, consider the well-known example of trans-
formation between UML class diagrams and RDBMS
schemas, in which packages correspond to schemas,
classes to tables and attributes to columns. Looking
at [16] p14, we see that ClassToTable invokes relation
AttributeToColumn in its where clause. The invo-
cation gives explicit values for the root variables of
the patterns in AttributeToColumn, but even though
those are fixed, the usual rule applies as regards the
rest of the valid bindings to be found in AttributeTo-
Column. Thus, for each valid binding of one pattern
in ClassToTable (and of the when variables), there
must exist a valid binding of the other pattern in
ClassToTable, such that for each valid binding of the
remaining variables of one pattern in AttributeTo-
Column (and of the when variables, except that in
this case there are none), there exists a valid binding
of the remaining variables of the other pattern in At-
tributeToColumn.5 Note that, if there was more than
one choice for the second binding in ClassToTable,
it is entirely possible for it to turn out that only
one of these choices satisfies the rest of the con-
dition, concerning the matching in AttributeToCol-
umn: thus any evaluation, whether mental or by a
tool, of ClassToTable has to be prepared either to
consider both relations together, or to backtrack in
the case that the first choice of binding made is not
the best.

Therefore, while one might at first glance hope to
be able to understand, and evaluate, the meaning of a
QVT-R transformation by studying the relations in-
dividually, in fact, no such “local” evaluation is pos-

5Actually, the version in [16] is a little more complicated
than this: AttributeToColumn invokes further relations in its
where clause, and it is those which require the binding of re-
maining variables: but the point is the same.

sible, because of the way the relations are connected.
Fortunately, similar situations arise throughout

logic and computer science, and much work has been
done on how to handle them. In particular, this is
exactly the situation in which games have found to
be a useful aid to developing intuition, as well as to
formal reasoning.

Games There is a long history in logic of formulat-
ing the truth of a logical proposition as the existence
of a winning strategy in a two-player game. For ex-
ample, the formula ∀x.∃y.y > x (where x and y are
integers, say) can be turned into a game between two
players. The player who is responsible for picking
a value for x is variously called ∀belard, Player I,
Spoiler, Refuter, depending on the community defin-
ing the game, while the player responsible for picking
a value for y is called ∃louise, Player II, Duplicator
or Verifier. We will use Refuter and Verifier. Re-
futer’s aim is, naturally, to refute the formula, while
Verifier’s aim is to verify it. In this game, Refuter
has to pick a value for x, then Verifier has to pick a
value for y. Verifier then wins this play of the game if
y > x, while Refuter wins this play otherwise. This is
an example of a two-player game of perfect informa-
tion (that is, both players can see everything about
one another’s moves). In fact, in this case, Verifier
has a winning strategy for the game: that is, she has
a way of winning the game in the face of whatever
moves Refuter may choose. For example, she could
decide always to obtain her value of y by adding 42
to whatever value of x is chosen by Refuter.

Formally speaking, we define a game as follows.
Notice that our definition allows for the possibility
of plays of a game being infinite, although it may
happen that a particular game is defined in such a
way that all plays are finite. We will use Player P ,
Player P to mean Verifier and Refuter in either order;
that is, if Player P is Verifier then Player P is Refuter,
and vice versa.

Definition 1. A game G is
(Pos, Initial,moves, λ,WR,WV) where:

• Pos is a set of positions. We use u, v, . . . for
positions.

6

• λ : Pos→ {Verifier,Refuter} defines who moves
from each position.

• Initial ∈ Pos is the starting position: for pur-
poses of this paper, λ(Initial) = Refuter.

• moves ⊆ Pos × Pos defines which moves are
legal. A play is in the obvious way a finite or in-
finite sequence of positions, starting with Initial,
where pj+1 ∈ moves(pj) for each j. We write
pij for pi . . . pj.

• WR,WV ⊆ Posω such that WR∪WV = Posω are
disjoint sets of infinite plays, and (for technical
reasons) WP includes every infinite play p such
that there exists some i such that for all k > i,
λ(pk) = P .

Player P wins a play p if either p = p0n and λ(pn) =
P and moves(pn) = ∅ (you win if your opponent can’t
go), or else p is infinite and in WP .

Then a strategy for such a game is, informally, a
set of instructions for one player, telling the player
how to move in response to any (legal) move of the
opponent. A strategy may be deterministic – it tells
the player exactly how to move – or non-deterministic
– it gives a set of possible moves. In general, the move
prescribed by the strategy may depend on the entire
play so far. A strategy in which the moves prescribed
only depend on the current position (not on the way
in which the current position was reached) is called
memoryless or history-free. More formally:

Definition 2. A (nondeterministic) strategy S for
player P is a partial function from finite plays pu
with λ(u) = P to sets of positions (singletons, for de-
terministic strategies), such that S(pu) ⊆ moves(u)
(that is, a strategy may only prescribe legal moves).
A play q follows S if whenever p0n is a proper finite
prefix of q with λ(pn) = P then pn+1 ∈ S(p0n). Thus
an infinite play follows S whenever every finite prefix
of it does. It will be convenient to identify a strat-
egy with the set of plays following the strategy and to
write p ∈ S for p follows S. S is a complete strategy
for Player P if whenever p0n ∈ S and λ(pn) = P
then S(p0n) 6= ∅. It is a winning strategy for P if it

is complete and every p ∈ S is either finite and ex-
tensible or is won by P . It is history-free (or mem-
oryless) if S(pu) = S(qu) for any plays pu and qu
with a common last position. A game is determined
if one player has a winning strategy.

All the games we need to consider are determined
by standard game theory [15]: in fact, one player or
the other will have a memoryless deterministic win-
ning strategy. In this simpler situation, a strategy
for Player P will simply be a partial function S from
positions u that have λ(u) = P to positions, such
that S(u) ∈ moves(u), that is, the strategy only pre-
scribes legal moves. We may conveniently describe S
by giving the set of maplets {u 7→ S(u)}. For prac-
tical purposes, it will suffice to define the strategy at
positions that are actually reachable by following the
strategy (allowing, of course, for all possible choices
by the opponent, Player P).

Returning to our example of the logic game based
on ∀x.∃y.y > x, it is of course entirely possible that
a player has more than one winning strategy. When
a Π2 formula is true, a Skolem function expresses
a particular set of choices that constitute a winning
strategy: given x, it returns the chosen y. Different
Skolem functions may exist which justify the truth of
the same formula. In the example above, one choice
of Skolem function maps x to x + 1, another maps
x to x + 17, another maps 1 to 23, 2 to 4, 3 also to
4, and so on. Clearly the trace model in QVT has
something in common with a Skolem function: it ex-
presses a way in which parts of one structure may be
mapped to “corresponding” parts of another. We do
not yet have a game for QVT transformations that
would enable us to make this notion of correspon-
dence precise, however: we will return to the issue in
Section 7.2.

Another family of examples, which may get us
closer, comes from concurrency theory. Processes are
modelled as labelled transition systems (LTSs), that
is, an LTS is a set of states S including a distin-
guished start state i ∈ S, a set of labels L, and a
ternary relation →⊆ S × L × S: we write s

a→ t
for (s, a, t) ∈→. The question of when two pro-
cesses should be deemed to have consistent behaviour
can be answered in many ways depending on con-

7

text. One simple choice is simulation. A process
B = (SB , iB , LB ,→B) is said to simulate a process
A = (SA, iA, LA,→A) if there exists a simulation re-
lation S ⊆ SA × SB containing (iA, iB). The condi-
tion for the relation to be a simulation relation is the
following:

(s, t) ∈ S ⇒ (∀a, s′ .(s a→ s′ ⇒ ∃t′ . t a→ t′∧(s′, t′) ∈ S))

This can very easily be encoded as a game: start-
ing at the start state of A, Refuter picks a transition.
Verifier has to pick a transition from the start state of
B which has the same label. We now have a new pair
of states, the targets of the chosen transitions, and
the process repeats: again, Refuter chooses a transi-
tion from A and Verifier has to match it. Play con-
tinues unless or until one player cannot go: either Re-
futer cannot choose a transition, because there are no
transitions from his state, or Verifier cannot choose
a transition because there is no transition from her
state which matches the label on the transition cho-
sen by Refuter. A player wins if the other player can-
not move. If play continues for ever, Verifier wins.
It is easy to show that in fact, Verifier has a win-
ning strategy for this game exactly when there exists
a simulation relation between the two processes; in-
deed, in a sense which can be made precise, a simu-
lation relation is a winning strategy for Verifier. (As
with the Skolem functions for Π2 formulae, there may
be more than one simulation relation between a given
pair of processes.)

A curious fact about simulation is that even if B
simulates A by simulation relation S and A simulates
B by simulation relation T , it does not follow that A
simulates B by the reverse of S, nor even that there
must exist some relation which works as a simula-
tion in both directions. This is the crucial difference
between simulation equivalence and the stronger rela-
tion of bisimulation equivalence; see for example [10].
As we shall see in Section 7.2, this is relevant.

We will shortly define the semantics of QVT-R us-
ing a similar game, but first, we must consider an
alternative approach.

3 The translation from QVT
Relations to QVT Core

In an attempt to help readers and connect the sev-
eral languages it defines, [16] defines the seman-
tics of QVT Relations both directly, and by trans-
lation to QVT Core. Both specifications are infor-
mal (notwithstanding some minor use of logic e.g.
in Appendix B). [16] does not specify what should
happen in the case of conflicts between the two, nor
does it explicitly argue for their consistency. There-
fore any serious attempt to provide a formally-based
semantics for QVT-R needs to take both methods
into consideration. In this section, we consider the
translation, with the aid of a very simple example
QVT-R transformation – so simple that the direct
semantics of QVT-R leaves no room for doubt about
its intended behaviour. Translating the example into
QVT Core should produce a semantically equivalent
transformation, but we will show that it does not. In
fact, the situation is worse than that: according to its
intended semantics, QVT Core simply cannot express
semantics equivalent to those of our simple QVT-R
example. That is, even if our reading of the transla-
tion is incorrect, the problem remains: no translation
can correctly reproduce the semantics of QVT-R. If
the reader is convinced by the argument, it follows
that the translation of QVT-R to QVT Core cannot
contribute to an understanding of QVT-R. For pur-
poses of the present paper, indeed, it will be enough
if the reader is convinced only that the translation
into QVT Core involves some degree of semantic am-
biguity: giving a language a semantics by translation
into another language is useful only when both the
translation and the target language are solid. This
will suffice to justify our basing our formal semantics
on the direct semantics given in [16] rather than on
the translation into QVT Core. The reader who is
happy to grant us that choice and is not interested
in QVT Core may wish to skip the remainder of this
section.

8

3.1 An example to translate from
QVT-R to QVT Core

Consider an extremely simple MOF metamodel
which we will call SimplestMM.6 It defines one meta-
class, called ModelElement, which is an instance of
MOF’s Class. It defines nothing else at all, so mod-
els which conform to this metamodel are simply col-
lections (possibly empty) of instances of ModelEle-
ment. (Of course, in the usual object-oriented fash-
ion, there is no obstacle to having several instances of
ModelElement which are indistinguishable except by
their identities.) We will refer to three models which
conform to SimplestMM, having zero, one and two
ModelElements respectively. We will imaginatively
call them Zero, One and Two. Indeed, models con-
forming to SimplestMM can be identified in this way
with natural numbers: a natural number completely
determines such a model, and vice versa.

Next, consider a very simple QVT-R transforma-
tion between two models each of which conforms to
SimplestMM. Figure 1 shows the text of the trans-
formation (we use ModelMorf syntax here).

Suppose that we use the QVT-R semantics to exe-
cute this transformation in the direction of m2. When
executed in the direction of m2, it should return true
if and only if, for every valid binding of me1 there ex-
ists a valid binding of me2. There are no constraints
beyond the type specification, so this is equivalent
to: if model m1 is non-empty, then model m2 must
also be non-empty. If model m1 is empty, then there
is no constraint on model m2. Thus, when invoked
on the six possible pairs of models from Zero, One
and Two, the transformation should return false on
the pairs (One,Zero) and (Two,Zero), otherwise true.
Conversely, if we check in the direction of m1, the
transformation returns false if m1 is empty and m2 is
not, otherwise true. Reassuringly, ModelMorf gives
exactly these results.

QVT-R works this way because its semantics are
specified using logical “for all–there exists” formu-
lae, without reference to a trace model or any other
means of enforcing a permanent binding of one model
element to another, such that a model element might

6XML files are available from the author’s homepage, see
http://homepages.inf.ed.ac.uk/perdita/papers.html

be considered “used up”. While [16] says that run-
ning a QVT-R transformation “implicitly” generates
a trace model, the definition of the transformation
does not rely upon its existence. It is simply assumed
that an implementation will build a trace model, and
use it, for example, to allow small changes to one
model to be propagated to another without requiring
all the computation involved in running a transfor-
mation to be redone. However, because the defini-
tion of QVT-R is independent of any trace model
or its properties, there is no obstacle to the same
model element being used more than once, which is
why the transformation has the semantics discussed,
rather than enforcing any more restrictive condition,
such as that the two models have the same number
of model elements. This helps to provide QVT-R the
ability to express non-bijective transformations in the
sense discussed in Section 2 and [21]; this ability in
turn is essential to allow the expression of transfor-
mations between models which abstract away differ-
ent things. The absolute requirement to be able to
do this is most obvious when we consider a trans-
formation between a fully-detailed model and an ab-
stracted view onto it, where either the full model or
the view may be updated (this is called the “view
update problem” in databases). It turns out that
non-bijectiveness is essential even when transforming
models we might regard as equally detailed. For ex-
ample, in a realistic interpretation of a transforma-
tion between UML packages and RDBMS schemas,
there are many schemas which are consistent with a
given package, and many packages consistent with a
given schema. See [21] for more discussion.

Now, taking [16] at face value, we expect to be
able to translate this simple QVT-R transformation
into a QVT Core transformation which has the same
behaviour, and which, in particular, will return the
same values when invoked on our simple models. A
basic condition which we certainly expect is that the
translation will take the same arguments as the orig-
inal – it would not be acceptable if the translated
transformation required extra information, such as a
trace model specifying how model elements are to be
linked. The specification of the translation is not so
clear that mistakes are impossible (e.g., possibly the
multiple importing of the same metamodel is unnec-

9

transformation Translation (m1 : SimplestMM ; m2 : SimplestMM)
{
top relation R
{
checkonly domain m1 me1:ModelElement {};
checkonly domain m2 me2:ModelElement {};

}
}

Figure 1: A very simple transformation

essary), but this is what the author believes to be the
intended translation:

module SimpleTransformation imports SimplestMM {

transformation Translation {

m1 imports SimplestMM;

m2 imports SimplestMM;

}

class TR {

theM1element : ModelElement;

theM2element : ModelElement;

}

map R in Translation {

check m1() {

anM1element : ModelElement

}

check m2() {

anM2element : ModelElement

}

where () {

realize t:TR|

t.theM1element = anM1element;

t.theM2element = anM2element;

}

An object of the trace class TR connects a model
element in m1 to a corresponding model element in
m2.

To understand the effect of this QVT Core trans-
formation, and in particular to understand what
trace objects will be created and which model ele-
ments will be linked by them, we need to look care-
fully at the QVT Core definition (Chapter 9 of [16]).
There are several important differences between the
semantics of QVT Core and those of QVT-R and sev-
eral separate problems of interpretation arise.

3.2 QVT Core’s checking mode

Like QVT-R, QVT Core has two modes for transfor-
mation execution, which in this case are called check-
ing and enforcement mode. From p119 of [16]:

A transformation may be executed in one of
two modes: checking mode or enforcement
mode. In checking mode, a transformation
execution checks whether the constraints hold
between the candidate models and the trace
model, resulting in reporting of errors when
they do not. In enforcement mode, a trans-
formation execution is in a particular direction,
which is defined as the selection of one of the
candidate models as the target model.

The obvious expectation is that the translation of
a QVT-R checkonly transformation is to be a QVT
Core checking transformation. However, the above
passage suggests, although it does not quite imply,
that a trace model will be an argument to a check-
ing transformation, and, especially since trace mod-
els play no formal role in the QVT-R world, there is
no reason why the user who wants a QVT-R check-
only transformation interpreted on a set of models
should be able to provide a trace model. Indeed we
have already remarked on the unacceptability of the
translation requiring more information than the orig-
inal transformation did. We might (and shall, after
this discussion) get round that problem by supposing
that an initially empty trace model is to be provided,
which the checking transformation is to attempt to
populate. But a literal reading of Chapter 9 of [16]
says that a checking transformation is not permit-

10

ted to modify the models – no exception is made for
the trace model – or to create instances of realize
variables – such as the trace object in the translated
transformation above. According to this view, all a
checking transformation can do is to take a set of can-
didate models and a given trace model relating them,
and verify whether certain conditions hold. That is,
in this interpretation the QVT Core checking trans-
formation is doing something much less interesting
than the QVT-R checkonly transformation. It is not
checking whether the candidate models are consistent
according to the transformation: it is merely check-
ing whether such consistency is successfully demon-
strated by the given trace model. Any incomplete-
ness or incorrectness in the trace model given as ar-
gument to the checking transformation will result in
the checking transformation reporting inconsistency
– even if one of the candidate models could have been
produced from another by the very same QVT Core
transformation run in enforce mode. This interpre-
tation would make it impossible to use QVT Core
checking transformations as the target of translation
from QVT-R checkonly transformations.

We next try the hypothesis that this QVT Core
transformation, even though it is a translation of a
checkonly QVT-R transformation, is in fact to be ex-
ecuted in QVT Core’s enforce mode, in order to cre-
ate the trace model (while not modifying the given
candidate models). However, reading [16] with this
in mind does not result in sense: the specification
simply does not allow for the possibility that a trans-
formation is run in enforce mode without one of the
candidate models (i.e., not the trace model) being
enforced. See [16] 9.10.1 for example.

It is difficult to see how to get out of even this initial
difficulty in interpreting [16]’s translation from QVT-
R to QVT Core. What we will do, because it seems
to make more sense than any other interpretation, is
to assume that a QVT Core checking transformation
is permitted to create trace objects if required, and
is expected to return a Boolean result and (in the
case of success) a set of trace objects recording the
mapping constructed.

This is actually a less serious problem than might
appear, because regardless of how the trace model is
constructed, once a supposedly correct trace model

exists, the transformation run in checking mode with
the original candidate models and that trace model
should not return any errors. What matters for our
purposes is the existence or non-existence of the cor-
rect trace model.

One difference between QVT-R and QVT Core
which must be noted, although (until we consider
bidirectional trace objects in Section 7.2) it will seem
to be presentational more than semantic, is that a
QVT Core checking transformation definitely does
not have a direction: it can check more than one do-
main in one transformation execution. This is clearly
implied by the passage already quoted, and again
by the logical notation for checking on p124 which
gives a single logical statement for the case that “do-
mains L and R are given and both are checked”. As
we would expect, the statement amounts to the con-
junction of the two directional checks that would be
done if only one domain were checked. Indeed, QVT
Core trace objects do not have a distinguished target
domain, as can be seen from the definition of class
TR above. These trace objects are bidirectional in
the sense that they link bindings in both directions
equally. The checking transformation takes a single
trace model and (whether or not it also constructs its
contents) uses it to check consistency in all directions
in the same execution.

In evaluating our translated transformation, there-
fore, we need to check that the translated version re-
turns True exactly where the original QVT-R version
returned True in both directions. In our examples,
that means that if it is a semantically correct trans-
lation it should return False when exactly one of the
models it is checking is Zero, otherwise True. If we
think of the transformation as constructing the trace
model, it should fail if one of the candidate models is
Zero, otherwise it should succeed.

3.3 Bijections between sets of valid
bindings

A more obviously serious difference, independent of
the above, is that, in QVT Core, unlike in QVT-R,
a mapping sets up a bijection between sets of valid
bindings. On p122 of [16] we are told:

11

A mapping declares essentially that all bot-
tom patterns should relate one-to-one. That
is, for each valid binding of one of the bot-
tom patterns there must be exactly one valid
binding for each other bottom pattern in that
mapping. This implies that each valid binding
of a bottom pattern may only be part of one
unique valid combination of valid bindings for
each bottom pattern.

That is, unlike in QVT-R, a valid binding is to be
considered used up once it has been used once. Note
especially the final sentence: if we are in the common
case of checking two domains, there are three bottom
patterns, one for each domain and one “middle” pat-
tern for the trace object that links the two domains.
The text above insists that, given a valid binding for
any one of these three places, valid bindings for both
of the other two are determined. The same binding
in one domain cannot be used twice in the same map-
ping, together with two different bindings in another
domain.

Again, p123 says:

There must be (exactly) one valid-binding
of the bottom-middle pattern and (exactly)
one valid binding of the bottom-domain pat-
tern of a checked domain, for each valid
combination of valid bindings of all bottom-
domain-patterns of all domains not equal to
the checked domain, and all these valid bind-
ings must form a valid combination together
with the valid bindings of all guard patterns
of the mapping.

and this sentiment is then repeated in a logical no-
tation. The use of “the checked domain” may be
confusing to the reader in the light of the fact that
QVT Core checking transformations do not have a
direction and check all checkable domains in one ex-
ecution. However, in context it is clear that “the
checked domain” is simply the one which is being
checked at some given point in the transformation ex-
ecution: where there are several checkable domains,
the condition will be checked for each of them and the
results conjoined before the transformation can re-
turn its result, as shown in logical notation on p124

of [16]. In our case of two checkable domains, the
two texts both imply that a successful execution of
the checking transformation produces a bijection be-
tween the set of valid bindings in one domain and the
set of valid bindings in the other domain. The set of
middle bindings, also in bijection with each of these
two sets, could be regarded as the set of pairs which
constitutes the bijection: each trace object produced
by the mapping represents such a pair.

In our example, a valid binding in the domain m1
is simply a choice of ModelElement to assign to
anM1element, and similarly a valid binding in do-
main m2 is simply a choice of anM2element.

3.4 Interpretations of the uniqueness
of bindings

There is one area which is arguably still open to in-
terpretation: in what set of valid bindings is there
supposed to be exactly one choice? The set of all
candidate valid bindings from the model being ex-
amined, or only the set of valid bindings actually
recorded by the mapping? Since this has been the
cause of some confusion in an earlier version of the
paper, let us spell out the possibilities explicitly in
a simple case where there are two domains with sets
M and N of valid bindings, leaving out guards for
simplicity. We will write R(m,n) if linking m and n
by the trace object represented by (m,n) would be a
valid combination: bindings m and n are compatible
according to the transformation. R ⊆M ×N repre-
sents the space of all trace objects a tool could validly
construct: returning a pair (m,n) not in R would be
illegal irrespective of any other pairs returned. Now
a tool may in fact, perhaps, construct not the whole
of R but a trace of R, a relation we will call

T ⊆ R ⊆M ×N

Notice that this distinction between T and R is one
we are introducing for the sake of discussion, not one
that appears in [16]: the reader who thinks there
should be no such distinction will just insist that T =
R in what follows.

Now, what is the force of the uniqueness require-
ment? There are three possibilities. We start with

12

one which seems legalistically possible but which is
clearly too weak to be useful.

1. (∀m ∈M.∀n ∈ N.∀n′ ∈ N
(T (m,n) ∧ T (m,n′)⇒ n = n′)) ∧
(∀n ∈ N.∀m ∈M.∀m′ ∈M
(T (m,n) ∧ T (m′, n)⇒ m = m′))

That is, T is a bijection on the subsets of M and
N which actually occur in its pairs, but it need
not be a bijection on the whole of M and N ; in
fact, it need not even be non-empty.

Since all our conditions have this two-part form,
we will now write only the first and use “and vice
versa” to represent the second.

2. ∀m ∈M.∃ !n ∈ N .T (m,n) and vice versa

That is, T is a bijection on M × N , although
its super-relation R need not be. A tool that
constructed T may have made some content-
ful choices about which bindings to link, from
among a set of valid combinations.

For the avoidance of doubt we may spell out
the uniqueness symbol ! thus: ∀m ∈ M.∃n ∈
N . (T (m,n) ∧ ∀n′ ∈ N.(T (m,n′) ⇒ n = n′))
and vice versa.

3. ∀m ∈ M.∃ !n ∈ N .R(m,n) and vice versa,
which we could spell out just as above.

That is, R is a bijection on M×N ; this condition
does not mention T , but since T is a subrelation
of a bijection it will certainly satisfy 1.

We reject 1. because it permits the tool to pro-
duce “successful” mappings which are empty despite
the presence of valid bindings in the model. At least
for the universal quantification, it seems clear that we
want to quantify over all valid bindings in a model.
For the same reason, condition 3. is only practical
if the tool is required to return the whole of R, not
some arbitrary subrelation. To consider the differ-
ence between 2. and the version of 3. with T = R,
let us return to our examples.

3.5 Application to the example

As discussed in Section 3.3, it is unambiguously ille-
gal for a mapping to contain two trace objects that
both link to the same valid binding in one model.
When the transformation checks the pair of mod-
els (Two,One), it cannot return two trace objects,
each of which links a model element from Two to the
unique model element in One.

The rejected possibility 1. above would correspond
to permitting the mapping to return an empty set
of trace objects, or more interestingly a single trace
object, which links one of the model elements from
Two to the unique model element in One. In each
of these cases, bindings would be unique within the
set of trace objects returned, but we have rejected
this interpretation because under it, any QVT Core
checking transformation would be able to succeed on
any models.

According to 2., and to 3. with T = R, the trans-
formation must return False on (Two,One). Two pro-
vides two valid bindings in the domain m1, that is, two
choices of ModelElement to assign to anM1element;
One provides only one valid binding in the domain
m2; sets with different cardinalities cannot be placed
in bijection, as both 2. and 3. require.

Next consider the transformation running on
(Two,Two). Any pair of valid bindings, one from
each model, is actually a valid combination, since our
transformation imposes no restrictions. That is, R is
not a bijection (it is, rather, the whole of M ×N) so
if we take interpretation 3. with T = R, the trans-
formation must fail. On the other hand, there are
subrelations of R which are bijections on M × N .
Therefore if we take interpretation 2., in which the
tool must construct a bijection T which is a subrela-
tion of R – that is, must construct a set of trace ob-
jects which gives a bijection, from among a possibly
large set of potential trace objects – the transforma-
tion must succeed. If we call the model elements in
Two 1 and 2, the tool may return {(1, 1), (2, 2)} or
{(1, 2), (2, 1)}.

In conclusion, we can find no interpretation of
QVT Core which would render the translated trans-
formation semantically equivalent to the original.
In all interpretations, the translated transformation

13

will return False on (Two,One), whereas the original
QVT-R transformation returned True.

Unfortunately, no implementation of QVT Core
seems to be available. Therefore we cannot inves-
tigate what actual QVT Core tools do.

Could we write a QVT Core transformation which
did have the same behaviour as our simple QVT-R
transformation, perhaps by using more complicated
bindings? Unfortunately not. A moment’s thought
will show that the requirement that valid bindings
correspond one-to-one (even if only in the constructed
trace model) precludes any QVT Core transforma-
tion that could return true on both (One,Two) and
(Two,One) but false on (One,Zero).

Therefore, QVT Core cannot express the semantics
of our QVT-R transformation, so no translation from
QVT-R to QVT Core can be semantics-preserving.
Let us leave QVT Core and use the direct semantics
for QVT-R given in [16] as our basis.

4 A game-theoretic semantics
for checkonly QVT-R

Given a set of metamodels, a set of models con-
forming to the metamodels, a transformation writ-
ten in QVT-R (with simplifications to be explained
shortly), and a direction for checking, we will define a
formal game which explains the meaning of the trans-
formation in the following sense. The game is played
between Verifier and Refuter. Refuter’s aim in the
game is to refute the claim that the check should suc-
ceed; Verifier’s aim is to verify that the check should
succeed. The semantics of QVT is then defined by
saying that the check returns true if and only if Veri-
fier has a winning strategy for the game. If this is not
the case, then (since by Martin’s standard theorem
on Borel determinacy [15] the game we will define
will be determined, that is, one or other player will
have a winning strategy) Refuter will have a winning
strategy, and this corresponds to the check returning
false.

This approach has several advantages. Most im-
portantly, it separates out the specification of what
the answer should be from the issue of how to cal-

culate the answer efficiently. Calculating a winning
strategy is often much harder (in both informal, and
formal complexity, senses) than checking that a given
strategy is in fact a winning strategy. Indeed, it can
be useful to calculate a strategy using heuristics or
other unsound or unproved methods, and then use
a separate process to check that it is winning: this
is the game equivalent of a common practice in for-
mal proof, the separation between the simple process
of proof checking and the arbitrarily hard process of
proof finding. Nevertheless, although this paper does
not address the issue of how winning strategies can
be calculated efficiently, it is worth noting that for-
mulating the problem in this way makes accessible a
wealth of other work on efficient calculation of win-
ning strategies to similar games.7

We may also hope to be able to use the game to
explain the meaning of particular transformations, or
of the QVT-R language in general, to developers or
anyone else who needs to understand it: similar ap-
proaches have proven successful in teaching logic and
concurrency theory.

Finally, a game-theoretic approach is a helpful
framework in which to consider the implications of
minor variations in decisions about what the mean-
ing of a QVT-R transformation should be, since many
such differences arise as minor variations in the rules
of the game.

In order to specify a two-player game of perfect
information, we need, following Definition 2, to pro-
vide definitions of the positions, the legal moves, the
way to determine which player should move from a
given position, and the circumstances under which
each player shall win.

We fix a finite set of models {m1, . . . ,mn}, where
each mi conforms to a metamodel Mi, and a trans-
formation definition given in a simplified version of
QVT-R. Specifically, we say that when and where
clauses are only allowed to contain (conjunctions of
lists of) relation invocations, not arbitrary OCL. We
do not consider extension or overriding of trans-

7For the most complex games we consider here, such work
is collated in the PGSolver project, http://www.tcs.ifi.lmu.
de/pgsolver/. If we insist that the graph of relations should
be a DAG, as discussed later in this section, simpler automata-
based techniques suffice.

14

formations or relations. Further, our semantics is
parametrised over a notion of pattern matching and
relation-local constraint checking: in other words, we
do not give semantics for these, but assume that an
oracle is given to check the correctness, according to
the relevant metamodel, of a player’s allocation of
values to variables, and local constraints such as iden-
tity of values between variables in different domains.
This parameterisation provides a separation of con-
cerns: it allows us to give a semantics of QVT-R
without committing to a particular choice of meta-
modelling or constraint language semantics.

We will first define a game which corresponds to
the evaluation of a QVT-R checkonly transformation
in the direction of one of its typed models. If this
model is the kth, mk, we will call the game Gk. For
ease of understanding we will explain the progress of
the game informally first: Figure 2 defines the po-
sitions and the moves of the game more systemati-
cally. The player whose turn it is to move is encoded
directly as the first element of the current position;
Refuter moves from the initial position. At every
stage, if it is a player’s turn to move, but that player
has no legal moves available, then the other player
wins. As we shall discuss in a moment, we forbid
infinite plays, so this completes the elements needed
for a formal game definition, as listed in Definition 1.

To begin a play of game Gk, Refuter picks a top
relation (call it R) and valid bindings for all patterns
except that from mk, and for any when variables
(that is, variables which occur as arguments in re-
lation invocations in the when clause of R). Notice
that there may be more than one top relation in a
given transformation: the fact that Refuter chooses
which one to play in, so that in order to have a win-
ning strategy Verifier must be able to defeat him re-
gardless of his choice, corresponds to the requirement
that all top relations hold. Notice also that he is re-
quired to pick values which do indeed constitute valid
bindings and satisfy relation-local constraints, as con-
firmed by the oracle mentioned earlier. Play moves
to a position which we will notate (Verifier, R,B, 1),
indicating that Verifier is to move, that the relation
in play is R, that bindings in set B have been fixed,
and that only one of the players has yet played a part
in this relation.

Verifier may now have a choice.

1. She may pick a valid binding for the as-yet-
unbound variables from the mk domain (if any),
such that the relation-local constraints such as
identity of values of particular variables are sat-
isfied according to the oracle. Let the complete
set of bindings, including those chosen by both
players, be B′. (If there are no more variables
to bind, Verifier may still pick this and B′ = B.)
In this case, play moves to a position which we
will notate (Refuter, R,B′, 2) indicating that Re-
futer is to move, that the relation in play is still
R, that the bindings in set B′ have been fixed,
and that both players have now played their part
in this relation.

2. Or, she can challenge one of the relation invo-
cations in the when clause (if there are any),
say S (whose arguments, note, have already been
bound by Refuter). Then play moves to S, and
before finishing her turn, she must pick valid
bindings for all patterns of S except that from
mk, and for any when variables of S. Say that
this gives a set of bindings C, in which the bind-
ings of the root variables of all domains are those
from B, and bindings of the other variables are
those just chosen by Verifier. The new position
is (Refuter, S, C, 1).

If Verifier chose 2., play proceeds just as it did from
(Verifier, R,B, 1) except that, notice, the roles of the
players have been reversed. It is now for Refuter to
choose one of the two options above, in the new rela-
tion S.

If Verifier chose 1., Refuter’s only option is to chal-
lenge one of the relation invocations in the where
clause, say T (whose arguments, note, are bound).
(If there are none, he has no valid move, and Verifier
wins this play.) Then play moves to T , and, before
finishing his turn, Refuter must pick valid bindings
for all patterns of T except that from mk, and for any
when variables of T . Say that this gives a set of bind-
ings D, in which the bindings of the root variables of
all domains are those from B′, and bindings of the
other variables are those just chosen by Refuter. The

15

new position is (Verifier, T,D, 1). Play now continues
just as above.

The final thing we have to settle is what happens if
play never reaches a position where one of the play-
ers has no legal moves available: who wins an infi-
nite play? (Notice that even if there are only finitely
many possible positions, a play can still be infinite:
it would, of course, have to revisit some position in-
finitely often, and this is exploited in practical work
with infinite games. Recall the simulation game ex-
ample from Section 2, which can have infinite plays
even when both processes are finite state.) We may
choose just to forbid this to happen, e.g., by insist-
ing as a condition on QVT-R transformations that
the graph in which nodes are relations and there is
an edge from R to S if R invokes S in a where or
when clause (which we will refer to as the when-where
graph), should be acyclic. There is probably8 a rea-
sonable alternative that achieves sensible behaviour
by allowing the winner of an infinite play to be de-
termined by whether the outermost clause which is
visited infinitely often is a where clause or a when
clause: but this requires further investigation. Note
that [16] has nothing to say about this situation: it
corresponds to infinite regress of its definitions. For
now, we will forbid infinite plays. One way to achieve
this is to declare any QVT-R transformation with a
cyclic when-where graph to be ill-formed. However,
note that even a transformation whose when-where
graph does contains cycles will often not lead to in-
finite plays, because constraints on the metamodels
will often ensure that following such a cycle can be
done only finitely many times, e.g. because it entails
moving up or down a metamodel hierarchy. Since this
paper is not concerned with metamodelling semantics
we will not investigate this further here.

4.1 Discussion of the treatment of
when clauses

Most of the above game definition is immediate from
[16], but the treatment of when clauses requires dis-

8by thinking from first principles about cases in which a
play goes through a when (rsp. where) clause infinitely often,
but only finitely often through where (rsp. when) clauses; or
by intriguing analogy with µ calculus model-checking

cussion. From Chapter 7, ([16], p14): “The when
clause specifies the conditions under which the relation-
ship needs to hold, so the relation ClassToTable needs to
hold only when the PackageToSchema relation holds be-
tween the package containing the class and the schema
containing the table.”

The naive way to interpret this would have been to
say that both Refuter and Verifier choose their values,
and then, if it turns out that the when clause is not
satisfied given their choices, Verifier wins this play.
This interpretation is not useful, however, as it often
gives Verifier a way to construct a winning strategy
which does not tell us anything interesting about the
relationship between the models. When challenged
by Refuter to pick a value for her domain, all she
would need to do would be to pick a binding such
that the when clause was not satisfied. In the case
discussed by [16], whenever Refuter challenged her
with a class, she would reply with any table from a
schema not corresponding to the package of his class,
the when clause would not be satisfied, and she would
win.

So the sense in which a when clause is pre-
condition-like must be more subtle than this. In pro-
gramming, giving a function a pre-condition makes it
easier for the function to satisfy its specification, but
here the idea is rather to restrict Verifier’s choices:
if Refuter chooses a class C in package P , Verifier is
bound to reply not with any table, but specifically
with a table T which is in a/the schema that corre-
sponds to package P .

The sense in which this is pre-condition-like is that
the facts about what packages correspond to what
schemas are supposed to have been pre-computed:
but the order of computation of facts is not something
we need to concern ourselves with here, since we are
not interested in efficiency but only in meaning.

In trying to settle whether we really mean “a
schema” or “the schema” in the paragraph above,
we refer again to Appendix B of [16]. The problem
is that this is not a complete definition. E.g., in or-
der to use it to interpret ClassToTable, we already
need to be able to determine whether, for given val-
ues of a package p and schema s, the when clause when
{ PackageToSchema (p,s) } holds. Informally it
seems that the authors of [16] have (between them)

16

Position Next position Notes

Initial (Verif., R,B, 1) R is any top relation; B comprises valid bindings for all variables from
domains other than k, and for any when variables. B is required to satisfy
domain-local constraints on all domains other than k.

(P,R,B, 1) (P ,R,B′, 2) B′ comprises B together with bindings for any remaining variables. B′ is
required to satisfy domain-local constraints on all domains.

(P,R,B, 1) (P , S,C, 1) S is any relation invocation from the when clause of R; C comprises B’s
bindings for the root variables of patterns in S, together with valid bindings
for all variables from domains other than k in S, and for any when variables
of S. C is required to satisfy domain-local constraints on all domains other
than k.

(P,R,B, 2) (P , T,D, 1) T is any relation invocation from the where clause of R; D comprises B’s
bindings for the root variables of patterns in T , together with valid bindings
for all variables from domains other than k in T , and for any when variables
of T . D is required to satisfy domain-local constraints on all domains other
than k.

Figure 2: Summary of the legal positions and moves of the game Gk: note that the first element of the
Position says who picks the next move, and that we write P for the player other than P , i.e. Refuter = Verifier
and vice versa. Recall that bindings are always required to satisfy relevant metamodel and relation-local
constraints.

two different interpretations of this, perhaps not re-
alising that they are different:

1. the purely relational: the pair (p,s) is
any member of the relation expressed in
PackageToSchema, when it is interpreted using
the very same text which we are now trying to
interpret

2. the operational: the program which is checking
the transformation is assumed to have looked at
PackageToSchema already and chosen a schema
to correspond to package p (recording that choice
using a trace object). According to this view,
we only have to consider (p,s) if s is the very
schema which was chosen on this run of the
checking program.

To see the difference, imagine that there are two
schemas, s1 and s2, either of which could be chosen
as a match for p in PackageToSchema. In the first
interpretation, both possibilities have to be checked
when ClassToTable is interpreted; in the second,

only whichever one was actually used.
In our main game definition, we have taken the

purely relational view. As we have seen in the Sim-
plestMM example – which, recall, had no when or
where clauses and whose semantics were therefore
defined unambiguously by Appendix B – the idea
that there should be a bijective correspondence be-
tween valid bindings is incompatible with Appendix
B. This makes the operational view untenable as far
as we can see, whereas we shall show that we can fol-
low the purely relational view successfully, remaining
compatible with [16]. However, we will shortly (Sec-
tion 7.4) consider a variant of the game which brings
us closer to the operational view, at some cost.

We close this section with an easy lemma which re-
inforces the special interest of when clauses by show-
ing that if they are absent from a transformation,
then a Verifier winning strategy for the game has a
particularly simple form.

Lemma 1. Let Gk be a game based on a QVT-R
transformation which includes no when clauses, and

17

for which Verifier has a winning strategy. Let σ be a
deterministic memoryless winning strategy for Veri-
fier, which is minimal in the sense that σ(u) is defined
only where u is a position, from which Verifier is to
move, which may be reached in a play where Verifier
follows σ. Then every maplet in σ is of the form

(Verifier, R,B, 1) 7→ (Refuter, R,B′, 2)

for some relation R and some sets B, B′ of bindings.
That is, the only kind of thing the strategy does is to
tell Verifier how to complete a given set of bindings
within a given relation of the transformation (row 2
of Table 2): it never instructs Verifier to select a
relation invocation from a when or where class (rows
3 or 4).

Proof. Following the initial move, the position is
(Verifier, R,B, 1) for someR andB. Thereafter, since
there are no when clauses in the transformation, nei-
ther player ever has a legal move of the form shown
in row 3 of Table 2. All subsequent legal moves must
be of the form shown in rows 2 and 4. These moves
always swap Verifier for Refuter or vice versa, while
at the same time swapping 1 for 2 and vice versa.
Therefore every position from which Verifier is to
move has a 1 as its final element, so Verifier’s only
legal moves come from Row 2 of Table 2 and have
the form stated.

5 Examples and comparison
with QVT-R implementa-
tions

In this section we use a family of simple examples
to illustrate the game-based semantics. We go on to
compare the semantics it implements with what is
implemented by ModelMorf.

5.1 A family of examples

We use a metamodel which defines just one metaclass,
ABoolean, which defines just one boolean value. We
denote using T , F , the simplest two models con-
forming to this metamodel, each of which defines one

ABoolean with value true, false respectively. These
models and the metamodel can be downloaded (in a
form suitable for ModelMorf) from the author’s web
page9. For convenience we will refer to the single
model element in each model as tt, ff respectively.

To illustrate the effects of when and where clauses,
we will consider the very simple transformations
shown in Figures 3 to 6, which all use the same two
basic relation definitions but differ in how these are
put together using when and where invocations.

5.2 The examples in our semantics

Running each of our example transformations, on
each of the four possible pairs of models, in each of
the two directions, yields 32 examples. In each case,
the semantics must return true or false: true if the
two models are considered consistent according to the
transformation in the considered direction, false oth-
erwise. In our game-based semantics, the result is,
by definition, true if Verifier has a winning strategy
for the game, otherwise false. That is, a demonstra-
tion that the semantics gives result true on a par-
ticular problem is a winning strategy for Verifier on
the game; a demonstration that the semantics gives
result false is a winning strategy for Refuter on the
game.

First let us see how this works for PwhereQ run
on the pair of models (T, T) in the direction of m2.
Unsurprisingly the result of this checkonly transfor-
mation, according to both our semantics and Model-
Morf, is true, which we will demonstrate by exhibit-
ing a winning strategy for Verifier.

Play begins, as always, at the Initial position from
which Refuter is to move. Reading off from Figure 2,
he has to choose a top relation, and there is only one,
viz. SameValue. He also has to choose valid bindings
from domains other than m2; that is, he must choose
an ABoolean s1 and its value i. Again, he has only
one option. There are no when variables so he is
done; the only possible play so far is

Initial, (Verifier,SameValue, {s1 7→ tt, i 7→ true}, 1)

9via http://homepages.inf.ed.ac.uk/perdita/papers.

html

18

transformation PwhereQ (m1 : BoolMM ; m2 : BoolMM)
{
top relation SameValue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=i};
checkonly domain m2 s2:ABoolean {value=i};
where {FirstIsTrue(s1,s2);}

}

relation FirstIsTrue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};

}
}

Figure 3: Transformation PwhereQ

transformation PwhenQ (m1 : BoolMM ; m2 : BoolMM)
{
top relation SameValue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=i};
checkonly domain m2 s2:ABoolean {value=i};
when {FirstIsTrue(s1,s2);}

}

relation FirstIsTrue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};

}
}

Figure 4: Transformation PwhenQ

19

transformation QwhereP (m1 : BoolMM ; m2 : BoolMM)
{
top relation FirstIsTrue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};
where {SameValue(s1,s2);}

}

relation SameValue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=i};
checkonly domain m2 s2:ABoolean {value=i};

}
}

Figure 5: Transformation QwhereP

transformation QwhenP (m1 : BoolMM ; m2 : BoolMM)
{
top relation FirstIsTrue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=true};
checkonly domain m2 s2:ABoolean {value=i};
when {SameValue(s1,s2);}

}

relation SameValue
{
i : Boolean;
checkonly domain m1 s1:ABoolean {value=i};
checkonly domain m2 s2:ABoolean {value=i};

}
}

Figure 6: Transformation QwhenP

20

What are the legal moves from this position?
There is no when clause so the legal move must come
from line 2 of Figure 2: Verifier has to extend the
set of bindings to include a binding for s2. Notice
that she does not choose a binding for i, even though
it does appear in the m2 domain clause in the cur-
rent relation, because i has already been bound by
Refuter’s choice. She has only one choice for s2, so
there is only one legal move, and this must be the
move that our strategy prescribes. Play continues
from the new position

(Refuter,SameValue, {s1 7→ tt, s2 7→ tt, i 7→ true}, 2)

We see from the final line of Figure 2 that Re-
futer now needs to pick a relation invocation from
the where clause of the current relation – that is,
the invocation of FirstIsTrue. The set of bindings in
the new position includes the already existing bind-
ings for the root variables of patterns in FirstIsTrue,
that is, the bindings {s1 7→ tt, s2 7→ tt} are retained.
Notice, however, that these are the only bindings
that are retained: the binding of i is discarded at
this point. Now Refuter chooses bindings for any
variables other than the root in domain m1, and for
any when variables – but there are none, so we sim-
ply check that Refuter’s trivial “choice” constitutes
a valid binding – which it does, since the value in tt
is true – and we are done. The new position is

(Verifier,FirstIsTrue, {s1 7→ tt, s2 7→ tt}, 1)

Verifier needs to add a binding for i; in our scenario
this binding must be to true, although in fact it’s
unconstrained, giving new position

(Refuter,FirstIsTrue, {s1 7→ tt, s2 7→ tt, i 7→ true}, 2)

At this point, Refuter has no legal move, since
there is no where clause. Therefore Verifier wins this
play. Since at no stage did Refuter have any alterna-
tive choices that might have proved more successful
for him, we can immediately say that Verifier’s win-
ning strategy is

S = {(Verifier,SameValue, {s1 7→ tt, i 7→ true}, 1) 7→
(Refuter,SameValue, {s1 7→ tt, s2 7→ tt, i 7→ true}, 2),

(Verifier,FirstIsTrue, {s1 7→ tt, s2 7→ tt}, 1) 7→
(Refuter,FirstIsTrue, {s1 7→ tt, s2 7→ tt, i 7→ true}, 2)}

In general, of course, a tool might have to search
for a winning strategy, and, whilst a depth-first ex-
ploration of play will certainly work for games with
no infinite plays, much more efficient searches might
be possible. The advantage of the game-based se-
mantics, from the point of view of understandability,
is that it does not matter how the strategy is found.
Given a strategy, it is easy (both cognitively and com-
putationally) to check that it is a winning strategy,
which is what is required.

Next let us consider an example containing a
when clause: PwhenQ run on (F,T) in the di-
rection of m2. This proves even simpler. Play
must begin with Refuter moving from Initial to
(Verifier,SameValue, {s1 7→ ff , s2 7→ tt, i 7→
false}, 1). From here, Verifier has no legal move. She
cannot use line 2 of Figure 2, because (even though
she has no values to bind) she would be required to
ensure the satisfaction of the domain-local constraint
that the value in tt was false, which of course she
cannot do. She cannot use line 3, challenging the
when clause, because she would be required to en-
sure the satisfaction of the domain-local constraint
that the value in ff was true, which again she cannot
do. Therefore, since it is Verifier’s turn to move and
she cannot do so, Refuter wins the play. Refuter has
a winning strategy which consists simply of moving
from Initial to the only possible position.

Now let us go on to summarise the results on the
whole family of examples. Figure 7 shows the results
when the transformations are checked in the direction
of m1. Figure 8 shows the results when the transfor-
mations are checked in the direction of m2.

5.3 Comparison with ModelMorf

Running the set of examples discussed on this section
in ModelMorf yields agreement in 31 of the 32 cases.

21

← (T,T) (T,F) (F,T) (F,F)
PwhereQ V R R R
PwhenQ V R V V
QwhereP V R R R
QwhenP V V V R

Figure 7: Results in the direction of m1. V indicates
that Verifier has a winning strategy, that is, that the
result of the transformation is True; R similarly that
the result is False.

→ (T,T) (T,F) (F,T) (F,F)
PwhereQ V R R V
PwhenQ V R R V
QwhereP V R V V
QwhenP V V V V

Figure 8: Results in the direction of m2

The exception is PwhenQ run on (F,T) in the direc-
tion of m2, where our semantics gives false in contrast
to ModelMorf’s true. On the author’s reporting this
to Sreedhar Reddy (one of those at TATA who has
been closely involved with ModelMorf and who is also
an author of [16]) he confirmed that false is the cor-
rect answer[17], so that this was a bug in ModelMorf.

We have already demonstrated the application of
the game-based semantics in this case (see above).
Expanding the definitions in [16] shows that the re-
sult should be true iff

FirstIsTrue(s1,s2)⇒ s1.value = s2.value

To evaluate this we need to know what
FirstIsTrue(s1,s2) means. Unfortunately, [16]
does not discuss how to evaluate such an expression
– it only defines relations without parameters. That
definition is of the form “for all valid bindings... there
exists a valid binding such that... conditions”. A sen-
sible interpretation of the parameterised case would
therefore seem to be that for all valid completions of
s1 to a valid binding (recalling that a valid binding
has to satisfy domain-local constraints), there should
exist a valid completion of s2 to a valid binding, such
that the conditions hold on those bindings. In other
words, specifying values for certain variables restricts

the scope of the bindings that need to be considered
in the definition; some decisions have already been
made. This seems consistent with the intention of
[16].

In this case, there is no way to complete s1 to
a valid binding, since the definition of FirstIsTrue
insists that the value in s1 should be true, which it
is not. Therefore, the universally quantified formula
is vacuously true, so the implication

FirstIsTrue(s1,s2)⇒ s1.value = s2.value

is false, explaining why the final result of the check-
ing transformation is false, and consistent with the
answer produced by our game-based semantics.

It is encouraging that, on all the cases we have ex-
plored with the exception on the one case which has
been confirmed to be a bug in ModelMorf, our se-
mantics gives the same answers as ModelMorf. This
suggests that our semantics has resolved ambiguities
in [16] in a way compatible with the way the authors
of QVT intended (since several of the same people are
involved in both the document and the tool). Thus
the game-based semantics may be useful as a way
of explaining the intended meaning of QVT-R trans-
formations, and perhaps of exploring further possi-
bilities such as debugging tools, without needing to
argue for a different meaning of transformations.

6 Duality

An intriguing aspect of the QVT-R language is that
it seems that when and where clauses are in a certain
sense dual. As far as we are aware, however, there are
no proven results on this subject in the literature. In
this section we show how the game-based semantics
can help to access provably correct statements along
these lines, and we give an example.

Inspection of the definition of the moves of the
game Gk as shown in Figure 2 shows that it is only in
moving from Initial that we need to specify a player
(Verifier or Refuter) by name: in every other kind of
move, we simply swap or preserve the player, with-
out needing to know whether we started with a Ver-
ifier or a Refuter position. (We may also note that
the Initial move is also the only place in the game

22

definition where it matters whether a relation is or
is not designated a top relation.) Moreover, since
our game definition and strategies are memoryless, it
makes sense to talk about a winning strategy from
a given position, not only from the Initial position.
Immediate from this is the following observation:

Lemma 2. Fix a game Gk. Let P be either Veri-
fier or Refuter, and let P be the other player. In-
dependently, let A be either Verifier or Refuter, and
let A be the other player, and let i be either 1 or 2.
Then P has a winning strategy starting from position
(A,Q,B, i) iff P has a winning strategy starting from
position (A,Q,B, i).

Proof. The same strategy will work in both cases.
More precisely, suppose we are given a winning strat-
egy for P from (A,Q,B, i), that is, a partial map S
from positions to positions which satisfies the con-
ditions to be a winning strategy from (A,Q,B, i).
Construct a new partial map S from positions to po-
sition by replacing A by A and vice versa wherever
they occur. By duality of the game rules, S is a win-
ning strategy for P from (A,Q,B, i).

This lemma can be used to compose what we know
about different parts of a game graph. Here is an
example deliberately constructed to have a simple
proof, intended to serve merely as an example of the
proof technique:

Proposition 1. Fix a set mi of models. Consider
two transformations, T and T ′, which differ only in
their definitions of one relation, their unique top re-
lation, which is not invoked by any other relation; let
T ’s unique top relation be P while T ′’s is P ′. In P ,
there is a when clause that simply invokes relation
Q with arguments si, and there is no where clause.
In P ′, there is a where clause that simply invokes
Q with the same arguments, and there is no when
clause. Moreover, P , P ′ and Q satisfy the following
conditions with respect to the models mi:

1. in each of relations P , P ′, there is a unique
choice of valid bindings for the variables in do-
mains other than mk (satisfying the domain-local
constraints of domains other than mk) and for

the arguments to Q, and these bindings assign
the same values to the arguments of Q;

2. in P there is no valid binding of the variables in
domain mk that, together with the unique choice
of valid binding for the other variables, also sat-
isfies the domain-local constraints on mk;

3. in P ′ there is a valid binding of the variables in
domain mk that, together with the unique choice
of valid binding for the other variables, also sat-
isfies the domain-local constraints on mk;

4. in Q there is a unique choice of valid bindings
for the variables in domains other than mk (sat-
isfying the domain-local constraints of domains
other than mk).

Then the checkonly transformation T run on the set
mi of models in the direction of mk returns true iff
the transformation T ′ run on the same set of models
in the same direction returns false.

Proof. The effect of the properties insisted on is to
ensure that, from Initial, play in the T game in can
only proceed to (Refuter, Q,B′, 1), where B′ is the
unique possible set of bindings, and similarly play in
the T ′ game can only proceed to (Verifier, Q,B′, 1).
From this point, Lemma 2 gives the result, since the
reachable portions of the game graph are indistin-
guishable from those points.

Notice that although we have imposed very strin-
gent conditions on the relations P , P ′, Q, here, it is
permitted that Q invoke other relations that can be
arbitrarily complex. For a concrete example, take T
to be PwhenQ from Figure 4, run in direction m2, the
models to be (F, T), and T ′ to be a variant that re-
places the when clause by a where clause and imposes
no constraints in the top relation.

Very informally, we may say that this result cap-
tures the observation that the transformation “P
where Q” is equivalent to the negation of “P when
Q” where P and P are opposites in a suitable sense
such as the one imposed by the conditions above. Of
course many variants on this result are possible: we
have presented a particularly simple case for purposes

23

of exposition. For example, it is not necessary to in-
sist that there should be a unique set of valid bindings
in each place where we did so, provided that care
is taken to insist that choices and the players who
choose them match up appropriately. Nevertheless,
the need to take care over these aspects intuitively
explains why no really general duality result seems
to hold. We cannot offer any very general result for
translating transformations using when into equiva-
lent transformations using where instead, indepen-
dent of the models to which the transformation is to
be applied. More practical experience with QVT-R
will be required to see what what examples might
actually be interesting, for purposes of efficient im-
plementation or otherwise.

7 Variants of the game

One of the advantages of the game-based approach
to defining semantics is that it provides an intuitive
means of examining the design decisions which have
been made in choosing one semantics over another.
In this section, we examine some alternatives.

7.1 Non-directional variant

Let G be the variant of Gk in which, instead of a di-
rection being defined as part of the game definition,
Refuter is allowed to choose a direction (“once and
for all”) at the beginning of the play. Clearly, Verifier
has a winning strategy for G if and only if she has
a winning strategy for every Gk. This is the way of
constructing a non-directional consistency definition
from directional checks that is specified in [16]. How-
ever, note that it is not automatic that there should
be any simple relationship between the various win-
ning strategies; hence, there may not be any usable
multi-directional trace relationship between the bind-
ings in different models. In order to explain this, we
need a digression on trace objects in QVT-R and how
they relate to the game-based semantics.

7.2 Trace objects and the game-based
semantics

Because QVT-R, as already stated, does not depend
on the definition of any trace objects, the way in
which trace objects are generated when a QVT-R
transformation is executed is not prescribed in [16].
A reasonable initial assumption that a trace object
for QVT-R is similar to the trace objects which are
described in detail for QVT Core, so that there is one
trace class per relation in the transformation, with
attributes corresponding to the variables in each do-
main pattern of the relation. Since, unlike checking
transformations in QVT Core, even QVT-R check-
only transformations have a direction, we might won-
der whether a QVT-R trace object should record
which domain is the target domain, or whether this
is unnecessary. In this subsection we will investigate
this question and the connection between trace ob-
jects and Verifier winning strategies.

Consider a checkonly transformation S run on a
set of models {mi} in the direction of mk. Let the
directional game based on this transformation and
these models be Gk as usual.

Suppose a QVT-R transformation engine finds that
the transformation succeeds and returns a trace ob-
ject whose attribute values link a collection of valid
bindings for the various domains of a particular re-
lation R. What can we infer by looking at the valid
bindings that are linked by the trace object? Surely,
in some suitable sense, the valid bindings are known
to “match” according to S, but the QVT standard
does not say precisely what one should be able to rely
on, given the existence of such a trace object. Obvi-
ously the bindings recorded in the trace object must
be type correct and must satisfy any R-local con-
straints such as equalities between them; but more
than this, we expect them to match in the sense that
proceeding through the transformation, e.g. by in-
voking a relation from R’s where clause, and follow-
ing the transformation wherever it may lead, will not
expose inconsistencies, breaking the match between
the linked valid bindings. This leads naturally to:

Definition 3. Let t be a trace object for relation R
in transformation S as above, and let B′ be the com-

24

plete set of bindings recorded in t. Then t is correct
for S in direction k if the recorded set of bindings
B′ satisfies all the type constraints and domain-local
constraints in R, and further, Verifier has a winning
strategy in Gk starting from (Refuter, R,B′, 2).

(Recall the notion of a winning strategy starting
from a given position from Section 6.)

Verifier can safely use such a correct trace object
to guide her play, as follows: if she is challenged in
relation R with some of the bindings from B′, she can
safely read off the remaining bindings fromB′ and use
them in her response. Formally if play has reached
any (legal) position (Verifier, R,B, 1) where B ⊆ B′,
she may legally move to (Refuter, R,B′, 2), and she
will have a winning strategy from that position. (This
trace object, of course, does not tell her what that
winning strategy is.)

We chose to use B′ as the name for the binding
set here for consistency with the next definition: any
Verifier winning strategy for Gk gives rise to a set of
trace objects:

Definition 4. Let σ be any winning strategy for Ver-
ifier on the game Gk defined from transformation S
on models mi. Then the set of trace objects arising
from σ is as follows. For each maplet in σ that de-
fines a move of the form shown in Row 2 of Table 2,
that is, which is

(Verifier, R,B, 1) 7→ (Refuter, R,B′, 2)

for some relation R and sets of valid bindings B, B′,
we define a trace object in the trace class for R, whose
attributes are given values according to B′.

Lemma 3. All the trace objects arising from a win-
ning strategy are correct.

Proof. Because a winning strategy must prescribe
only legal moves, we have immediately that the
recorded set of bindings B′ satisfies all the type con-
straints and domain-local constraints in the relation.
Moreover, because the strategy is winning, Verifier
must a fortiori have a winning strategy from every
position that her strategy tells her to go to. So Ver-
ifier has a winning strategy from (Refuter, R,B′, 2)
where B′ is the set of bindings taken from a trace
object for R arising from a winning strategy.

Notice that not all of the information in the win-
ning strategy has been recorded in the trace objects.
Trace objects can tell Verifier how to choose match-
ing bindings when she needs to do so, and in practice
this is probably the most valuable part of the trans-
formation engine’s work to save. Any maplets in the
strategy that prescribed moves from Rows 3 or 4 of
Table 2, however, have been discarded. The trace
objects do not tell Verifier under what circumstances
to challenge a relation from a when or where clause.
Thus a set of trace objects is not in general a complete
witness to the success of a checkonly transformation:
even given a complete set of trace objects, some com-
putation is required to use them to reconstruct why
the transformation succeeded. Let us formalise the
notion of a complete set of trace objects.

Definition 5. Let S be a checkonly transformation
run on models {mi} in direction k, and let Gk be
the corresponding directional game. Let T be a set
of correct trace objects. Then T is complete if there
exists some Verifier winning strategy σ for Gk such
that T is the set of trace objects arising from σ.

In particular, if no top relation in S has a when
clause, then a complete set of trace objects must in-
clude a trace object for each combination of valid
bindings of domains other than k of top relations,
and this trace object will give “matching” bindings
of the domain k variables. This is because Refuter’s
initial move might challenge with any such combina-
tion of valid bindings, so any winning strategy must
be able to meet each such challenge. In general, Ver-
ifier’s response to an initial challenge can use a move
from Row 2 (match the bindings) or a move from
Row 3 (challenge a relation from the when clause); if
we rule out when clauses, only the first remains, and
these moves give rise to trace objects.

Note that there is no requirement for such linkage
to be bijective: several trace objects for the same or
different relations may link to the same model ele-
ment in mk.

Note in passing that it is in principle possible for
a transformation engine to determine that a winning
strategy for Verifier exists without actually calculat-
ing one. Therefore it is not inevitable that evaluating
a checkonly transformation on a set of models (and

25

returning true or false) involves generating a set of
trace objects.

So far, there is an inherent direction to our trace
objects: from tuples of model elements in models
other than mk, towards model elements in mk. Next
let us consider whether it is really necessary for QVT-
R trace objects to have (whether implicitly or ex-
plicitly recorded) a direction, that is, a distinguished
target domain. We saw in Section 3 that QVT Core
trace objects do not. Suppose we have a checkonly
QVT-R transformation and two models which are
consistent in both directions. Verifier has a winning
strategy in each direction, so we know how to con-
struct a complete set of trace objects for each direc-
tion. Of course, Verifier might have many different
winning strategies for the game in each direction, giv-
ing rise to different sets of trace objects. Therefore,
we cannot expect that if we have an arbitrary pair of
Verifier winning strategies, one in each direction, they
will give rise to the same set of trace objects. How-
ever, might we be able to arrange, by careful design of
our transformation engine that searches for winning
strategies, that the same set of trace objects would
arise from both strategies? The trace objects in such
a set would be bidirectional: they could safely be read
in either direction, since each trace object is correct
in both directions, having arisen both from a winning
strategy in one direction and from a winning strat-
egy in the other direction. It is not unreasonable to
hope that by picking “compatible” winning strategies
in the two directions this might be possible. A pair
of winning strategies for the two directional games
G1 and G2 is, of course, the same thing as a winning
strategy for the non-directional game G, so we are
asking whether a single set of trace objects can serve
for both halves of a winning strategy for G.

We will answer the question in the negative using
an example derived from one in [10]. To do this, we
need to demonstrate a QVT-R transformation and a
pair of models, such that the transformation returns
true in both directions, and yet where no pair of win-
ning strategies for the directional game can give rise
to the same set of trace objects in each direction.
We will do this by showing that, in one direction,
any winning strategy must give rise to a particular
trace object, while in the other direction, no winning

strategy can give rise to that trace object. Thus, if we
wish to have trace objects corresponding to success
of the transformation in both directions, we will have
to keep two separate sets: we cannot have a single
complete set of bidirectional trace objects.

Figure 9 illustrates two models which conform to
the obvious metamodel MM: a model may include
multiple Containers, each of which references one In-
ter, each of which may reference multiple Things,
each of which has a value. The following QVT-
R transformation evaluates to true on the models
shown, in both directions (both according to [16],
and according to ModelMorf). Indeed, Verifier has
a winning strategy for G: the only interesting choice
she has to make is in G2, where she has to be sure to
reply with a2 (and i2), not a1 (and i1), if Refuter
challenges in ContainersMatch by binding xa to c1
(and xi to inter1).

transformation Sim (m1 : MM ; m2 : MM)

{

top relation ContainersMatch

{

inter1,inter2 : MM::Inter;

checkonly domain m1 c1:Container {inter = inter1};

checkonly domain m2 c2:Container {inter = inter2};

where {IntersMatch (inter1,inter2);}

}

relation IntersMatch

{

thing1,thing2 : MM::Thing;

checkonly domain m1 i1:Inter {thing = thing1};

checkonly domain m2 i2:Inter {thing = thing2};

where {ThingsMatch (thing1,thing2);}

}

relation ThingsMatch

{

s : String;

checkonly domain m1 thing1:Thing {value = s};

checkonly domain m2 thing2:Thing {value = s};

}

}

Now, in the m1 direction there must be a trace ob-
ject that takes a1 to xa, etc.; we must have a trace
object that links a1 to something and there is noth-
ing else it can do. That is, any winning strategy for
Verifier in the m1 direction must give rise to a trace
object which links a1 to xa, because when Refuter
challenges in ContainersMatch by binding a1 to c2,

26

xc:Thing

value="c"

xd:Thing

value="d"

Model m1

value="c"value="c" value="d"

Model m2

xa:Container a2:Container a1:Container

i2:Inter i1:Inter

tc1:Thingtc2:Thing td:Thing

xi:Inter

Figure 9: m1 and m2 are (two-way) consistent according to QVT-R transformation Sim, but no set of
bidirectional trace objects can link them

Verifier has no other legal move than to respond by
binding xa to c1.

Yet in the m2 direction, a trace object which took
xa to a1 would be incorrect. If, when Refuter chal-
lenged in ContainersMatch by binding xa to c1, Veri-
fier responded according to this trace object, by bind-
ing a1 to c2, she would lose: Refuter could drive play
to xd which she cannot match.

To put this another way, the position
(Refuter,ContainersMatch,
{c1 7→ xa, c2 7→ a1, inter1 7→ xi, inter2 7→

i1}, 2)
is a legal and reachable position in both G1 and G2.
In G1, Verifier has a winning strategy from this posi-
tion, and in fact any winning strategy for this game
must tell her to reach this position. In G2, however,
Refuter has a winning strategy from this position.

It might perhaps be objected that in using sets of
trace objects that are complete, we have been too
stringent. However, if we assume that “a set of trace
objects” must include at least matches for valid com-
binations of bindings in domains other than k in top
relations, as discussed above, this is enough to make
this counterexample work. This seems like a minimal
condition on a set of trace objects for us to consider
that it captured the correctness of a transformation.
For example, we certainly do not want to count, as

a set of bidirectional trace objects capturing the cor-
rectness of a transformation, the set that might result
from the following “cheating” procedure: a transfor-
mation engine just generated a set of trace objects in
each direction, and then returned the intersection of
the two sets (whether or not it was empty, or in any
sense complete for the transformation).

In conclusion there can be no single set of trace
objects whose links can be read in either direction,
which could capture the correctness of this QVT-R
transformation.

7.3 Model-switching variant

Let G′ be the variant of G in which, instead of the
first player to move in a new relation being con-
strained to pick a valid binding everywhere except
in the once-and-for-all designated target model mk,
the player is permitted to pick valid bindings for all
but any one domain, making a new choice of which
domain to leave out every time. This is a different
way to define a non-directional variant of the game: it
gives a tighter connection between models, while still
permitting non-bijective transformations. The mod-
ification to the game rules is analogous to the differ-
ence, in concurrency theory, between a game which
defines bisimulation equivalence and that which de-

27

fines simulation equivalence. Formally, looking at the
positions and moves in Figure 2, we would simply
need to modify the positions of the form (...., 1), by
adding an additional integer element k specifying in
which domain the challenge is to be answered, that
is, which domain may not have all its bindings cho-
sen yet. The legal moves that result in such posi-
tions would have to specify that the player making
the move has to choose which domain that shall be.

Having made this modification to the game, what
is the effect semantically? A winning strategy for
Verifier in the game G′ can still be regarded as de-
termining a set of trace objects, as before. In this
sense bidirectional trace objects will exist inG′. How-
ever, the price may be that Verifier too seldom has
a winning strategy: this corresponds to the observa-
tion that for many practical purposes in concurrency,
bisimulation equivalence proves to be too strong an
equivalence. Certainly in the example above, it will
be Refuter who has a winning strategy for G′: he
will first challenge in m2 with a1, and later switch to
m1 where he leads play to the “d” which cannot be
matched starting from a1 in m2.

7.4 Trace-based variant

Let GT
k be the variant of Gk in which, as

play proceeds, we build a global auxiliary struc-
ture which records, for each relation, what
choices of valid binding have been made by
the players (for example, “Package P was
matched with schema S”). It is an error if subse-
quent moves in a play try to choose differently. The
player to complete such an erroneous binding would
immediately lose. Otherwise, play would be exactly
as in Gk, except that it loops: if Refuter cannot go,
he can “restart”, choose a new top relation and play
again, but the old auxiliary structure is retained. If
play passes through infinitely many restarts, Veri-
fier wins. This game would impose one-to-one con-
straints on valid bindings, and construct well-defined
trace objects, at the expense of having a semantics
incompatible with [16] and having curtailed expres-
sivity. Several variants are possible: for example,
if P has been matched by S, we might consider a
multi-directional subvariant in which either match-

ing P with S′ or matching S with P ′ was an error,
along with uni-directional subvariants in which only
one of those would be an error.

8 Related work: research and
tools

We will first describe several strands of related re-
search papers; in Section 8.1 we will describe tool
support for QVT.

We will not attempt to survey the field of bidi-
rectional model transformations in general, let alone
bidirectional programming. A recent multidisci-
plinary report on the state of the art is [5]; the
present author’s [19] also discusses the approaches
most closely related to model transformation. Partic-
ularly interesting is the work of the Harmony group
such as [8], which supports non-bijective bidirectional
transformations within a carefully specified, compo-
sitional and tool-supported framework.

Turning to the related work that formalises QVT-R
semantics, two frequently-occurring features are no-
table.

First, few authors have interested themselves in
QVT-R as a bidirectional language. The majority ap-
proach is to study QVT-R transformations in enforce
mode only, and furthermore with the restriction that
the transformation function does not take a version
of the target model, only source models. The target
model produced depends only on the source model
and the transformation. As discussed in Section 2,
when used bidirectionally, such an approach works
only for those bidirectional transformations which are
actually bijective. We cannot use the “trick” dis-
cussed in Section 2.1 of constructing an interpreta-
tion of checkonly transformations by saying that a
transformation returns True exactly if it would not
have modified the target model, because such trans-
formations do not even look at the target model. We
will call the approach the unidirectional approach to
QVT-R. Of course QVT-R can be used as a unidirec-
tional transformation language; it might be chosen,
for example, because a declarative language was de-
sired, rather than for its bidirectional support. This

28

paper’s concern, however, is to investigate more gen-
eral bidirectional transformations than just the bi-
jective ones, even at the cost of restricting the scope
of the work in other ways, especially restricting (for
now) to checkonly transformations.

Second, there is remarkably little discussion of how
semantics have been validated. The development
of complicated translations into complex target lan-
guages such as Coloured Petri Nets is error-prone,
and besides, one might expect the developer of such a
translation to come across issues with the interpreta-
tion of [16] such as those discussed here. In doing the
work for this paper, it proved invaluable to investi-
gate what the evolving semantics did on many differ-
ent QVT-R transformations, some of which have been
presented here. By contrast, most of the papers we
shall discuss mention only one example of a QVT-R
transformation, generally some simplified version of
the UML to RDBMS transformation from [16]. This
makes it hard to investigate possible disagreements
between them. Perhaps it is also why noone before
the present author appears to have found the contra-
diction between the direct semantics of QVT-R given
in [16] and the translation to QVT Core.

Greenyer and Kindler [12]’s main contribution is a
translation from QVT Core to Triple Graph Gram-
mars (TGGs). TGGs are a reasonably close semantic
match for QVT Core, although there are some prob-
lems which have to be handled, such as that TGGs
have a single correspondence graph in place of QVT
Core’s separate trace class for each relation. The
QVT Core semantics given seems to agree with the
conclusions of Section 3 about how to interpret QVT
Core’s “uniqueness” requirement. The paper also
contains an interesting informal discussion of some
issues that arise when trying to extend the approach
to QVT-R, although it does not provide a semantics
for QVT-R. There is, however, no discussion of the
implications of the fact that QVT-R checkonly trans-
lations have a direction. Given the inherent symme-
try of the TGG correspondence graph, we conjecture
that this approach, if completed, would probably fail
to handle the example of our Section 7.2 naturally.

Romeikat and others [18] translated QVT-R trans-
formations to QVT Operational. Their focus is on
unidirectional use of QVT-R, in which a source model

is transformed into a target model without reference
to an earlier version of the target model. Update
transformations are briefly discussed, and the authors
correctly point out that it is not sufficient to rely sim-
ply on key declarations, and mention some possible
approaches. The implementation does not cover more
than the unidirectional approach: the authors write
“The checkonly mode of Relations is not supported.
For each binding of the root variable of the source
domain, only one binding in the target domain is al-
lowed.”

Garcia [9] formalised aspects of QVT-R in Alloy,
permitting certain well-formedness errors to be de-
tected, but not providing a semantics of QVT-R.

Several authors have worked on giving QVT-R
semantics in terms of coloured Petri nets (CPNs).
These have a token game which is, at first sight, an
attractive match for the flow of control through a
transformation; relations are translated into transi-
tions of the net and places represent metaclasses. Al-
though fairly popular for modelling concurrent sys-
tems, CPNs are relatively complex and their use in
this work becomes much more so when they are ad-
justed to deal with issues such as the absence of neg-
ative conditions for firing transitions.

de Lara and Guerra in [6], for example, propose to
translate QVT-R into coloured Petri nets, and thus
provide it with a semantics in a way which can take
advantage of existing tools and techniques for CPN.
Again, their focus is unidirectional; the paper de-
scribes an idea of how to handle check before enforce
semantics, which the authors conflate with the use
of keys, but not enough information is given to al-
low the reader to infer what their approach would do
on examples other than the one given. They do not
discuss the validation of their translation into CPN,
which is apparently based on the QVT-R to QVT
Core translation. This work does benefit from the
existence of a mature CPN tool, which is combined
to good effect with the Medini QVT parser, but the
implementation does not include their idea for CBE
semantics. The authors point out that the use of
CPN tools enables them to investigate questions tra-
ditional in the Petri-net based modelling community,
given in Petri net terms, such as whether places are
bounded and whether transformations are confluent

29

(deterministic). This enables them to identify restric-
tions that they need to impose on the class of transi-
tions handled; as usual, permitting arbitrary OCL in
transformations, as technically allowed in QVT-R, is
not sensible for bidirectional transformations.

Another paper in this tradition is [26] which dis-
cusses using CPN theory as implemented in a model
transformation framework called TROPIC to pro-
vide debugging facilities for QVT-R transformations.
Again, the paper addresses only the unidirectional
use of QVT-R.

A different approach is to giving semantics to
QVT-R is to use algebraic specification, as exempli-
fied by [3], which describes the MOMENT-QVT tool
which will be discussed in the next subsection. This
work, too, addressed only the unidirectional use of
QVT-R.

In this paper we have, by considering checkonly
transformations, focused on the use of QVT-R to
check consistency between models, where a specific
relevant notion of consistency is embodied in each
transformation. Although we have chosen to focus on
checkonly transformations more because understand-
ing their semantics is a pre-requisite to understand-
ing the semantics of the QVT-R language in general,
than because of any special interest in consistency
checking per se, we should mention other work in
this area. For example, Egyed in [7] discusses how
to check for common types on inconsistency in UML
models specifically, with a focus on efficiency. A re-
cent thorough survey of approaches to consistency
management in UML models is [14]. In fact, this pa-
per proposes using QVT-R to capture the different
notions of consistency used by various authors. It
does not address the semantics of QVT-R itself; in-
stead, the specifications actually used are written in
a language called lQVT-Maude (“like-QVT Maude”)
which incorporates certain features of QVT.

On a slightly different note, [4] discusses how to
deduce OCL constraints from a QVT-R (or Triple
Graph Grammar) specification, as an aid to increas-
ing confidence in the correctness of the transforma-
tion. The approach is promising; undoubtedly, we
will need connections between model transformations
and simpler, limited specifications of them such as
these constraints. For each relation in a QVT-R spec-

ification certain key constraints can be derived, hav-
ing the “for all-there exists” form we would expect,
and these should correspond naturally to statements
that Verifier has a winning strategy from a partic-
ular reachable game position. However, a weakness
of the work is a lack of precision in the definition of
the supporting constraints that say when a relation
is “enabled”. For top relations, we are just told (Def-
inition 9 of [4]) that these “are derived following the
same procedure described for TGG rules”; however,
it is not clear to the present author how to adjust that
procedure for QVT. For non-top relations, where the
question is more interesting, the paper appears to
lack any definition (it is used in Definition 10 but not
defined there). There is an example (the usual UML
to RDBMS) but this is not enough to enable a closer
comparison.

There is a vast literature on the application of
games to various logic-related problems in theoret-
ical computer science: a good survey is [11]. The
most strand most relevant to this paper is surveyed
in [23].

A connection which might be interesting to ex-
plore further is that with games for refinement, such
as [2]. In this work a system is viewed as a col-
lection of agents, obeying contracts. Properties of
the system and refinement possibilities are investi-
gated by partitioning the agents into a set of friendly
(“angelic”) agents and a complementary set of un-
friendly (“demonic”) agents, and investigating under
what circumstances the angelic group has a winning
strategy for a game which is defined so as to cap-
ture the achievement of a goal of interest. As with
the present work, the game presentation supports an
intuition understanding of the situation while being
fully rigorous. On the other hand, the structuring
of the systems involved and the nature of behaviour
appears to be quite different from what we have in
model transformations, so this would require investi-
gation.

In modelling, the GUIDE tool [24] uses games
to support design exploration and verification. The
game itself can be modified as a design model and its
specification co-evolve.

30

8.1 QVT tools

There are two main tools that aim to support QVT
Relations. These are ModelMorf from TATA Consul-
tancy, and Medini QVT from IKV++.

ModelMorf is a command-line tool that takes mod-
els, metamodels and QVT transformations as file ar-
guments. It is used by TATA consultancy and is
made available for academic use10. Although TATA
uses the tool internally, it currently has no plans to
make the tool available commercially [1]. TATA, in
the persons of Sreedhar Reddy and R. Venkatesh, has
contributed to the development of the QVT standard,
and it is therefore not surprising to find that Model-
Morf conforms closely to the published specification.
It is therefore the main tool to which we refer in this
work.

Medini QVT, due to its greater vis-
ibility on the Web, Eclipse integra-
tion, debugging facilities and other
developer-friendly features, has attracted rather
more attention than ModelMorf. Unfortunately
for us, although understandably, it has not taken
faithfulness to the QVT specification as a major
design goal, and its semantics are very significantly
divergent from both the QVT specification and
ModelMorf. For example, as explained in IKV++’s
slides [13], Medini QVT deliberately uses deletion
differently from either [16] or ModelMorf.

Medini QVT also significantly restricts the class of
bidirectional transformations on which it expects to
behave reasonably, compared with [16] and Model-
Morf. A representative quotation from its documen-
tation11 is:

However to achieve meaningful bidirec-
tionality, the relations of a transformation
must be left and right unique !!. To explain
this with our example, consider a model con-
taining only one package with name MyPack-
age. If umlToRdbms is executed in direction

10from http://121.241.184.234:8000/ModelMorf/

ModelMorf.htm
11Medini QVT Guide, available as online help from the RCP

version of Medini QVT, version 1.6, section QVT Relations
Language, Bidirectionality

rdbms thereby creating a schema, then exe-
cuting it back in the uml direction should map
to exactly the same MyPackage, irrespective
of whether it was executed in the context of
traces or not !!.

In mathematics, a relation T ⊆ A×B is left unique
if for every a ∈ A there is exactly one b ∈ B such
that T (a, b) holds; thus, a relation is left and right
unique exactly when it is a bijection. In this case,
the bijection is presumably between valid bindings of
domain patterns. Because relations occur in the con-
texts of other relations – QVT-R relations are not the
same as mathematical relations – there is still some
ambiguity. For example, if in the UML to RDBMS
example, there are two tables with the same name as
a given class, but only one of them is in the schema
of the class’s package – or alternatively, only one of
them will permit AttributeToColumn to be satisfied
– does this violate the condition or not? Most likely,
in terms of our games, the intended restriction is that
in moves of the form shown in Row 2 of Table 2, Veri-
fier should only ever have one valid move available to
her, so that her strategy will not in fact need to record
what choice she should make. Although this is remi-
niscent of the discussion in Section 3 of the restriction
on how valid bindings are linked in QVT Core, there
is, as discussed in that section, no corresponding re-
striction in [16] for QVT-R; imposing one restricts the
range of transformations that can be expressed. As a
trivial example, we saw in Section 3, this restriction
makes it impossible to express the transformation in
Figure 1. Realistic examples are also easy to imagine.
For example, suppose a testing tool offers the facil-
ity to synchronise a collection of objects representing
unit tests with a module diagram of the system under
test. Suppose each test object records the name of
the module it tests as the value of an attribute. Sup-
pose the consistency condition is that there is to be
at least one test for every module, and that all mod-
ule names occurring in test objects should actually
be modules of the system. Unless we modified the
test objects’ metamodel, which might be impossible
or undesirable, the QVT-R relation we wrote would
not be bijective: in the direction of the test objects,
it would match a module with any test for that mod-

31

ule, and there could be many. (However, requiring
each relation in a transformation to be bijective does
not, we should state clearly, force the transformation
as a whole to be bijective.)

A further observation is that when a QVT-R trans-
formation is run in Medini QVT, the order in which
the relations are written in the transformation file
is significant. Reordering relations sometimes causes
Medini QVT to give different results when the trans-
formation is run. (This is anecdotal: I have observed
the effect and understand that others have too, but
I am not sure precisely why, or under what circum-
stances, Medini QVT behaves differently with differ-
ent relation orderings.) In [16], however, order of re-
lations is not semantically significant (indeed, there
is an equivalent graphical form for transformations in
which it may not even be possible to see what order
a transformation writer used), and in ModelMorf I
have not observed order to matter.

Besides these semantic considerations, Medini
QVT does not provide a “checkonly” mode for its
transformations: if two models are not consistent ac-
cording to the transformation, it is not possible to
cause Medini QVT to say so without modifying the
target model12 In summary, despite its relative pop-
ularity and the likelihood that it is useful in practice,
Medini QVT is best regarded as a tool which does
not implement the OMG language QVT-R, but im-
plements an alternative semantics for the same syn-
tax.

MOMENT-QVT was a research prototype tool,
based on an algebraic specification approach using
Maude, described in [3]. It provided partial sup-
port for QVT-R, but this did not include support
for checkonly transformations. Like so much of the
research mentioned on QVT-R, it only supported en-
force transformations in which a target model is pro-
duced from some source models without reference to
a previous version of the target model; that is, it is
in effect a unidirectional approach.

As this discussion shows, the current landscape of
QVT-R tools is not such as to encourage a belief
that the language has a bright future. ModelMorf,

12At the time or writing this is Ticket 12 against the engine,
dated 2008-03-25.

the only tool which is currently available and faith-
ful to the OMG standard, is neither open source nor
commercially marketed. Perhaps this is not surpris-
ing, given the issues that still exist concerning the
semantics of the language, particularly when used
bidirectionally. The fact that the Medini QVT trans-
formation engine is available under an open source
licence means that it would be possible to create and
distribute a semantically modified version, however,
even if IKV++ prefers to retain their own semantics.

There does not seem ever to have been a serious
implementation of the QVT Core language. Vari-
ous sources refer to a pre-release of Compuware Op-
timalJ, but OptimalJ no longer exists.

The QVT Operations language is not relevant to
this paper, so we will not discuss its tool support.

9 Conclusions

We have presented a game-theoretic semantics of a
subset of QVT-R checkonly transformations, based
on the direct semantics in [16]. This semantics, al-
though well short of a complete semantics for QVT-
R, nevertheless goes beyond the state of the art, by
carefully specifying the meaning of checkonly trans-
formations which need not be bijective nor consist
of bijective relations. This generality is important
in MDD, in which the actual target model depends
on decisions made by the people concerned with that
model, and not just on the source model. As we have
discussed, as soon as a bidirectional transformation
admits more than one possible model which is consis-
tent with a given model, it becomes unacceptable to
model it simply as a pair (or set) of functions, each
taking one or more source models and producing a
fresh target model without taking into account the
pre-transformation state of the target model. It is
essential that, as in [16], the execution of a transfor-
mation involves examination of all relevant models,
even though only one may be modified.

Formalising this is challenging, but any formalisa-
tion will necessarily embody a formal definition of
consistency: after the application of an enforcement
transformation, the models must be consistent ac-
cording to the transformation (in the terminology of

32

[21], the transformation must be correct), and an en-
force transformation will make no changes if and only
if the models are consistent according to the trans-
formation (the transformation must be hippocratic).
Understanding checkonly transformations, therefore,
is prerequisite to understanding general transforma-
tions, and this is the main contribution of this paper.

We justified our choice to ignore the translation to
QVT Core by pointing out a fundamental incompat-
ibility between the two languages. We have demon-
strated that QVT-R can express a transformation,
whose meaning is unambiguously defined by the di-
rect semantics of QVT-R, yet which cannot be ex-
pressed in QVT Core. This remains true even when
we consider as wide as possible a range of interpreta-
tions of the QVT Core semantics; in the course of our
unsuccessful attempt to reconcile the two languages,
we discussed three different interpretations of QVT
Core’s uniqueness requirements for bindings. There-
fore no translation from QVT-R to QVT Core can be
semantics-preserving. In particular, the translation
given in [16] is not semantics-preserving and should
not be used as part of the definition of QVT-R.

We have compared the semantics for checkonly
QVT-R defined here with that embodied in Model-
Morf, and showed that the two are consistent; we
have discussed the fact that Medini QVT uses a dif-
ferent, non-standard semantics. We have briefly dis-
cussed variants of the game, demonstrating in the
process that bidirectional trace objects may not ex-
ist. This provides an interesting contrast between
QVT-R and triple graph grammars, with their single
bidirectional correspondence graph.

Although we have focused specifically on QVT-R,
this is also, as far as we are aware, the first time
that a game approach has been used to give seman-
tics to a model transformation language. We have
demonstrated that this is feasible and that it permits
reasoning about properties of the language.

Acknowledgements I would like to thank the ref-
erees, and the developers of the QVT-R tools men-
tioned for answering my various enquiries.

References

[1] TATA Consultancy Services Asha Rajbhoj. Per-
sonal communication, 25th May 2010.

[2] Ralph-Johan Back and Joakim von Wright. Con-
tracts, games, and refinement. Information and
Computation, 156(1-2):25 – 45, 2000.

[3] Artur Boronat, José A. Carśı, and Isidro Ramos.
Algebraic specification of a model transforma-
tion engine. In Luciano Baresi and Reiko
Heckel, editors, Fundamental Approaches to
Software Engineering, 9th International Confer-
ence, FASE 2006, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of
Software, ETAPS 2006, Vienna, Austria, March
27-28, 2006, Proceedings, volume 3922 of Lec-
ture Notes in Computer Science, pages 262–277.
Springer, 2006.

[4] Jordi Cabot, Robert Clarisó, Esther Guerra,
and Juan de Lara. Verification and validation
of declarative model-to-model transformations
through invariants. Journal of Systems and Soft-
ware, 83(2):283–302, 2010.

[5] Krzysztof Czarnecki, J. Nathan Foster, Zhen-
jiang Hu, Ralf Lämmel, Andy Schürr, and
James F. Terwilliger. Bidirectional transforma-
tions: A cross-discipline perspective. grace meet-
ing notes, state of the art, and outlook. In
Richard F. Paige, editor, Theory and Practice
of Model Transformations, Second International
Conference, ICMT 2009, Zurich, Switzerland,
June 29-30, 2009. Proceedings, volume 5563 of
Lecture Notes in Computer Science, pages 260–
283. Springer, 2009.

[6] Juan de Lara and Esther Guerra. Formal sup-
port for qvt-relations with coloured petri nets. In
Andy Schürr and Bran Selic, editors, Proceedings
of MODELS’09, volume 5795 of Lecture Notes
in Computer Science, pages 256–270. Springer,
2009.

[7] Alexander Egyed. Instant consistency checking
for the uml. In In: Proceeding of the 28th In-

33

ternational Conference on Software Engineering,
pages 381–390, 2006.

[8] J. Nathan Foster, Michael B. Greenwald,
Jonathan T. Moore, Benjamin C. Pierce, and
Alan Schmitt. Combinators for bi-directional
tree transformations: A linguistic approach to
the view update problem. ACM Transactions on
Programming Languages and Systems, 29(3):17,
May 2007.

[9] Miguel Garcia. Formalization of QVT-Relations:
OCL-based Static Semantics and Alloy-based
Validation. In Proceedings of the Second Work-
shop on MDSD Today, pages 21–30, October
2008.

[10] R.J. van Glabbeek. The linear time – branching
time spectrum I; the semantics of concrete, se-
quential processes. In J.A. Bergstra, A. Ponse,
and S.A. Smolka, editors, Handbook of Process
Algebra, chapter 1, pages 3–99. Elsevier, 2001.

[11] E. Grädel, W. Thomas, and T. Wilke, editors.
Automata, Logics, and Infinite Games: A Guide
to Current Research, LNCS 2500. Springer,
2002.

[12] Joel Greenyer and Ekkart Kindler. Compar-
ing relational model transformation technolo-
gies: implementing query/view/transformation
with triple graph grammars. Software and Sys-
tem Modeling, 9(1):21–46, 2010.

[13] Jörg Kiegeland and Hajo Eichler. medini
QVT workshop. http://projects.ikv.de/
qvt/downloads/22, February 2008. Slides pre-
sented by ikv++ technologies ag at the QVT
Workshop in Enschede, Telematica Instituut.

[14] Francisco J. Lucas, Fernando Molina, and Am-
brosio Toval. A systematic review of uml model
consistency management. Information and Soft-
ware Technology, 51(12):1631 – 1645, 2009.

[15] Donald A. Martin. Borel determinacy. Annals
of Mathematics. Second series, 102(2):363–371,
1975.

[16] OMG. MOF2.0 query/view/transformation
(QVT) version 1.1. OMG document
formal/2009-12-05, 2009. available from
www.omg.org.

[17] Sreedhar Reddy. Personal communication, 26th
November 2009.

[18] Raphael Romeikat, Stephan Roser, Pascal
Müllender, and Bernhard Bauer. Translation
of QVT relations into QVT operational map-
pings. In ICMT ’08: Proceedings of the 1st inter-
national conference on Theory and Practice of
Model Transformations, pages 137–151, Berlin,
Heidelberg, 2008. Springer-Verlag.

[19] Perdita Stevens. A landscape of bidirectional
model transformations. In Generative and
Transformational Techniques in Software En-
gineering II, volume 5235 of Lecture Notes in
Computer Science, pages 408–424. Springer,
2008.

[20] Perdita Stevens. Towards an algebraic theory
of bidirectional transformations. In Proceed-
ings of the International Conference on Graph
Transformations, ICGT’08, volume 5214 of Lec-
ture Notes in Computer Science, pages 1–17.
Springer, September 2008. invited paper.

[21] Perdita Stevens. Bidirectional model transfor-
mations in QVT: Semantic issues and open ques-
tions. Journal of Software and Systems Modeling
(SoSyM), 2009. to appear.

[22] Perdita Stevens. A simple game-theoretic ap-
proach to checkonly QVT Relations. In Proceed-
ings of the International Conference on Model
Transformations, ICMT’09, Lecture Notes in
Computer Science. Springer, June 2009.

[23] Colin Stirling. Bisimulation, model check-
ing and other games. In Notes for
Mathfit Instructural Meeting on Games
and Computation, 1997. Available from
http://homepages.inf.ed.ac.uk/cps/mathfit.ps.

34

[24] Jennifer Tenzer and Perdita Stevens. GUIDE:
Games with UML for interactive design explo-
ration. Journal of Knowledge Based Systems,
20(7), October 2007.

[25] Manuel Wimmer, Gerti Kappel, Johannes
Schönböck, Angelika Kusel, Werner Retschitzeg-
ger, and Wieland Schwinger. A petri net
based debugging environment for qvt relations.
In ASE 2009, 24th IEEE/ACM International
Conference on Automated Software Engineering,
Auckland, New Zealand, November 16-20, 2009,
pages 3–14. IEEE Computer Society, 2009.

[26] Manuel Wimmer, Angelika Kusel, Johannes
Schoenboeck, Gerti Kappel, Werner Rets-
chitzegger, and Wieland Schwinger. Reviving
qvt relations: Model-based debugging using col-
ored petri nets. In MODELS ’09: Proceed-
ings of the 12th International Conference on
Model Driven Engineering Languages and Sys-
tems, pages 727–732, Berlin, Heidelberg, 2009.
Springer-Verlag.

35

