
What has
mathematics

to do with
software engineering?

Perdita Stevens
Professor of Mathematics of Software Engineering

University of Edinburgh

February 2016

1966

I was born.

By 1968, there was a software crisis.

What is software? What is a software crisis?

Software: the parts of a computer you can’t break with a hammer.

Software crisis: not (just) about software; not (just) a crisis.

Making good software is slow, difficult and expensive.

The origin of the term “software crisis”

seems to have been the 1968 NATO Conference on Software
Engineering.

That was not the origin of “software engineering”, quite.

Earliest use I know – thanks to Bertrand Meyer – is by Anthony A.
Oettinger, then ACM President, in August 1966.



Was the software crisis a mathematicians’ conspiracy?

Looking first at the origins of the “software crisis” I note
that this specific phrase appears only in editorial material
[...] not in any of the quoted dialog between participants.

Thomas Haigh

I thus identify the editors of the volumes as key agents in
its original promulgation, but find that computer scientist
Edsger Dijkstra was responsible for its more widespread
adoption in the 1970s during a quixotic campaign to
evict almost all practicing programmers from their jobs
and replace them with mathematicians.

http://tomandmaria.com/Tom/Writing/SoftwareCrisis_SofiaDRAFT.pdf

Dijkstra quotation from 1968 NATO conference

We, in the Netherlands, have the title Mathematical
Engineer. Software engineering seems to be the activity
for the Mathematical Engineer par excellence. This seems
to fit perfectly. On the one hand, we have all the aspects
of an engineering activity, in that you are making
something and want to see that it really works. On the
other hand, our basic tools are mathematical in nature.

I want to add another question or remark to your list.
You are right in saying that lots of systems really work,
these are our glimmer of hope. But there is a profound
difference between observing that apparently some people
are able to do something, and being able to teach that
ability.

Mathematical in nature?

[M]athematics may be defined as the subject in which we
never know what we are talking about, nor whether what
we are saying is true.

Bertrand Russell

Mathematicians are like Frenchmen: whatever you say to
them they translate into their own language and
forthwith it is something entirely different.

Johann Wolfgang von Goethe

Mathematical in nature?

A mathematician is a machine for turning coffee into
theorems.

Alfréd Rényi (via Paul Erdős)

M : C → Th

Hence

A comathematician is a machine for turning cotheorems
into ffee.

M : Th→ C

http://tomandmaria.com/Tom/Writing/SoftwareCrisis_SofiaDRAFT.pdf


Mathematical in nature?

M : C → Th
−→
M : C → Th

−→
M : C × Th→ Th

M : Th→ C

←−
M : Th→ C

←−
M : C × Th→ C

M(c, th)⇔ (cold(c) ∧ false(th)) ∨ (hot(c) ∧ true(th))

But seriously...

Let’s go with:

Mathematics is the study of patterns.

just about everyone: “About 26,600 results”

Software is chock full of patterns!

So perhaps: software engineering is a branch of applied
mathematics.

1976

My father published a book.
I wanted to be a mathematician.
There was a software crisis.

Plus ça change



plus c’est la même chose but at least it got me mentioned in print

Also in 1976 Mathematical thinking applied to physics...

deal with multiple ways in

handle uncertainty

pick an explicit abstraction

identify what you don’t
understand

and what your options are.

Mrs Diane Perry



1986

I was reading maths.

There was a software crisis.

Some especially important people: Cambridge

Martin Hyland Keith Carne

Julian Bradfield Graham Weetman Elsa Gunter

0 1
0

0
0

0
0
0

1
0
0

1
1
0

2
1
0

0
0
0
0

1
0
0
0

1
1
0
0

2
1
0
0

1
1
1
0

2
1
1
0

2
2
1
0

3
2
1
0

etc.

Some especially important people: Warwick

Sandy Green

Some especially important people: BT Glasgow

Tony Hall



H

B2.1

B2

B2.2

g() h()

B1

foo(x)/c.mung()

1996

I was lecturing software engineering.

There was a software crisis.

1996: Dagstuhl on History of Software Engineering

Peter Shapiro:

In the 1960s, the efficient and timely production and maintenance
of reliable and useful software was viewed as a major problem. In
the 1990s, it is still considered a major problem. The “software
crisis” which was declared three decades ago persists, assuming it
makes any sense to speak of a thirty year crisis. Although most
would admit to some amelioration of the “crisis,” steadily
increasing requirements and ambitions have helped sustain it.

At the NATO conferences of the late sixties, the solution to the
“crisis” was declared to be “software engineering.” This, however,
begged a number of questions. What is the nature of software as a
technological medium? How does software development compare
and contrast with other areas of technological practice. What is
engineering? Is it sensible to speak of engineering software?

Answering these questions has been a difficult and tempestuous
process which continues to this day.

2006

I was... doing lots of things

There wasn’t really a software crisis any more.

What had happened?



The Rise and Fall of the Software Crisis

https://books.google.com/ngrams/

Some contributors to the fall

https://books.google.com/ngrams/

Some non-contributors

https://books.google.com/ngrams/

2016

Students have no longer heard of “the software crisis”, and yet...

https://books.google.com/ngrams/
https://books.google.com/ngrams/
https://books.google.com/ngrams/


Software crisis, 2016 version

http://www.cio.co.uk/insight/workforce-development/it-skills-shortage-is-hurting-uk-companies/
http://techcrunch.com/2015/06/09/software-is-eating-the-job-market/

Seller’s market...

(Artist’s impression)

...hard for buyers

http://www.cio.co.uk/insight/workforce-development/it-skills-shortage-is-hurting-uk-companies/
http://techcrunch.com/2015/06/09/software-is-eating-the-job-market/


So need to increase supply

http:

//www.ndtv.com/world-news/five-year-olds-learn-coding-as-britain-eyes-digital-future-684199

Conclusion

Pace Dijkstra, software engineering is more than mathematical
engineering;

solving the software crisis required some new ideas.

But now we understand how to build software, and the only
remaining problem is that we don’t have enough software
engineers.

Teach programming in school, and fund lots of SE students, and
we’ll fix that.

Questions?

I Think You’ll Find
It’s a Bit More Complicated

Than That

- Ben Goldacre

Below the headlines...

This is backed up by employers such Laterooms.com CTO Stuart
Hughes, and Mark Holt, CTO at thetrainline.com. Holt explained
recently: “We have a big website and we process an enormous
amount of transactions. But, there is a shortage of ’really talented’
developers. We have vacancies for as many developers as we can
recruit and are receiving many applications for these roles. But
while we have been recruiting one or two developers a month for
full-time jobs, we are eager to recruit even more - but haven’t been
able to because of a dearth of talent.”

http://www.cio.co.uk/insight/workforce-development/it-skills-shortage-is-hurting-uk-companies/

http://www.ndtv.com/world-news/five-year-olds-learn-coding-as-britain-eyes-digital-future-684199
http://www.ndtv.com/world-news/five-year-olds-learn-coding-as-britain-eyes-digital-future-684199
http://www.cio.co.uk/insight/workforce-development/it-skills-shortage-is-hurting-uk-companies/


High unemployment among CS graduates

http://blog.hefce.ac.uk/2015/07/08/

unemployment-among-computer-science-graduates-what-does-the-data-say/

High demand for the best CS graduates

While graduates from computer science degrees are more likely to
be unemployed, the data also shows that computer science
graduates who are in work have among the highest average salaries.

Indeed, what our students can do is amazing.

https://www.thetechpartnership.com/news-events/news/

hesa-data-reveals-computer-science-graduate-unemployment-is-double-the-average/

Mismatch? What mismatch?

Perception is that too few software engineers have all the skills
necessary.

There are many opinions∗ on why that is, and what should be done
about it.

They boil down to:

Talent is innate: we just need more potential software
engineers to choose from! Get 5yos coding, graduate more
students!

Talent is taught: universities aren’t teaching the right things!
Teach them Powerpoint/Spring/functional
programming/MATLAB/your favourite silver bullet here!

Observation: SE success is at least correlated with maths success.

* It’s complicated. Shadbolt review...

Maths and...

“Talented” developers must be excellent at

rigorous computational thinking and

using current technologies and

business acumen and

“soft” skills and

your desideratum here

Ability to abstract, reason, think computationally is essential: and
this is mathematics.

http://blog.hefce.ac.uk/2015/07/08/unemployment-among-computer-science-graduates-what-does-the-data-say/
http://blog.hefce.ac.uk/2015/07/08/unemployment-among-computer-science-graduates-what-does-the-data-say/
https://www.thetechpartnership.com/news-events/news/hesa-data-reveals-computer-science-graduate-unemployment-is-double-the-average/
https://www.thetechpartnership.com/news-events/news/hesa-data-reveals-computer-science-graduate-unemployment-is-double-the-average/


If the limiting factor is maths...

then we have a software crisis indeed.

Here at Edinburgh, we are fortunate to be able to recruit very
strong students, from across the world, who are very good at
maths – and yet, many struggle with mathematical thinking.

Innate or taught? Hardly matters: we draw on thousands of years’
experience teaching maths, we’re not going to improve radically
now.

So while this is part of what’s needed the “talent” recruiters want
will never exist in the quantities needed.

We cannot solve this software crisis by growing many more
mathematical engineers.

We need to change the game.

1952

Picture: Wikipedia

1902

Picture: Wikipedia. https://commons.wikimedia.org/wiki/File:

Telefonister,_Stockholms_telefonsstation_-_Nordiska_Museet_-_NMA.0037077.jpg

1886: the telephone crisis begins

William H. Preece, Engineer in Chief of the British General Post
Office said that

if the growth of telephone subscribership continued, by the year
2000 every woman in Great Britain would have to be a telephone
operator.

The problem had come up fast: ten years earlier he had opined that

the telephone might be all well and good for the United States but
that it would never catch on in Great Britain because the country
has an adequate supply of messenger boys.

(Both as reported by John Cadogan, Director General, Research Councils of the UK... complex source history!)

https://commons.wikimedia.org/wiki/File:Telefonister,_Stockholms_telefonsstation_-_Nordiska_Museet_-_NMA.0037077.jpg
https://commons.wikimedia.org/wiki/File:Telefonister,_Stockholms_telefonsstation_-_Nordiska_Museet_-_NMA.0037077.jpg


Fortunately for me...

Preece was wrong both times.

Photo of a working Strowger exchange at Catford, UK. Photo by Martin Loach

https://commons.wikimedia.org/wiki/File:Catford_Strowger_Switch.gif

A hundred years later

”BDUK Broadband (14626513882)” by btphotosbduk - BDUK Broadband. Licensed under CC BY 2.0 via

Commons

I did go to work for BT

but as a systems and software engineer.

Can we save our five year olds

from having to be programmers?

Or worse, mathematicians?

https://commons.wikimedia.org/wiki/File:Catford_Strowger_Switch.gif


How did software get so good without x?

https://books.google.com/ngrams/

Engineering?

Software Engineering was invented as a provocative word
without meaning (like “threatened by peace” or
“deafening with silence”)

Jochen Ludewig, Software Engineering – Why it Did Not Work, 1996

Definition he was criticising:

The application of a systematic, disciplined, quantifiable
approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.

IEEE 610.12

“not a definition, but a goal”

Why is software engineering hard?

Uncertainty.

data input – e.g. what value will the function be called on?

interactions – e.g. in what order will the user press the
buttons?

interleavings – e.g. which thread will win the race?

change – e.g. what will the customer want next week?

Thinking about large trees of possibilities is really hard.

Origins of MDD

Remember this?

https://books.google.com/ngrams/


That paper introduced a modelling language... ... and note the caption!

Contribution of modelling and OO

Both modelling and object orientation go back to the 1960s, but
boomed together in the 1990s.

abstraction: separation of concerns

structure the software around relatively stable things.

Model-driven development

Definition

A model is an abstract, usually graphical, representation of some
aspect of a system.

Modelling already useful even if models are completely informal.

Definition

MDD is software development in which models are important.

Motivation

Manage information overload, by separating concerns and providing
representations suitable for each set of decisions.



Today’s MDD: models as formal artefacts

Those who embrace MDD are typically:

building graphical models in modelling tools;

in a general purpose modelling language such as UML or
SysML;

or in a domain-specific modelling language, graphical or
textual;

maybe, generating – usually skeleton – code from the model;

maybe analysing the model;

maybe generating documentation;

just possibly doing some round-tripping.

Ideal MDD

Each stakeholder works with a model showing only their concerns.

When their requirements and solutions change, they change their
model.

Code is generated from the models.

Verification, validation, documentation, happen at the level of the
models.

Yet, MDD enjoys limited success so far.

Cost-benefit problems. Works best with well-understood,
predictable development processes, where only one model changes
at a time.

Why?

need to keep models/code in sync1

code generation in MDE appears, at first glance, to have a positive effect on
productivity. But the need to integrate generated code with existing systems
may lead to maintenance problems1

The majority of MDE users do try to leave generated code alone, but keeping
code and models synchronized is clearly an issue1

the biggest problem of model-centric approaches is perceived to be keeping the
model up to date with the code2

A number of informants identified issues of synchronization or consistency as a
barrier for wholesale adoption of UML [...] “Need to use it all the way, in order
to maintain sync.”3

Inconsistencies between Software Artifacts. 4

1 Hutchinson et al.

2 Forward and Lethbridge, Problems and opportunities for model-centric versus code-centric software
development, MiSE’08

3 Petre, UML in practice, ICSE’13

4 Mussbacher et al, The relevance of model-driven engineering thirty years from now, MODELS’14

So MDD: problems and promise

Striking similarity between

trying to introduce computers, in the 1970s, and

trying to introduce MDD, in the 2000s.

Of the comparative studies, results vary between a 35%
gain to a 27% loss. Two of the studies showed no net
impact. [Yet] some of the productivity gains described
are far in [excess] of those discussed earlier: 2x, 5x and
even 8x productivity improvements.

Empirical Assessment of MDE in Industry Hutchinson et al. ICSE’11



Agile development

Definition

Agile development is a philosophy of software development that
aims to embrace change.

http://www.agilemanifesto.org/principles.html

structure the development process round the customer’s priorities

Motivation

Manage information poverty, by not waiting for full information.

Agile development has problems too

Architecture

Maintenance

Need for exceptional programmers.

See e.g.

http://www.cio.com/article/2385322/agile-development/

why-agile-isn-t-working--bringing-common-sense-to-agile-principles.html

http://www.infoworld.com/article/2624279/agile-development/

agile-programming-10-years-on--did-it-deliver-.html

Suppose we could do both at once?

From MDD: separation of concerns

From agile: keeping pace with the real world

The art of progress is to preserve order amid change and
to preserve change amid order.

Alfred North Whitehead

Be careful what we wish for

Currently MDD requires you to be a mathematician, agile requires
you to be an ace programmer. Neither leaves space for you to be
expert at something else.

Current attempts to combine agility with MDD threaten to require
you to be both mathematician and ace programmer.

That’s not necessarily an improvement...

http://www.agilemanifesto.org/principles.html
http://www.cio.com/article/2385322/agile-development/why-agile-isn-t-working--bringing-common-sense-to-agile-principles.html
http://www.cio.com/article/2385322/agile-development/why-agile-isn-t-working--bringing-common-sense-to-agile-principles.html
http://www.infoworld.com/article/2624279/agile-development/agile-programming-10-years-on--did-it-deliver-.html
http://www.infoworld.com/article/2624279/agile-development/agile-programming-10-years-on--did-it-deliver-.html


Vision

Disclaimer: I’m talking about 50 years in the future here, and 50
years ago, people didn’t foresee today!

Hard parts of SE are requirements, and maintenance...

... and I don’t work on either. Mathematics has no attack there.
But...

...Suppose software experts didn’t understand customer
requirements, but the kinds of things that these customers have
requirements for. And suppose customers did their own
maintenance.

That should be the ultimate vision of agile MDD.

Software development in 2066?

Bidirectional transformation languages

Problem: it’s really, really hard to write the wires.

Solutions?

better languages and tools to support that. Let’s dig down...

Unidirectional transformations

generate one model (including code) from another:

f : M → N

We have fairly decent languages to express unidirectional
transformations.

Problem: when you change the target model, you’re stuffed.



Bidirectional transformations

A bidirectional transformation (bx) needs to be able to:

check consistency
R ⊆ M × N

restore consistency:

−→
R : M × N → N

and dually ←−
R : M × N → M

with sensible behaviour, e.g. being

correct: consistency restorers really do restore consistency;

hippocratic: if nothing needs to be done, do nothing.

Two intertwined problems

1 what should a bx do?

2 how can we engineer confidence that it does that?

Bidirectional transformation languages

Problem: lots of duplication

Solutions?

bx languages

We have languages that can express bx, but no good ones yet.

Bidirectional transformation languages

Problem: leave the nice world as soon as you want interaction,
non-determinacy, etc.

Solutions?

bx languages with effects

Abou-Saleh, Cheney, Gibbons, McKinna, S. Notions of Bidirectional
Computation and Entangled State Monads MPC’15



Why is software engineering hard?

Uncertainty.

data input – e.g. what value will the function be called on?

interactions – e.g. in what order will the user press the
buttons?

interleavings – e.g. which thread will win the race?

change – e.g. what will the customer want next week?

Thinking about large trees of possibilities is really hard.

Verification games: handling an uncertain future

To show some property always holds:

Verifier who wants to show it does

plays

Refuter who wants to show it doesn’t

Refuter challenges the system in whatever ways we want to allow:
if Verifier can always meet those challenges, the system is correct.

This idea has a long history. Where I came in:

S., Stirling Practical Model-Checking Using Games, TACAS’98

S., Abstract Games for Infinite State Processes, CONCUR’98

Exploration games: handling uncertain requirements

challenges ←→ requirements
responses ←→ design

Design the game itself... refine requirements and design together,
stop when both are precise enough and consistent.

Tenzer, S. GUIDE: Games with UML for Interactive Design Exploration, JKBS
20:7, 2007

MDD games: handling uncertain future requirements?

Can we combine those ideas? Then

to specify a bx is to design a game (DSMLs; consistency defn;
properties of consistency restoration)

to write a bx is to design a winning strategy for that game
(how will consistency be restored?)

to apply a bx is to play the game according to that winning
strategy.

Early steps:

S. A simple game-theoretic approach to checkonly QVT Relations,SoSyM 12:1
2013

Bradfield, S. Recursive Checkonly QVT-R Transformations with General when
and where Clauses via the Modal Mu Calculus, FASE’12

Bradfield, S. Enforcing QVT-R with mu-Calculus and Games, FASE’13



Bidirectional transformation languages

Problem: correctness and hippocraticness aren’t enough to rule out
weird behaviour

Solutions?

bx languages with Principle of Least Surprise
– based on providing reasonable behaviour in senses long
understood by mathematicians, e.g. Hölder continuity

and notions of atlas, and tools that go BEEP?

Cheney, Gibbons, McKinna, S. Towards a Principle of Least Surprise for
Bidirectional Transformations Bx’15

Bidirectional transformation languages

Problem: even if we develop a bx language in which all bx are
reasonable, how can we tell that they are correct?

Solutions?

testing techniques for bx

verification of bx, especially lightweight verification – types

composition and reuse

Bidirectional transformation languages

Problem: models might change while the bx is running. Especially
if models are large and the bx is slow...

Solutions?

parallel semantics for existing bx languages?

dedicated parallel bx languages?

what guarantees can we make?

DWIM (do what I mean) interfaces

Problem: even if we give domain experts a beautiful model with
only what they’re interested in... if we treat that as a formal
object, we are, essentially, asking them to do programming.

Solutions?

perhaps it isn’t really a problem at all? Perhaps if it’s
beautiful enough, it doesn’t feel like programming?

perhaps our system can be clever enough to work out, or
elicit, what the domain experts actually want?

Alta Vista 1996 vs Google today



DWISM (do what I should mean)?

Problem: domain experts, or people who play them, might be
wrong or even malicious.

Solutions?

perhaps the benevolent DWIM system will simply raise a
puzzled eyebrow?

more familiarly, verification?

What has mathematics to do with software engineering?

Perhaps:

Software engineering is a branch of applied mathematics – but the
devil’s in the application.

Perhaps:

Mathematics is why it’s hard to find enough good software
engineers.

Perhaps:

Mathematics is what will allow us to widen participation in the
building of software.

Special thanks

- to my colleagues on project A Theory of Least Change for
Bidirectional Transformations:

Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna

- to my friends and family

- and to everyone who continues to teach me.

Questions?

Mathematics is...

understanding the structures of things and how they change



Software engineering is...

understanding the structures of things and how they change

Maxims

If at first you don’t succeed, find the mistake.

How hard can it be?

What does it have to do with the price of fish?

Never attribute to malice what can be explained by mere
incompetence.


