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Abstract

We describe a software toolset which allows UML modellers to anno-
tate their models with performance information. An equivalent perfor-
mance model is extracted from the UML, solved, and the results reflected
back to the UML level. Used in this way, our toolset gives a high-level
approach to software performance modelling where the benefits of the
performance modelling process are achieved without significant additional
notational burden.

The Unified Modelling Language (UML) [1] is an effective and popular nota-
tion which is used to capture high-level designs for software systems. However,
one aspect of software system design which is not typically captured in a UML
document is a record of the likely (or desired) rate of performance of the major
activities of the system. When this information is not included in the initial
UML description of a system it increases the likelihood that the performance
of the software system being developed will not be considered until very late
in the software development process. At this stage, errors in the design will be
very costly to repair and will require significant re-engineering.

Our aims in this paper are twofold:

1. to show how UML models enhanced with performance information can be
mapped onto an existing performance modelling notation, Performance
Evaluation Process Algebra (PEPA) [2]; and

2. to show how the results of the performance analysis of the PEPA models
which are produced by this process can be presented to the UML modeller
in the terms of their model.

The work reported here forms an early part of the DEGAS project. DEGAS
stands for Design Environment for Global ApplicationS, and the project’s overall
goal is to make sophisticated formal analysis techniques available to designers
of global applications – that is, of sofware systems that run on wireless networks
and may involve mobile code – in a way which is congruent with their normal
way of working. Performance prediction has been identified as an important
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area where such formal analysis techniques might be able to make a significant
contribution to the quicker design of better applications.

Designers in the DEGAS partner companies (Motorola and OMNYS) and
throughout the industry have adopted UML as their main software design no-
tation. UML is a diagrammatic notation for recording the design of systems,
especially object-oriented software systems. A UML model is represented by a
collection of diagrams describing parts of the system from different points of
view; there are seven main diagram types. For example, there will typically
be a static structure diagram (or class diagram) describing the classes and in-
terfaces in the system and their static relationships (inheritance, dependency,
etc.) State diagrams, a variant on Harel state charts, can be used to record the
dynamic behaviour of particular classes. Interaction diagrams, such as sequence
diagrams, are used to illustrate the way objects of different classes interact in a
particular scenario. In this work we concentrate on state diagrams, which pro-
vide a behavioural description in automata-theoretic terms which is also familiar
from process algebras and protocol specifications.

Our aim in working with UML in the performance modelling process is to
introduce the benefits of performance analysis with process algebras without
the complexities and conceptual challenges which are normally associated with
formal description techniques such as these. To this end, we deploy the PEPA
stochastic process algebra as an intermediate language in the performance anal-
ysis process. The UML modeller can compose models and solve these for per-
formance results without needing to understand the PEPA language, its formal
definition or even how their model is represented in PEPA. At the same time,
we avoid requiring the designer to develop a model specifically for performance
analysis; instead, we work directly with the UML model which is being devel-
oped for other purposes.

Structure of this paper: In the next section we discuss modelling with
UML and PEPA. In Section 2 we describe how performance measures such as
utilisation can be obtained directly from our results. In Section 3 we discuss
the software architecture of our tool set and describe the four principal software
packages which are involved. In Section 4 we present a simple example. In
Section 5 we discuss related work on UML, PEPA and performance modelling.
We present our conclusions in Section 6.

1 Modelling with UML and PEPA

We bring the UML and PEPA notations together by forming a bridge between
two existing applications which support these languages, the ArgoUML mod-
elling tool [3] and the PEPA Workbench [4]. UML designs which are built
using ArgoUML can be exported as XML Metadata Interchange documents
(XMI) [5] as a standard part of the ArgoUML tool. The XMI format is used
to represent UML models when exchanging them with other tools, as here, and
facilitates the analysis and manipulation of UML models using standard XML
tools [6]. We have developed an application which automatically converts the
XMI documents generated by ArgoUML into the input file format of the PEPA
Workbench. Figure 1 shows screenshots of two ArgoUML designs of simple
communicating state machines together with the equivalent descriptions in the
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PEPA stochastic process algebra. With a slight abuse of notation we show the
rates of the transitions as UML actions. Thus a/rate(r) is used to represent
the information that the activity a is performed at rate r which is not the usual
event/actions syntax for arc adornments in UML state diagrams.

When it is provided with an input PEPA model the PEPA Workbench ex-
plores the model to generate its full state space. This state space is used to form
a CTMC representation of the system which is solved to find its steady-state
probability distribution. As is usual with interleaving models of concurrent sys-
tems, the size of the state space of the system as a whole is bounded by the
product of the state spaces of the individual PEPA components which are com-
posed in parallel. Simply presenting this large probability vector back to the
UML modeller as the result of the analysis would be unlikely to provide any
insights into the long-run operation of the model, or hotspots or bottlenecks in
the system. For this reason we look for an alternative means of communicating
performance measures.

2 Performance measures

The most general way to describe performance measures is to build a reward
structure on the model. However, associating locations in the equilibrium prob-
ability distribution with syntactic states of the model exposes details of the
representation such as orderings of components in the PEPA system descrip-
tion. Such an approach would generally require the UML modeller to face much
of the complexity of working directly with Markov Chains. Higher-level descrip-
tion languages for specifying performance measures exist, such as PMLµ [7] and
CSL [8], but these notations would be formidable for a typical UML developer
to use.

For this reason we aggregate the state space of the system over the local
states of each PEPA component. This has two beneficial effects:

1. it avoids the need for any descriptions of state-space representations,
whether high-level or low-level; and

2. instead of working with a large set of very small numbers the modeller
works with a small set of numbers which are orders of magnitude larger.

Our approach to specifying performance measures is to define UML components
which expose the configurations of interest in the model. Behaviourally, such
components may be redundant, but they are necessary for expressing perfor-
mance measures over the model. Typically such components will specify that
they passively witness activites which have been performed and change state in
order to reflect this information. By programming such components carefully it
is possible that they do not increase the state space of the underlying Markov
Chain but allow the modeller to observe that some sequence of activities has
happened, and to learn the probability of this. We have used this approach
previously [9].

We illustrate the use of this method with a resource example and a queue
example. One performance measure which is typically of interest is the calcula-
tion of the utilisation of resources in the system. To do this the modeller need
only express the resource as a simple component as described below and the
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︸ ︷︷ ︸

P1 = (a, r).P2; P2 = (b, s).P1

︸ ︷︷ ︸

P3 = (a,>).P4; P4 = (b, t).P3 + (c, r)P5; P5 = (b, s).P3

Figure 1: Screenshots of UML designs in ArgoUML with PEPA equivalents
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utilisation can be directly read from the model solution as the percentage of
time that the component spends in the Busy state. This points to resources
which are under-utilised, or over-utilised.

/∗ An idle resource can be acquired ∗/
Idle def= (acquire, r1).Busy

/∗ A busy resource can be released ∗/
Busy def= (release, r2).Idle

Taking the idea a little further, a finite-capacity M/M/n queue can be specified
in PEPA with a list of component definitions ending with the following one.

/∗ no arrivals are allowed when the queue is full ∗/
Queuen

def= (serve, µ).Queuen−1

The percentage of time that the queue will be full can be read off directly from
the updated UML description. This points to the possibility of clients sending
requests faster than they can be serviced by a server.

3 Software architecture

In this section we describe the architecture of our application. We have built
on two existing software tools, ArgoUML and the PEPA Workbench. We have
used ArgoUML with no modifications, so (up to minor XMI version differences)
it could be replaced by any other XMI-capable UML tool. We modified the
PEPA Workbench to make communication between the two tools easier. We
begin by first describing these two tools for the benefit of readers who are not
familiar with them. The architecture of the system is summarised in Figure 2.
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������� � � � �
�������
������	� 

UML

Figure 2: Software architecture of the tool

3.1 ArgoUML

ArgoUML is a modelling tool which supports software developers who are pro-
ducing software designs using UML. It provides many features which are familiar
from existing CASE tools. Examples of these are editors for graphical notations
such as class diagrams and state diagrams.
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In addition, one of the distinctive features of ArgoUML is that it provides
good support for the cognitive aspects of design, including supporting informal
note-taking on “To Do” lists and other creativity aids. In all, it provides a
professional and thoughtfully-engineered UML development platform.

As with most modern UML tools, ArgoUML exports UML models in the
XMI document format, and loads saved models from the same XMI format.
This provides the import and export formats for our other tools. The XMI
document written by ArgoUML is read by our Extractor tool. The same XMI
document and the results from processing by the PEPA Workbench (in XML
format) are read by the Reflector tool to provide an updated input document
which is loaded by ArgoUML.

3.2 The PEPA Workbench

The PEPA stochastic process algebra is supported by a range of tools including
the PEPA Workbench [4], the Möbius Modeling Framework [10] and the PRISM
probabilistic symbolic model checker [11]. We have used the PEPA Workbench
so far in this work but the design of our companion Extractor and Reflector
tools is general-purpose so that it would be possible to adapt our work to use
either Möbius or PRISM instead. Both Möbius and PRISM offer capabilities
which the PEPA Workbench does not. Möbius supports multi-paradigm mod-
elling where PEPA models are combined with SANs or ball-and-bucket models
as used by MARCA. PRISM provides probabilistic symbolic model checking
allowing models to be checked against CSL formulae. Both of these tools could
be valuable in our ongoing work but an engineering challenge would remain
to allow the UML modeller to access their powerful capabilities without first
needing to master their technical foundations.

The PEPA Workbench exists in two distinct versions. The first version is
an experimental research tool which is coded in the functional programming
language Standard ML [12]. The second is a re-implementation of this in the
Java programming language. These are known as “the ML edition” and “the
Java edition” respectively.

We adapted the Java edition of the PEPA Workbench to interoperate with
our Extractor and Reflector tools. The Java edition provides a graphical user
interface to assist the PEPA modeller in working with models, accessing tools
such as the state finder tool, the simulator or the walkabout utility and choos-
ing between a range of steady-state and transient solvers and a range of out-
put formats. It would be impractical to use this user interface together with
the ArgoUML application so we added a command-line interface to the PEPA
Workbench, allowing it to be configured with a range of command-line switches.
One of these switches requests the Workbench to aggregate the performance re-
sults of the model over the local states of each PEPA component. Each such
component is a simple sequential state machine which corresponds directly to
a UML state diagram. Each of these has a very small state space relative to
the state space of the model as a whole, making the result set much more com-
pact. Of course this compactness is necessarily achieved at the expense of losing
information about particular states of the global state space.

The PEPA Workbench processes an input PEPA model which the Extractor
generates from an input UML model in XMI format. It writes its results as an
XML document which is processed by the Reflector tool.
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The PEPA Web page at http://www.dcs.ed.ac.uk/pepa is the download
site for the PEPA Workbench and supporting software and papers.

3.3 Extractor

The Extractor application is programmed in the Python programming language.
It reads in the XMI file generated when saving a UML model with ArgoUML
(or a similar tool) and returns the corresponding input file for the PEPA Work-
bench.

We use the Minidom XML parser to parse the XMI file. Once we have
converted the XMI file stream into a DOM object, we can then access the
individual tags by name. The document is represented as a tree structure.
When processing the XMI file we look for all the elements that we will need to
provide in the PEPA model which we produce as output. We discuss these by
element type in turn below.

• For each statemachine in the file, we identify its context (in order to
match the classifier role later on) and its initial state, and then for each
state, its identifier and its name.

• For each transition, we find its workload (the UML event), its rate
(shown as a UML action), and its source and target state.

• For each collaboration, we identify for each classifier role, the name of
the synchroniser, and for each base, the identifier of the classifier role.
Using the identifier of the context, we will be able to find the initial state
of the corresponding statemachine.

Now, we have all we need in order to write a PEPA Workbench input. First,
we print each rate. Then, we print for each state machine a defining PEPA
expression of the following form: #source=(workload,rate).target+... For
each state, if it is a source, we find its transitions with the correct workload,
rate and target.

Taking the information from a UML collaboration diagram as shown in Fig-
ure 3 we can assemble a collaboration line (e.g. P1<a,b>P3). We look for the
initial states using the matching of context and classifier role, and then look for
the activity names in the synchronisation set.

3.4 Reflector

The Reflector takes as its parameter the original XMI file and the XML file that
contains all the results from the PEPA Workbench. It returns a modified XMI
file, which when loaded in ArgoUML will show the modified model.

We use Minidom to parse the original XMI file and also to build the mod-
ified XMI file by creating the branches and leaves of the document. The
xml.dom.minidom module supports a very simple interface for adding new XML
tags and data to an XML document.

We parse the XMI file corresponding to the UML model and the XML file
corresponding to the PEPA Workbench results. When processing the PEPA
Workbench results file, for each state, we look for the probability tag and identify
its value. Then we modify our original XMI file where for each statemachine,
for each state, we add the corresponding probability.
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︸ ︷︷ ︸

A ��
{a,b}

B

Figure 3: UML collaboration diagram

4 A simple example

We demonstrate our method on a simple generic example model. The model is
formed by a composition of a two-state component and a three-state component.
To make this generic example more concrete, the two-state component might
represent a client which requests a service and receives a reply and the three-
state component might represent a proxy server which sometimes replies directly
but at other times connects to another server before replying.

Figure 1 shows the original UML model used for our example. When this
UML model is saved in ArgoUML, an XMI file is generated. If we use the
Extractor with this XMI file, we obtain the PEPA model which is shown in
Figure 4 in the concrete syntax of the PEPA Workbench. This is used as the

%r = 2.0;
%s = 2.0;
%t = 2.0;
#P4 = (c,r).P5 + (b,t).P3;
#P5 = (b,s).P3;
#P3 = (a,infty).P4;
#P1 = (a,r).P2;
#P2 = (b,s).P1;
P1 < a,b > P3

Figure 4: PEPA model generated by the Extractor tool

input for the PEPA Workbench which then produces its results in an XML file.
We can now use the Reflector to modify the original XMI file, and make the
probability of each state appear on the UML diagrams (see Figure 5).
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︸ ︷︷ ︸

P1 : 50.0%, P2 : 50.0%

︸ ︷︷ ︸

P3 : 50.0%, P4 : 25.0%, P5 : 25.0%

Figure 5: Screenshots of ArgoUML incorporating PEPA results
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5 Related work

Ours is not the first work on using UML with stochastic process algebras, nor
even the first on using UML with PEPA. Pooley [13] previously discussed gen-
erating PEPA models from a combination of sequence diagrams, collaboration
diagrams, and a combined collaboration/state diagram. His method differs from
ours in that more types of diagram are used and there seems to be no automatic
procedure used to generate the PEPA model from the UML. In contrast, our
method is automatic and can be re-run after changes to the UML model in order
to generate and solve an equivalent updated PEPA model.

Mitton and Holton undertake an alternative mapping between PEPA and
UML statecharts [15] but again their method does not appear to be automated.

In another paper Thomas, Munro, King and Pooley combine PEPA mod-
els with graphical notations for visualising derivation graphs, PEPA component
interfaces and other aspects of the system under study [16]. This work pro-
vides an interesting insight into the PEPA modelling language for modellers
who are not familiar with the notation. Their approach is supported by a pro-
totype tool. Our contribution here differs in that we are using a standard and
widely-understood modelling language (UML) instead of more specialised, but
necessarily less well-understood bespoke graphical notations.

A work closely related to ours in spirit, if not in detail, is recent work by
Petriu and Shen which maps UML models via XMI into layered queueing net-
work (LQN) performance models [17]. This mapping is in one direction only,
so that UML models are mapped into LQN models but there appears to be no
mapping of the performance results obtained from the LQN model back up to
the UML level. Thus their tool appears to be similar to our Extractor tool, com-
bined with the PEPA Workbench, but without an equivalent of our Reflector
tool.

6 Conclusions

We have presented a method of deriving performance information from UML
models. Our method is unusual in that it greatly reduces the amount of ad-
ditional notation and concepts which need to be understood by the modeller
when compared to working directly with stochastic process algebras, Petri nets,
queueing networks or other traditional performance modelling formalisms. The
method is supported by a tool set which comprises some existing modelling
tools (ArgoUML and the PEPA Workbench) and other translators which we
have written to connect them (the Extractor and the Reflector). The transla-
tors which interconnect the applications are general-purpose and can be adapted
to work with other modelling tools.

We have applied our approach to a range of small examples. We plan to
investigate its usefulness when applied to larger examples.

We have used a bespoke method of adding performance information to UML
models here. We also plan to investigate more standard ways of representing
the performance information in UML. This will probably use the Schedulability
Performance and Time profile [18], as used by Petriu and Shen, depending on
the availability of appropriate UML tool support.
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