A Verification Tool Developer’s Vade Mecum

Perdita Stevens *

Division of Informatics, University of Edinburgh
JCMB, King’s Buildings
Mayfield Road
Edinburgh EH9 3JZ

Abstract. The Edinburgh Concurrency Workbench has been the au-
thor’s responsibility for the past four years, having been under develop-
ment for eight years before that. Over its lifetime, we have learnt many
lessons about verification tool development, both from bitter experience
and from discussion with other tool developers and users. This paper is
the document the author would have liked to read four years ago, and
the intention is that it may be useful to other developers in future. We
assume familiarity with the basic lore of software engineering, and try to
bring out the special issues that arise in the development of verification
tools.

1 Introduction

It is common to hear it said that an important factor in the practical uptake of
theoretical work in computer science is the availability of tools that incorporate
the theory; and the spread of finite-automata-based verification tools through the
US hardware verification industry is indeed one of the more widely visible signs
of recent progress in theoretical computer science. Although there are now some
cases of verification tools being taken over, or developed in house, by commercial
organisations, it is more usual that they are developed in universities, at least
partly by people whose jobs also involve research and teaching.

Both because of the special nature of the tools, and because of the special cir-
cumstances under which the tools are normally developed and maintained, some
issues arise which are different from the standard issues of software engineering
any product. This paper explores what the issues are, using the author’s exper-
ience as developer and maintainer of the Edinburgh Concurrency Workbench as
illustrations where appropriate. We will assume familiarity with the basic tenets
of software engineering, such as might be acquired from a good undergraduate
degree, and try to bring out what is special about the situations we address.

For brevity, the paper addresses the potential tool developer as “you” and
makes some bald statements with which some readers may disagree. It is difficult
not to seem didactic in a paper of this sort, but we welcome debate.

* Perdita.Stevens@dcs.ed.ac.uk, supported by EPSRC GR/K68547. Tel: +44 131 650
5195, Fax: +44 131 667 7209



1.1 Edinburgh Concurrency Workbench background

The Edinburgh Concurrency Workbench, a tool which supports the manipulation
and analysis of concurrent systems, was conceived in 1986 as a focus for the
interaction of theoretical, educational and practical concerns.

Its original developers regarded themselves more as concurrency theorists
than as software developers, and so, although serious consideration was given
to the design of the tool [2], some design decisions were inevitably made which
with hindsight are suboptimal. Nevertheless the tool was successfully used both
in teaching and in industry, and it became clear that its development should
be continued. Several people maintained it over the succeeding years, and many
features were added to it. In 1994, when the present author joined the project,
the CWB consisted of about 20,000 lines of Standard ML code, implementing
about 90 commands pertaining to systems specified in CCS, TCCS or SCCS. By
this time it had become clear that modifications to the Edinburgh Concurrency
Workbench were becoming harder to make reliably or fast, and the author,
who was recruited from a non-academic job as systems and software engineer,
undertook to reverse this change.

This task has proved (even) harder than we anticipated, and part of the
motivation of this paper is to help the developers of other tools circumvent the
process.

1.2 Special features of verification tools

The most obvious respect in which verification tools are different from most
software system is in the importance that must be given to correctness. Software
systems have bugs: but a verification tool which has semantic bugs — that is,
which may give an incorrect answer to a verification question — loses more of its
value per bug than most systems. Some people would even say that a verification
tool which contains a semantic bug is worse than useless.

The other main class of systems for which this is true is safety-critical sys-
tems, and in that area there is a well-developed literature on how to ensure
correctness. The main difference between verification tools and safety critical
systems is that safety is a property of a whole setup including humans and
manual procedures with software as just one part. It can be hard to say categor-
ically whether a given software behaviour is or is not a bug. This is not normally
a problem for verification tools, whose functional requirements are rather easy
to define.

Verification tools often, but not always, have the property that they are
expected to have a long life and undergo many modifications and alterations. The
Edinburgh Concurrency Workbench, for example, is intended to be a test-bed
for new theory, so it is important that it should be easy to add new components
to it.

If there were no limit to the effort which could be spent on a verification tool
— or even, if it were possible to spend on the development and maintenance of
such systems the same amount of effort as is typically spent on industrial tools



of similar size — it would be fairly straightforward to develop a process which
would lead to correct (enough) tools. The major challenge for the verification
tool developer is that this is normally not possible.

1.3 Special features of verification tools developed by academics

Naturally institutions and the arrangements they are able to make for the devel-
opment and maintenance of verification tools differ widely. However, there are
two major respects in which special difficulties seem commonly to arise.

The first is the slightly delicate question of who does the development —
in particular, the design of the software — and how much software engineering
experience the developers of the tool have. Ideally, the designer needs to have
an in-depth understanding of both software engineering and the theory that
underlies the tool.

We know of several models: in what may be descending order of frequency

— The tool may be developed by researchers who are expert in the underlying
theory. They may or may not appreciate the importance of software design:
but even if they do, as humans they are not likely to be equally expert in
both fields.

— The tool may be developed by students, with limited experience in both the-
ory and software engineering. They may receive direction, but this normally
comes from someone more expert in theory than engineering.

— The tool may be developed by programmers under direction from research-
ers, who supply the detailed theoretical understanding. This sounds like the
ideal: but in cases we have heard about, it appears that they had to be so
minutely directed, in order to ensure that the theory was correctly imple-
mented, that the skilled work of system design was, in effect, again done
by the researchers, with the programmers doing routine programming work
only.

— I was brought into the Edinburgh Concurrency Workbench project after
some years as an industrial software engineer, but with only undergraduate
level knowledge of the underlying theory, with the intention that I should
acquire whatever knowledge was necessary. It would be interesting to know
of cases where this model has been applied to the initial development of a
system: the Edinburgh Concurrency Workbench case was complicated by the
fact that the system was a legacy system, in need of reengineering. My ignor-
ance of the underlying theory posed formidable problems in the beginning
— but perhaps it is easier in a university environment to acquire theoretical
understanding than engineering understanding, which would suggest that
this is a model worth considering if it is available.

The second major problem is lack of time. If the developer is someone pursu-
ing an academic career, there is a tension between producing papers and produ-
cing tools. Although increasingly universities seem to recognise the importance
of producing tools (to gain the advantages cited in section 2.1 below), it is very



difficult for someone who is not engaged in tool development and maintenance
to appreciate the amount of time that is required. (Indeed, it is difficult for
people who are engaged in it to do so: research persistently finds that software
developers underestimate the time it takes to complete a task.)

To some extent, it may be possible to combine the goals of producing pa-
pers and producing tools: there are fora for presenting papers about new tool or
major new features in tools. However, much of the effort required to maintain a
tool, especially one which has many users, is the routine (though skilled) work
of updating interfaces to changing external systems, writing documentation, an-
swering email, developing tests, etc. This work is not research.t

It is well understood by the legacy system community that systems suffer
“calcification”: even systems with good initial architecture tend to lose their
good architectural properties with repeated modification over the years. (An
example is described in section 3.5 below.) It becomes gradually harder to add
new features to the tool. The deterioration can be slowed (though practically not
stopped) by spending effort on the initial design of the tool and avoiding hasty
modifications: but if the tool developers are always short of time, it is hard to
put this into practice.

2 “Business case” level decisions

In this section we consider the questions which must be addressed before the
organisation commits to developing a tool at all, bearing in mind the special
features of the systems we consider.

2.1 Do you want to develop a tool at all?

We have begun to mention the disadvantages: it’s time-consuming, and difficult
in ways which often have little to do with research, and it may be difficult to
find the resource to do it well.

Other options to consider may include:

— Developing a component of another tool set, rather than a whole new tool.
The practicality of this will depend on the intended functionality of the tool
and the qualities of the tool set.

— Getting someone else to develop the tool. If your intended user group is
industrial verifiers, can you build the tool as a collaborative venture with an
industrial partner?

The correct answer will depend largely on what you want to achieve by
developing the tool. Some possible goals are:

! It is not the case, as is occasionally asserted by theoreticians, that if one spends effort
doing software engineering one must be able to write software engineering research
papers about it.



— Technology transfer: you may want to improve visibility of some well-established
piece of theory (among industrial practitioners, students or both).

— Theory experimentation: you may want to deepen your understanding of
some theory by experimenting with different implementations. Many people
(including the author) find doing detailed design or writing code to be an
excellent way to clarify thinking about algorithms or design of formalism.

— Image manipulation: you may want yourself or your organisation to be seen
as doing “practical” work.

2.2 Do you want your tool to have users?

Your immediate reaction is likely to be “of course!” but there are many circum-
stances in which you might want to develop a tool as an internal prototype, to
demonstrate the possibility of such a tool existing, or to try out theory in detail,
or to investigate average case performance of an algorithm. Users are a nuis-
ance: they need stable, working products with good documentation; they need
continued support and development of the tool; and they represent a long-term
commitment which it may not be appropriate for you to make. Of course, users
are also an extremely valuable source of feedback and ideas.

If your tool does have users, then their interests represent another factor to be
taken into consideration when making decisions about the tool. Users’ interests
will inevitably sometimes conflict with other considerations. For example, faced
with limited time and demands both for a paper about a new feature of the tool
and for theoretically uninteresting enhancements to the existing functionality,
what are your priorities, and do your users understand them? (The same con-
siderations apply even more strongly if you plan for your tool to be extended by
other developers: see below.)

2.3 Who are the intended users of your tool?

Different communities of tool users may have quite different requirements. Some
existing communities are:

— Other researchers.

— Students and their teachers.

— Seasoned industrial verifiers. For them, performance is likely to be crucial.
Interfaces must be efficient to use once learned, but people who use a tool
regularly are surprisingly willing to put up with unintuitive interfaces, if the
power of the tool provides enough benefit.

— Novice industrial verifiers. In some ways the most rewarding group: but they
will need and expect support, which may include help with basic concepts
of the underlying theory, as well as help with the tool itself, so you will need
to decide what you can provide.



2.4 Do you want other people to be able to add components to
your tool?

In the case of the Edinburgh Concurrency Workbench the answer was an em-
phatic yes, but we’ve only recently put in place an architecture that makes this
reasonably easy. If you decide that people should be able to add components to
your tool, then as far as possible, they should be able to add a component by
writing their own code using facilities provided by you, ideally without altering
any other source code of the tool. (An example is provided in section 3.1 below.)

3 Architectural decisions

We use a broad definition: architectural decisions are those that affect the whole
of a system, and hence have to be made early in a project. They are the de-
cisions which define how components work together. This includes, for example,
decisions about what programming language should be used and how errors
which are not the sole concern of a single component should be handled, as well
as decisions about the high-level structure of the system.

3.1 High level structure

The factors that a tool developer has to take into consideration when designing
the high-level structure of the tool are largely common with those that any
software architect has to consider. We give an example of an improvement made
to the architecture of the CWB, to illustrate briefly how standard techniques
can be used to make it easier to maintain a verification tool and, in particular,
to make it possible for others to add components.

Originally, we had a top level loop that read a user command and called an
appropriate function, based essentially on a static case statement. In addition,
the on-line help was defined in its own file. So someone who wanted to add a new
command had to edit the top level loop and add their help information into the
help file. In total four files had to be edited, in addition to the files written by
the component writer and excluding the build files. The changes were all small —
a few lines at most — so if the CWB maintainer did the additions this situation
was simply a nuisance. It was a serious barrier to allowing other people to add
components, though, especially since some of these components are likely to be
transient features of someone’s experimental version, rather than new permanent
features of the CWB.

We replaced the original architecture by a layered architecture in which new
components are developed at the highest level, making use of facilities provided
at lower levels. There are no dependencies from lower levels on higher levels, so
in particular no changes are required to the rest of the CWB source code when
a component is added at the highest level. Instead, we use standard callback
mechanisms. For example, to register a new user-level command the component
writer calls a lower level function registerCommand, providing the name of the



command, the help text with the command, and the function (signature unit ->
unit) which should be called when the user issues the command. The function
must process the arguments (using the lower level functions provided) and carry
out the appropriate functionality.

Standard pattern catalogues such as [4,1] are useful sources of simple but
valuable techniques like these.

3.2 User interfaces

One of the more interesting questions, because there’s a serious conflict of in-
terests, is what style of user interface a tool should provide. It is widely assumed
that a user interface is good — that is, easy to learn to use and to use correctly —
if and only if it has a “snazzy” graphical user interface.? Both directions of the
implication are simply false. If all you cared about were the usability of the tool,
you might or might not develop a GUI: you would certainly consider a great
deal of agreed knowledge about usability and user interface design ([10, 3, 5], for
example). If you care about maximum impact in short demonstrations, e.g. at
conferences, however, then you need a GUI

Designing a highly usable user interface takes time, effort and expertise: the
Edinburgh Concurrency Workbench is not yet an example of good practice. For
graphical user interfaces in particular, you also need to consider:

— the stability of the toolkit (an especially thorny issue for free toolkits)
— the programming effort required to use it, which may be considerable
— portability issues: what platforms can the resulting interface run on?

3.3 Process paradigm
(or: To BDD or not to BDD, that is the question)

Some very basic choices will underlie the choice of what kind of tool to build.
Is it to be automata-based for example? How are the states to be represented?
There are some trade-offs here. The popular industrial tools are automata-based,
by which we mean that a process algebra is used, at most, to enable the user to
define the process they want to work with. Internally, the states are represented
as the finitely many states of a finite state automaton, not as process algebra
derivatives. This has the important advantage that it can be done in a space
efficient way — for example, by using BDDs as an efficient representation data
structure. The Edinburgh Concurrency Workbench has the grave disadvantage
that, because it represents states by the CCS syntax that defines them (and
is also written in a notoriously space-inefficient language/compiler), it requires
many bits to represent each state, and, worse, the larger the system the more
bits per state are required on average. Because of this, the CWB has difficulty
in answering questions which require building the full state-space of systems

2 Sadly, it is difficult not to see the ETAPS requirement, that tool demonstration
submissions include a screen-shot, as an instance of the assumption.



which are much larger than 30,000 states, on machines with typical amounts
of memory. These are pathetically small systems by the standards of the best
automata-based tools. On the other hand, the CWB can happily answer ques-
tions about systems which happen to be infinite state, provided that the question
does not require the exploration of the entire system. A restriction to finite state
systems may not be a problem if your users conceive their systems as finite state
automata, but otherwise it conflicts with another good principle of tool develop-
ment, that you should make easy things easy. ® The CWB’s approach also has
the advantage that it is often possible to take advantage of knowledge about the
system structure purveyed in the CCS term structure, for example for providing
user feedback or for compositional verification.

3.4 Choice of programming language

You need as much support for correctness and for ease of maintenance from the
language as possible. In my opinion, that means you want a reasonably strong
static type system, and a module system which strongly supports encapsulation
— by which is meant not only that it is possible to design systems with good
encapsulation, but also that this is the natural thing to do in the language
concerned. (The module system might be an integral part of the language, as in
C++, or separate, as in ML.) Bear in mind that you are trying to guard against
mistakes, not maliciousness.

This said, the obvious candidates are typed object oriented languages such
as C++ or Java, or functional languages such as ML, variants such as Caml or
O’Caml, or Haskell. If performance of the tool is crucial, you will probably prefer
C++. Some users of O’Caml report give encouraging reports, but O’Caml’s
single-provider status and restrictive licensing rule it out of consideration as a
language for the CWB at present. (The stability, support and long-term future of
a language are naturally among the things that tool developers need to consider:
verification tools are not special in this respect.)

Similar considerations apply to choosing which version of a language to use,
which often includes deciding on a compiler. A recent mistake — which, with
hindsight, I should have avoided — was to bow to user (and ML developer)
pressure to port the Edinburgh Concurrency Workbench code from the original
version of Standard ML, known as ML90, to the new version known as ML97,
and to make a corresponding change in the versions of the New Jersey libraries it
used. There are serious advantages in making the change, most importantly that
the new version of the SML-NJ compiler is available on many more platforms
than the old, so the port increases the number of users to whom it is available. In
particular, the new compiler is available on Microsoft operating systems, and the
lack of ability to run the Edinburgh Concurrency Workbench on these platforms
has been something I’ve wished to change for some time. However, it turned out
that the compiler was not sufficiently mature to make the porting effort efficient.

3 As has been pointed out in [9], for example, easiness is a property of questions not
systems: some questions about infinite state systems are easy.



Not only was there a serious compiler bug which required non-trivial temporary
changes to the Edinburgh Concurrency Workbench code to work around, but
also there were many problems of incomplete or incorrect documentation; the
porting process took more time and effort than it would have done if I'd waited
for greater maturity.

3.5 Encapsulation

The virtues of encapsulation — of software that consists of modules with well-
defined interfaces defining their interactions, the interfaces being no broader than
is required and serving to enforce invariants on the data — are well known. Two
aspects are particularly important for verification tools:

First, encapsulation barriers act as fire barriers for bugs: small, well-defined
interfaces limit the possibility of hard-to-understand interactions between differ-
ent parts of the system. The type, class or module system of the programming
language is an important tool, but, for example, using the ML module system is
no guarantee of good encapsulation. Here is an example of a poorly chosen encap-
sulation barrier allowing hard-to-find bugs. It also, perhaps more importantly,
serves as an example of how software degrades with repeated modification.

When I took it over, I found that the Edinburgh Concurrency Workbench
made great use of an ML module called SortedList, whose interface consisted of
various functions whose types involved the built in ML polymorphic list type ’a
list. For example, it provided a function add, whose type was

(’a * ’a -> bool) -> ’a * ’a list -> ’a list

The code for the function assumed that the list in the second argument was
sorted according to the order given in the first argument. Using this assumption,
it added the element in the second argument into the list and returned the result.
But there was no compiler support to verify the assumption! The CWB has
suffered from very many bugs of the form:

— one piece of code takes a sorted list, does something non-order-preserving to
it, and passes it on to another piece of code
— which does something to it, erroneously assuming that it’s sorted.

The compiler cannot tell the difference between a list which is intended to
be sorted, and one which is not (and even if it could, it would not know by
what order function it was supposed to be sorted). Neither, without very scru-
pulous documentation, can the human maintainer! The result is bizarre bugs,
which may, for example, take the form of the tool giving right or wrong answers
depending on the names the user chooses for their identifiers.

With 20/20 hindsight, it is clear that what is needed is a separate type for
sorted lists, so that the mistaken code above would fail to type-check. There
is a variety of ways to implement this, which it is not particularly interesting
to go into. The point of the tale, though, is that there probably never was a
wicked programmer who did something idiotic. As near as I can reconstruct what
happened:



1. initially, everything was done using lists, making no use of order;

2. in order to improve performance, some individual pieces of code were (re)written

to enforce and take advantage of an ordering.
3. someone (else?) realised that code for sorting and for adding items to list was
duplicated in several places, and factored it out into the SortedList module
4. subsequent maintenance used these facilities freely.

At no stage, I hypothesise, did anyone really make the (wrong) decision that
this was the right way to do it. This is typical of the way in which systems lose
their good architectural properties.

At this point object orientation fanatics are probably feeling smug: this is a
perfect illustration of why it is more important to use a language in which it is
difficult not to encapsulate, than to use one in which encapsulation is possible.
This class of bugs would not have occurred in a system written in Smalltalk.*

Second, encapsulation makes reuse and replacement of components easier. In
a long-lived experimental tool, it is important to be able to replace parts of the
tool without having to understand the whole of it. (Reuse, as such, is normally
not such an issue: but the factors which make replacement easy are very close
to those that make reuse easy, so much of the reuse literature applies.)

ML ML’s module system allows well-structured systems to be designed, but in
my experience it has serious shortcomings, to the extent that I would not choose
ML if developing the CWB from scratch. There is some explanation in my talk
“Why I hate ML”, slides for which are available [8].

4 Development process and quality assurance

A quality assurance process suitable for academic development of verification
tools needs to be extremely streamlined and will probably be largely undocu-
mented. It may be helpful, though, to keep notes on what the process is, in order
to help future developers understand what’s been learned.

Development will almost certainly need to use an iterative process rather
than a waterfall process. The usual reason given for projects choosing iterative
development is that not all customer requirements are clear at the beginning
of the project. This is not usually a major problem for verification tools, but
where correctness is crucial it is convenient to be able to begin system testing
early. Moreover in cases where the algorithm to be used is not completed, exper-
imenting with simple-minded versions which are then refined can be helpful. (Of
course, while an algorithm that is implemented and appears to give the right
answers may be a powerful incentive to proceed with a proof of correctness, it
is not in itself evidence of correctness of the algorithm!)

* Pace Kent Beck, though, this is not a recommendation that verification tools should
be written in Smalltalk.

10



4.1 Refactoring

Refactoring is an important technique for maintaining the architectural integrity
of systems that undergo many modifications, whether in an initial iterative devel-
opment or by undergoing later modifications. The basic idea is that a refactoring
step is a modification that does not alter the functionality of a program, but cla-
rifies or improves the implementation. It is advocated that one should be clear
at all times about whether one is refactoring or implementing new functionality,
avoiding mixing the two. This simple idea seems surprisingly powerful: it helps
one to avoid allowing the remnants of defunct design decisions from previous
iterations to pollute the design of the current system, whilst also avoiding the
temptation to get sidetracked into redeveloping the entire tool.

Refactoring was first described by William Opdyke in his thesis [6]; his short
paper [7] is a relevant introduction.

4.2 Coding standards

You probably do not know who will maintain your tool later, and — unlike most
industrial developers — you probably cannot assume that it will be someone
with much experience of development. So it is particularly important to make
the code you write as easy to read as possible. Some basics, such as using long-
enough meaningful identifier names can help enormously. In functional languages
especially, there seems to be a temptation to write very complicated “write only”
code, which needs to be resisted.

4.3 Version control

This is important for all systems, but particularly important for verification
tools, where correctness is paramount. I find it helpful to version-control everything
— code, build files, documentation, tests, “correct” answers to tests, etc. — and
to keep enough information to cross-check the version numbers. For example, we
mentioned that CWB test results are kept with a record of exactly which version
of every source file was used. In the case that a bug is reported which has been
present in the tool for some time, it’s immensely helpful to be able to work out
what changes to what files introduced it.

In order to make this feasible given resource constraints, the version control
system has to be very easy to use, so that one can check something in and
keep working on it without interrupting a chain of thought. I find the emacs vc-
mode adequate: checking in a new version takes five keystrokes, plus whatever
is required to type the comment on the version.

4.4 Testing

It goes without saying that a verification tool needs to be thoroughly tested; but
the effort required to do this is often underestimated. In mainstream software
engineering, the usual estimate of how much of a software development project’s

11



budget is spent on testing is 30 - 50%; verification tools can be expected to be
towards the upper end of this spectrum. Another commonplace in mainstream
software engineering is that developers should write as much test code (code that
forms part of test harnesses) as production code. It is extremely tempting to cut
corners here, and so it is crucial that all time that is spent on testing is used
as effectively as possible. As usual in an iterative development process, some
aspects of functionality will have to be retested very frequently, which makes
automated support for regression testing essential.

The Edinburgh Concurrency Workbench’s system testing software is written
in Perl, a language which is well adapted to this kind of task. Systems tests are
stored as CWB input files. The test controller program takes a list of test (or
test suite) filenames and, for each test, it runs the CWB on the test, directing
the output to a known file. It compares the output with a hand-checked “known
correct” output file, and reports any discrepancies. It records the RCS version
numbers of all the files used to build the version of the CWB it is testing (which
the CWB gives in response to the command “cwb version;”). It also records the
time taken by each test, as a crude measure of changes in performance. This
simple program enables the CWB developer to run tests and spot newly intro-
duced errors with minimal effort. The disadvantage of its simple-mindedness is
that semantically insignificant changes to CWB output — printing nominally un-
ordered output items in a different order, for example — are reported as errors.
It would be possible — and perhaps an interesting student project! — to design a
more sophisticated tool which would enable the test writer to specify more about
what constitutes correct output. In the meantime, mindful of the importance of
avoiding getting carried away in implementing bells and whistles (see section 5
below), we have a simple separate Perl script which deals with the most com-
monly occurring instances of this phenomenon, leaving less common occurrences
to be checked by hand.

4.5 Defensive programming

Sanity checking in the code is much more important for verification tools than for
standard business programs, because there is typically more that can go wrong
and it is harder for unit testing to achieve appropriate coverage. Concretely, you
will probably need some kind of statement in the code which will arrange for
some diagnostic information to be produced only if some flag is turned on. Care
is needed to avoid bad interactions with the efficiency considerations of the tool.
For example, soon after taking over the Edinburgh Concurrency Workbench I
added such statements using a new function called “debug” which took a string
as argument and showed it only if debugging was turned on. The problem with
this, I soon found, was that it had a serious impact on performance even when
debugging was turned off . Of course this was because — since ML is a call by value
language — the string argument was being built whenever the line containing the
function call was executed, whether or not the debug function was going to
decide to print the string or not. The simple work around was to thunk it: that
is, to use a new function debugFn instead, which takes, not a string, but an

12



anonymous function taking no argument and returning a string. The function is
passed to the debug code, which only calls it if the string is required. The effect
on the client code is that instead of writing;:

UI.debug "The number of states is ""foo
one writes:
UI.debugFn (fn _ => "The number of states is ""foo)

In languages which do not have function passing as a central concept, one might
pass an object to similar effect, or use the capabilities of an appropriate macro
language.

Testing is a second line of defence after type checking and the encapsulation
facilities provided by your module system have failed. As many bugs as possible
should be caught by those, first lines of defence.

5 Automating things

We have several times touched on the issue of how automation can help to
minimise the effort required to assure quality of verification tools, for example,
by making regression testing easy. It seems worth remarking that there is a
danger of losing time by automating things, too. For example, after making two
minor errors in releasing versions of the CWB, I developed a script to automate
the release process. (The script built the CWB for the platforms I had available,
transferred files to the export FTP directory, tar’d and gzipped them, etc.) In
fact, the effort of building and debugging the script was not worthwhile. I would
have been better off with a checklist of things to do when releasing the CWB:
this would have solved the original problem more robustly with less effort.

6 Supporting users and component developers

6.1 Documentation

Documentation is naturally crucial. Tool developers normally realise this, but
sometimes forget that out of date documentation can be little better than none.
There are several kinds of documentation which you might consider:

— On-line help
— User manual, for printing out
— Web-based documentation

Because these are used by people under different circumstances, ideally you
would provide all three written in slightly different styles. For example, the
on-line help about a command would provide, tersely, the most important in-
formation about a command, whereas the user manual intended to be printed
out would be more discursive. Writing separate documents makes good sense

13



in a commercial environment where plenty of resource is available. However,
verification tool developers do not normally have this luxury. In the case of the
Edinburgh Concurrency Workbench we decided that we could not spend the ef-
fort required to maintain three separate documents, so we have a single source
of information for each command which is compiled in three different ways (by
a very simple home-made Perl script: we avoid using advanced features of any
of the text presentation languages) to give the three access methods listed.

6.2 Distribution isses

The Web is the obvious means of distribution, at least for a free tool. You need
to consider licensing issues: under what conditions do you want people to be able
to use your tool? Do you want it to be free to everyone, or just free for academic
and/or non-commercial use? Do you want to make the source code available?
You retain the copyright on your code unless you explicitly give it up — in most
jurisdictions this does not rely on you inserting copyright statements anywhere
— but of course you may not be able to enforce your rights. “Public domain”
is often incorrectly used as a synonym for “free”: in fact if something is public
domain anyone can do anything they like with it. For example, someone could
take a public domain tool, package it up removing all reference to the authors,
and sell it.

You may want to start a mailing list to carry announcements and possibly
discussion of your tool. This is easy to do using majordomo, for example. You
will need to consider whether you want to moderate the list.

Platforms A related issue is what platforms you want your tool to be available
for; this will be particularly difficult if you don’t want to distribute source code.
You might be able to find people to compile the code for you on various platforms
— but do you really want to distribute code that you didn’t compile and can’t
test? And will the owner of your web site agree? If your chosen language is Java
you might get round this by distributing Java byte code: but you might have to
rule out Java for other reasons, e.g. performance.

6.3 Support

People will send you email about your tool of a variety of kinds. Some people will
send suggestions or requests for new features; some of these will seem like cool
ideas, others like crazy ones. A surprising number of people will send you bug
reports or queries which demonstrate that they haven’t understood the basics of
the theory on which your tool is based. Some people will send you bug reports
which really are bugs.

It is hard to answer all email helpfully and promptly without letting it take
over your life, and I have not mastered this yet. A common piece of advice is to
set aside a particular time on one day of each week for answering tool-related
email, but I have found this approach to be ineffective. The trouble is that in a
high proportion of cases an answer will be needed urgently, either for your peace

14



of mind or for the sender’s. For example, if someone reports a serious bug and
you delay replying for nearly a week, it gives the bad impression that you do not
care or are not surprised.

You cannot completely satisfy everyone who sends you email: tool developers
are human, and there is no need to apologise for this! There are some ways you
can respond positively without committing time you don’t have:

— In the case of requests for new features, encourage the correspondent to do
the work themselves. This is only practical if the tool is in a reasonable state
for someone else to work on, which is a good reason for ensuring this. In
practice most people will find that they don’t really want the feature if they
have to work on it themselves!

— Is it something that could at some stage be a student project?

— If the correspondent has a serious need for something your tool does not
provide, can you recommend another tool that might suit their needs better?

References

1. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stad. Pattern-Oriented Software Architecture — A System of Patterns. John Wiley,
1996.

2. Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency Work-
bench: A semantics-based tool for the verification of concurrent systems. ACM
Transactions on Programming Languages and Systems, 15(1):36-72, January 1993.

3. Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-Computer In-
teraction. Prentice Hall, 1993. (hardback); 0-13-437211-5 (paperback) only outside
USA.

4. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, 1995.

5. Thomas K. Landauer. The Trouble with Computers: Usefulness, Usability and
Productivity. MIT Press, 1996.

6. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, 1992.

7. William F. Opdyke. Object-oriented refactoring, legacy constraints and reuse.
presented at 8th Workshop on Institutionalizing Software Reuse, available from
http://www.umcs.maine.edu/ ftp/wisr/wisr8/papers/opdyke/opdyke.html, 1996.

8. Perdita Stevens. Why I Hate ML. http://www.dcs.ed.ac.uk/home/pxs/talksEtc.html.
Slides from talk given to the Edinburgh ML Club and Glasgow Functional Pro-
gramming group.

9. Perdita Stevens. Abstract games for infinite state processes. In CONCUR’98,
number 1466 in LNCS, pages 147-162. Springer-Verlag, 1998.

10. Harold Thimbleby. User Interface Design. Addison-Wesley Publishing Co. (ACM
Press), Reading, MA, 1990. ACM Order number 704907; QA76.9.U83T48 1990.

15



