Abstract interpretations of games

Perdita Stevens *

Laboratory for Foundations of Computer Science
Division of Informatics, University of Edinburgh
The King’s Buildings, Mayfield Road
Edinburgh EH9 3JZ
Scotland, UK

Abstract. In recent work [20] we have proposed abstract games, and an example algorithm
for finding winning strategies of them, as an approach to verification problems — such as
model-checking and equivalence checking — which permits both a variable level of abstraction
and on-the-fly exploration. It was clear that this work had something in common with
abstract interpretation. This paper, which describes work in progress, generalises and makes
the connection explicit.

1 Introduction

In computer science questions which we need to answer often refer to objects which are, in an
appropriate sense, infinite state. Examples include value-passing processes over infinite data do-
mains, and timed automata, where the source of infiniteness is the fact that clocks may show any
real-numbered time. To answer questions about such objects we obviously need techniques other
than exhaustive exploration. (In concurrency we may be interested, for example, in the question
of whether a system satisfies a formula in some logic (model-checking) or in whether some pair
of processes is in some relation (equivalence checking, preorder checking, etc.)) The standard ap-
proach is to define some finite representation of the infinite object, detailed enough to answer all
questions from some class about the object, and to prove that the answers obtained using it are
right, that is, that the abstraction is sound for the class of questions considered. For example,
in the case of timed automata, [1] showed that we may work with a finite region automaton. An
early approach to value-passing process algebras was [14], which dealt with bisimulation of data-
independent processes. Later symbolic transition graphs (STGs) [13] and then symbolic transition
graphs with assignment (STGAs) [15] were introduced to handle a larger class of value-passing
processes. This representation has been used to answer bisimulation questions and also model-
checking questions [18]. This approach also includes many explicitly abstract interpretation (a.i.)
based papers, such as [12], [7], [8], [9], and many others.

This approach has clearly proved useful, but there are at least two possible problems with it.
First, the correctness, with respect to the class of questions of interest, of the particular finite
representation has to be proved in each case, although the work is often routine. Secondly, and
more seriously, there often is no finite representation suitable for answering all questions from a
well-defined class. We would prefer a tool not to refuse to answer easy questions because some
questions about the system happen to be hard. This problem is acute with verification problems:
the easiness of a question is a property of the question, not of the system about which it is asked.
Am infinite-state system may, for example, have no finite state system which satisfies all the same
properties (from some class), and yet a given property in that class may be “easy” to verify.

In recent years the study of games as an approach to problems in concurrency has taken off. It
has long been recognised that bisimilarity, and many other equivalences, can be characterised by
games reminiscent of Ehrenfeucht-Fraissé games; see, for example, [22]. Very briefly, we can define
a bisimulation game on a pair of processes (E, F') by saying that the two players (Abelard and
Eloise) move alternately. Abelard, who starts, chooses one of the two processes and a transition

* Perdita.Stevens@dcs.ed.ac.uk, supported by EPSRC GR/K68547

from that process, say E — E'. Eloise is required to chose a matching transition, that is, one
with the same action a, from the other process, yielding a new pair of processes (E', F'). Abelard
then gets to move again; because this is a bisimulation game he again gets a free choice of process.
A player wins if the other player cannot go, and Eloise wins all infinite plays. It is not hard to see
that Eloise has a (history-free') winning strategy iff the processes are strongly bisimilar, and that
such a strategy defines a bisimulation. Similarly, if the processes are not bisimilar, then Abelard
has a history-free winning strategy. More recently, Stirling has defined and studied model-checking
games[23]; it can be shown that a system satisfies a modal mu-calculus property if and only if Eloise
has a (history-free) winning strategy for a certain game, with more complex winning conditions.
A winning strategy in this case is closely related to a canonical tableau; again, it can be seen as
a proof object.

The formulation of a verification problem as a game? is often not profound, but it has a number
of advantages. It seems to be a natural way to capture problems involving reactive systems; in
particular, it focuses on the problem rather than the system in isolation, and provides a good
paradigm within which to do on-the-fly exploration. More recently, it has been realised that the
winning strategy can be used as a debugging aid when the answer to the question is not what is
desired. For example, understanding the failure of a liveness or fairness condition — where there is
in general no “error trace” which on its own explains the problem — can be facilitated using the
winning strategy[21].

2 Abstract games and abstract interpretation

The practical motivation was that we needed a theory which could be applied in the Edinburgh
Concurrency Workbench [17] to solve a large number of verification problems about infinite sys-
tems. The CWB is used as a testbed for experimenting with new process algebras, relations, etc.,
so we wanted to minimise the amount of theoretical (and programming) work that had to be done
to allow a new verification question to be applied to infinite state systems. At present we are
interested only in fully-automatic verification.?

In [20] we described how to define, given a (“concrete”) game, an associated set game, such that
there is a correspondence between winning strategies for the two games. The paper then presented
an algorithm which, when instantiated with some functions describing the concrete game, searches
for a winning strategy of the set game.

Thus, if the concrete game is known to be characteristic for a question, then so is the set game,
and finding a winning strategy for the set game answers the question. The algorithm generates a
winning set-game strategy which can easily be interpreted as a winning concrete game strategy
and so be used for debugging in the usual way. We gave some conditions under which the algorithm
is guaranteed to terminate. The algorithm cannot in general, of course, be guaranteed to terminate
(since it addresses undecidable problems). To go further, we need some more detail and terminology
from [20].

2.1 Games terminology

For the purposes of this paper, a game is always played between two players Abelard (abbrev. V)
and Eloise (3). We refer to players A and B to mean Abelard and Eloise in either order. A game
G is (Pos, I, moves, A, Wy, W3) where:

— Pos is a set of positions. We use u, v, ... for positions.
— I C Pos is a set of starting positions: we insist that A\(¢) = A(j) for all 4,5 € I.

! History-freeness is defined in 2.1

% possibly a very uninteresting one: the reader is invited to invent a game characterising trace equivalence

3 However, an early approach to model-checking infinite-state processes (including those outside any
known-decidable class) was [4]: Bradfield’s experimental tool [2] used a combination of interaction with
the user and automatic checking. It will be interesting future work to combine the approaches.

— moves C Pos x Pos defines which moves are legal. A play is in the obvious way a finite or
infinite sequence of positions starting at some po € I where p;11 € moves(p;) for each j. We
write p;; for p;...p;.

— X : Pos — {Abelard, Eloise} defines who moves from each position.

— Wy, W3 C Pos¥ are disjoint sets of infinite plays, and W4 includes every infinite play p such
that there exists some 4 such that for all k > i, A(px) = B.

Player A wins a play p if either p = py,, and A(p,) = B and moves(p,) = 0 (you win if your
opponent can’t go), or else p is infinite and in W4. (Notice that in general some infinite play may
have no winner: such a play is said to be a draw. We will forbid this for concrete games: for their
abstractions it is practically inevitable, but harmless.)

A (nondeterministic) strategy S for player A is a partial function from finite plays pu with
A(u) = A to sets of positions (singletons, for deterministic strategies), such that S(pu) C moves(u)
(that is, a strategy may only prescribe legal moves). A play q follows S if whenever py,, is a proper
finite prefix of ¢ with A(p,) = A then pp+1 € S(porn)- Thus an infinite play follows S whenever
every finite prefix of it does. It will be convenient to identify a strategy with the set of plays
following the strategy and to write p € S for p follows S. S is a complete strategy for Player A if
whenever po, € S and A(p,) = A then S(po,) # 0. It is a winning strategy for A if it is complete
and every p € S is either finite and extensible or is won by A. It is non-losing if it is complete and
no p € S is won by B. It is history-free (or memoryless) if S(pu) = S(qu) for any plays pu and qu
with a common last position. A game is determined if one player has a winning strategy.

All the concrete games we need to consider are determined, with history-free winning strategies
and no draws, and this is an assumption of this work.

2.2 Basic setup of abstract games

Given a game G€ (the concrete game) in which Wiy U W3 = (Pos®)“ (no draws), the first step in
defining an abstract game G corresponding to G€ — in other words, an abstract interpretation of
GC — is to choose a partial order (PosA, <) to represent the abstract positions. This will be related
to the concrete positions (in the present work: more generality is possible, but its usefulness is
not yet clear) by the existence of h : Pos® — Pos™. We require that h preserves whose turn it
is: A°(u) = AA(hu) for each u. We further require that for any abstract position U € Pos™, if
hu < U then M (U) = X¢(u). It is convenient to consider only abstract positions U in which every
u with hu < U has the same player to move; that is, we insist that Pos™ is the disjoint union of
Pos;,4 and Posﬁ‘, each of which becomes a complete lattice on adding a bottom element — which,
however, is never a legal abstract game position. Thus if U < V are abstract positions in Pos™
then AMA(U) = M(V). We will write ~ for the equivalence relation on Pos® defined by u ~ v iff
hu = hv. We extend both ~ and < pointwise to sequences of positions, such as plays. In the usual
way h generates Galois connections, one for each player. Given U C Pos® with the same player
to move from each position in U, a(U) = ||, . hu. The assumption on U ensures that this is
defined.

The canonical example (the set game of [20]) is that in which we take Pos?* C P(Pos®) to
be the non-empty sets of concrete positions from which the same player is to move, and say that
h:u+— {u}. In this paper we will also be interested in certain non-trivial maps h. In particular,
this will enable us to recover the decidability result of [20] in a more elegant and general form,
independent of the algorithm used there.

We take I = h(I€).4

The legal moves of the abstract game are required to satisfy

uelU

v € moves®(u) = hv € moves™ (hu)

(Something weaker might still be interesting, in fact, cf the homomorphism condition of [19].) This
ensures that if p = (p;)icr is a legal play of G€ then @(p) =g4ey (h(p;i))icr is a legal play of GA.

4 Permitting joins of elements here poses no serious problems, but complicates the presentation.

The sets of infinite plays won by each player are defined by P = (P;)ic, € W' iff either for
all but finitely many i, A(P;) = B, or both

1. 3p = (pi)icw € WY s.t. @(p) < P (P subsumes some A-won concrete play)
2. Vp = (pi)icw € W5 @(p) £ P (P subsumes no B-won concrete play)

(An infinite play which subsumes no concrete play, or which subsumes concrete plays won by each
player, is drawn. The first situation may arise in practice when every finite prefix of an abstract
play subsumes some concrete play, but, for example, some natural number parameter of an early
position has to be larger the longer the prefix. The latter can be illustrated by “sticking together”
appropriate infinite plays won by each player, but is easily excluded in practice.)

2.3 Further restrictions

In order to obtain strategy transfer results, we will need the equivalence relation ~ on concrete
positions induced by h to be consistent with the moves relation on the concrete game, as follows:

1. (gMM) If u' € moves(u) and v’ ~ v' then there is v such that v' € moves(v) and u ~ v.
(This is equivalent, in the special case considered in [20], to that paper’s requirement on
getMaximalMove for guaranteed termination of the algorithm.)

2. (gMP) If u' € moves(u) and u ~ v then there is v’ such that v' € moves(v) and v’ ~ v'. (This
is equivalent to the requirement on getMaximalPredecessor in [20].)

3. (inf) If p and ¢ are infinite concrete plays such that for each i, p; ~ ¢;, so that a(p) = a(q),
then p and ¢ are won by the same player.

(All of these parts are trivial in the set-game case, where u ~ v iff 4 = v.) Then we define the
moves relation on the positions of the abstract game by

Definition 1. V € moves*(U) iff

1. for each u € Pos® such that hu < U, movesC(u) # 0 and
2. for each v € Pos® such that hv <V, there is some w such that v € moves®(w) and hw < U.

It is important to notice that there is no reason why everything subsumed by U should have a
successor subsumed by V': in the set-game case, for example, a different move may be required
from concrete positions in the same set, depending on the values of parameters.

Given these definitions we may observe that

Lemma 1. 1. v € moves®(u) = hv € moves™(hu) (as required by the abstract game specifica-
tion).

2. p is extensible iff abstract play a(p) is extensible. Player A wins concrete play p if and only if
player A wins @(p).

3. (Dropping) If V € movesA(U) and V' <V then V € moves(U).

4. (Covering) If V is minimal, say hv, and in moves*(U), there is some minimal U' < U, say
hu, such that V € moves*(U') and v € moves®(u).

5. (Lifting) If U < V and there is some legal move from V and U' € moves*(U), then U’ €
moves (V).

2.4 Strategy transfer

We now have enough to transfer strategies and show that this preserves winningness.
A strategy S is said to be downwards closed if whenever p < ¢ are both legal plays and ¢
follows S then p follows S.

Lemma 2. If T is any winning strategy for G* then there is a downwards closed winning A-
strategy for GA.

Let S be a strategy for GC. Construct a strategy a(S) for G* by
(@(9))(P)={hu:3pe S st.alp) <Pand ueSp}
Conversely, let S be a strategy for G*. Construct a strategy 5(S) for G¢ by
(F(S))(pon) = {u € moves®(p,) : AP € S s.t. @(p) < P and hu <V € S(P)}

Lemma 3. 1. Considered as maps on strategies regarded as sets of plays, @ and 5 are monotonic
with respect to subset inclusion. Moreover if aS C T then S C5T.°
2. @(S) is downwards closed.
3. If a finite play Py, follows @(S) and h(p,) < P, then there is some concrete play pon ending
in pn and following S.
4. If T is downwards closed, then (the legal concrete play) p follows 5(T) ezactly when @ (p)
follows T

Theorem 1. 1. If S is a winning strategy for G then a(S) is a winning strategy for GA.
2. If T is a downwards closed winning A-strategy for G* then 5(T) is a winning strategy for GC.

2.5 Relationship with the algorithm of [20]

Fundamentally the algorithm is based on the set game, that in which h : u — {u}. It works
with sets of concrete positions, so it needs a way to describe those sets and manipulate them.
Accordingly, to instantiate the algorithm for a particular problem requires a notion of shape on
the positions of the concrete game, and implementations of certain functions. That is, there is a set
of shapes; shapes may be parameterised on data values, clock times, etc. Each concrete position
can be uniquely represented by giving its shape and values for the parameters; initially we may
consider the abstract game in which h maps a position u to its shape. To make this accord with
the definition, we require the notion of shape to ensure that if concrete positions u and v have
the same shape (we write u = v) then A(u) = A(v). For example, a position in a model-checking
game might be the (state, subformula) pair (a(5).0,(b)T"). An appropriate notion of shape might
give the shape of the position as (@(pi1).0, {b)T"), so that the position is defined by giving its shape
and specifying that p; = 5. Alternatively, since the subformula in a model-checking game position
determines who is to move, the whole state might be regarded as a parameter, so that the shape
would be (p1, (b)T) and the position is defined by specifying p1 = @(5).0. The notion of shape
gives a coarse equivalence relation on concrete positions, which, effectively, the algorithm refines.
Rather than giving specific values for the parameters, we may specify a constraint on the values
and so define a set of concrete positions all having the same shape.

The equivalence relation = itself will not in general satisfy the necessary conditions. We do
require = to satisfy condition (inf) (in fact, a stronger version of it), which is satisfied by the obvious
notions of shape in the standard examples. The algorithm alternately searches and backtracks,
splitting =-equivalence classes wherever necessary to satisfy the conditions (gMM) and (gMP).
If it terminates, it can be seen as having constructed, automatically, a finite refinement ~ of =
on the reachable concrete positions satisfying the conditions, and having taken advantage of the
finiteness of the abstract game tree, determined by this equivalence relation, to solve the problem
in that domain. Proposition 1 of [20] observed that if such an equivalence relation existed, then the
algorithm would terminate: the original proof was founded on the observation that the algorithm
would never split equivalence classes of such a relation.

The algorithm takes an abstract position I described as a shape and constraint, that is, a set
of concrete positions, and partitions it into subsets Iy, I3 such that each player A has a winning
strategy for the game starting at I4, if this set is non-empty. (Of course in the case that both sets
are non-empty, the player whose turn it is at I has a winning strategy from I itself: this is not
what is of interest.)

5 [20] claimed parenthetically that o and 4 form a Galois connection: but in fact the reverse implication
does not seem to hold in general, though it does hold for history-free strategies, for example. Some
adjustment to definitions may be desirable here?

3 Discussion, conclusion and further work

We have described how recent work on abstract games can be seen as abstract interpretation, gen-
eralising previous approaches to model checking by abstract interpretation. The approach however
is not limited to model-checking, but applies to any verification problem which can characterised
by a suitable concrete game.

A question we haven’t discussed is “abstract interpretation of what?”. We have deliberately
avoided any distinguished “program”, since verification problems do not necessarily have an obvi-
ous concept of program. In the case of model-checking, where the problem is to decide whether a
system satisfies a formula, it is in some ways attractive to regard the system as the program, and
as far as the author is aware this is what a.i. approaches to model-checking (see [12], [7], [8], [9],
and many others) have done. However, this approach encounters problems when we try to extend
it to model checking of logics which themselves involve potential infinite value sets, such as the
first order mu-calculus of [11] or [18], or the observational mu-calculus of [3]. Here the need to
distinguish a pair of values may arise from a complication in the formula, rather than from the
process; it is possible, for example, for a formula to retain information about a process’s previ-
ous behaviour even if the process itself does not. More seriously, it does not fit well with other
verification problems such as equivalence checking in which the question is whether two systems
are related in a particular way. It is possible to regard one of them as the program and the other
as part of the question; but this is arbitrary and rather unnatural. We conclude that abstract
interpretations are really interpretations of a problem, whose statement may or may not involve
a distinguished program.

Although, as the discussion of the algorithm shows, such ideas are lurking, we have not explicitly
discussed any cases in which partial answers are obtained. The main barrier is the duality inherent
in the problems we consider: there is not a priori any reason to treat one player differently from
the other. In practice, however, it may be that the user of a tool expects the answer to be a
certain thing, and it might be possible to take advantage of this. It may be necessary to consider
restrictions of the full mu calculus. It might also be hoped that further understanding of how an
algorithm can move between different abstract interpretations of the same game — for example,
of the connection between this and the a.i. ideas of widening and narrowing — may lead to more
efficient and understandable algorithms for finding winning strategies of games.

3.1 Acknowledgements

I thank Samson Abramsky for helpful comments and pointers into the abstract interpretation
literature.

References

1. R. Alur and D.L.Dill, Theory of Timed Automata, Theoretical Computer Science 126(2) pp183-235,
1994

2. J. Bradfield. A proof assistant for symbolic model checking. In Proceedings of CAV’92, LNCS 663.

3. J. Bradfield and P. Stevens, Observational mu-calculus. To appear in Proceedings of the Workshop
on Fixed Points in Computer Science (FICS’98).

4. J. Bradfield and C. Stirling, Local model checking for infinite state spaces. Theoretical Computer
Science, 96 pp 157-174 (1992).

5. K. Cerans, Decidability of bisimulation for parallel timer processes, In Proceedings of CAV’92, LNCS
663.

6. D. Clark, L. Errington and C. Hankin, Static Analysis of Value-Passing Process Calculi, in Theory
and Formal Methods 1994.

7. E.M.Clarke, O. Grumberg, D.E.Long, Model Checking and Abstraction, ACM-TOPLAS, Vol 16, No.
3, May 1994.

8. R. Cleaveland, P. Iyer, D. Yankelevich, Optimality in Abstractions of Model Checking, LNCS 983
pp51-63, 1995.

10.

11.
12.

13.
14.

15.

16.
17.

18.
19.

20.
21.

22.
23.

R. Cleaveland and J. Reily. Testing-based abstractions for value-passing systems. Proceedings of
CONCUR’94, LNCS 836, pp417-432.

P. Cousot and R. Cousot, Abstract Interpretation Frameworks, Logic and Computation 2(4) pp511-
547, 1992.

M. Dam, Model Checking Mobile Processes, Information and Computation 129, 35-51, 1996.

D. Dams, R. Gerth, O. Grumberg, Abstract Interpretation of Reactive Systems, ACM-TOPLAS,
Vol. 19, No. 2, march 1997.

M. Hennessy and H. Lin, Symbolic Bisimulations. Theoretical Computer Science, 138:353-389, 1995.
B. Jonsson and J. Parrow, Deciding bisimulation equivalences for a class of non-finite-state programs.
Information and Computation, 107(2) pp 272-302, Dec 1993.

H. Lin, Symbolic Transition Graph with Assignment. Proceedings of CONCUR’96, LNCS 1119,
pp50-65.

R. Milner, Communication and Concurrency. Prentice Hall 1989.

Moller, F. and Stevens, P. (1996). The Edinburgh Concurrency Workbench user manual.
http://www.dcs.ed.ac.uk/home/cwb.

J. Rathke, Symbolic Techniques for Value-Passing Calculi. PhD. thesis, University of Sussex, 1997.
D.A. Schmidt, Trace-based Abstract Interpretation of Operational Semantics, draft from
http://www.cis.ksu.edu/ schmidt/, 1998.

P. Stevens, Abstract games for infinite state processes. To appear in Proceedings of CONCUR’98.
P. Stevens and C. Stirling, Practical Model-Checking using Games. Proceedings of TACAS’98, LNCS
1384, pp 85-101

C. Stirling, Modal and temporal logics for processes. LNCS 1043 pp149-237. 1996.

Stirling, C. Local model checking games. Lecture Notes in Computer Science, 962, 1-11. 1995

Appendix: proofs

Lemma 1

Proof. 1. Suppose v € moves®(u). We need to show that for each v ~ v there is u’ ~ u such
that v’ € moves®(u') — exactly (gMM).

2. If v € moves®(p,) then (gMM) shows that hu € moves™(h(p,)), so if p is extensible then

so is a(p). If a(p) is extensible, say by V € moves®(h(p,)), then by deinition for any v with
hv <V we have v € moves®(p!,) for some p!, ~ p,; then by (gMP) there is some v’ ~ v with
v' € moves®(p,), so p is extensible.
Suppose p and @(p) are finite. Then since if one is extensible so is the other, we need only
consider the case where they are infinite. If p is infinite and in W then @(p) subsumes a play
won by A. By (inf) it cannot also subsume a play won by B, so by the definition of W' it
is won by A. Conversely, suppose p is an infinite concrete play and @(p) is won by A. Then
@(p) cannot subsume any play won by B, so since it subsumes p and the concrete game has
no draws, p is won by A.

3. Straight from definition of moves: V has a more restricted domain.

4. From gMP and definition of moves: given U — hv we know there’s 4 — v s.t. hu < U. Then
hu — hv is also legal, since v' ~ v and u — v implies exists u' — v'.

Straight from the definition of moves, again: 3 has a wider domain.

Lemma 2

Proof. (Sketch) Let T be a winning strategy. The obvious downwards closure of T need not itself be
winning. This slight problem stems from the fact that moves need not alternate in our formulation
of games. In a sequence of positions throughout which it’s A’s turn, a winning A-strategy T might
choose to remain abstract not because it can really deal with all concretions of that abstract play,
but just because it knows it will have another chance to concretise in a moment. The downwards
closure might concretise in a way we didn’t want, preempting the intended concretisation. To deal
with this, the idea is first to add segments of plays consisting of sequences of A-choices which
concretise as soon as possible, and then to remove anything troublesome.

Suppose P;...P; is a segment of some play in T' where A\(P;) = A(Piy1) = ... = A(Pj_1) = A
and A(P;) = B. Consider all the plays formed by replacing P;...P; with Q;...Q; for any legal
segment @Q); ... Q; < F;...P;, with the restriction that if B had no moves from P; we only consider
@; such that the same holds. Let T'F be the strategy formed by adding in all such plays. If) is any
play in TT\T, Q < P for some play P € T; and P is won by A. Now there must be some concrete
play ¢ such that @(q) < @, because since A wins P, P must subsume some concrete play r won by
A, and after P; P and @ are the same. So Pj41 = Q;+1 > h(r;), and Qj41 € moves?(Q;) so by
Dropping Q;+1 € moves™(h(r;)). So there is some ri with h(r}) < Qj and rj11 € movesc(r;-). So
h(r}) < Qj; repeat, to define g. Therefore @ is also won by A. T is still complete, since anything
B can move to from a @; could also have been reached from a P; by Lifting. So T+ is still a
winning strategy. Now form 7" from T by discarding any play which subsumes something not in
T'. This doesn’t destroy completeness because there are at least the minimal (concrete) sections
left. Repeat (transfinitely) for all segments. The result is a downward closed winning strategy.

Lemma 3

Proof. 1. Monotonicity is clear: in each case augmenting S widens the scope of a 3 quantifier.
Suppose a(S) C T and take p € S: we must show that p € 5(T'). Suppose for a contradiction
that po, follows J(T') but pri1 & F(T)(pon- Now @(po(nt1)) € @(S), since by definition of
@, we always have @(S) C @(S) (but not the reverse inclusion, since the LHS includes only
ground plays). So by assumption @(pg(n+1)) € T, and we may use this in the definition of 7(T')
to get that po(,41) € ¥(T), contradicting the choice of n.

If S and T are history-free strategies, then so are @(S) and 5(T') and we may regard strategies
as partial functions from positions to positions; then (@S)(u) = h(Su) and (YT')(u) = h=1(Tu).
Then S C H(T) iff for all u, Su C h~1(Tu), which holds iff for all u we have h(Su) C (Tw), iff
(@S)CT.

2. Immediate from definition of @(S): it only prescribes move of the form hu, which are minimal.

3. At the last position A chose, we certainly had an underlying concrete play by definition of
@(S). To get back to there, pick some minimal h(p,) < P, and use Dropping and Covering.
This yields a concrete play-section from the last A choice to the end (and all positions were
chosen by B so within this section there’s no question about whether we follow S). Problem
is that the concrete position we end up with at the last A-choice may not be the one actually
used in the strategy definition. But we use gMM to alter the concrete tail without changing
the minimal abstract play above.

4. First suppose that a(p) follows T and that p is a legal play. Just take P = @(p) and V = h(p;)
in the definition of 7 to show that p € F(T'). Next suppose p € J(T') and consider whether
h(pn) € T(@(po(n—1))). We know there is some PV € T with @(pg(n—1)) < P and h(p,) <V €
T(P); that is, @(pon) < PV € T. Since T is downwards closed, @(por) € T which is what has
to be proved.

Theorem 1

To make the induction go through we need one additional notion. Given a strategy S for GC, the
~-closure S is defined by v € S(p) iff there are v’ v and p' with for each 4, p; p}, with v € S(p).
If S is a winning strategy, so is S.

Proof. (i) Suppose S is a winning A-strategy for GC. First, we must show that T = @(S) is
complete, that is, prescribes at least one move at every reachable A-choice point, say from FPy,,.
But Lemma 3 shows that there is some p = py,, following S with @(pg,) < Pon- Now since S is
winning p is extensible, say by po(n+1), and by definition of @(S) we’re done.

We must show that @(S) is a winning strategy. Let P (finite or infinite, but non-extensible)
follow @(S). We construct p following S such that @(p) < P (except in special cases when we
show A wins P anyway). Then A wins p, so A wins P provided that there isn’t also a concrete
play r won by B with a(r) < P. But @(S) is downwards closed, so such a play would follow @(S).
Then by a technique similar to that used in the proof of 3 we see that there would have to be 7’
following S with @(r') = @(r); so r' is won by A and we have the required contradiction.

We’ll construct p € S from P from the beginning in chunks; each chunk except possibly the last
is finite, and ends in a position chosen by A (this is the definition of a chunk!). Since p < P and by
the definition of <, this means that the last position in any finite chunk is p,, with h(p,,) = Py,.
The induction hypothesis is that for some prefix P’ of P consisting of £ > 0 chunks we have
constructed a concrete play p' € S such that a(p’) < P'. The construction of the next chunk
doesn’t alter p’ which is why this works for infinite plays as well as finite ones. The base of the
induction k£ = 1 is Lemma 3 unless P is an infinite play with no A choice points, in which case
this is the only chunk and P € W4 by definition.

For the induction step, consider the finite prefix of P consisting of the first k& + 1 chunks; write
this as Pyy,.P" where P" is the (k + 1)th chunk. There are two cases, depending on whether P"
ends in a ground position chosen by A or not.

First suppose it does; in particular, it’s finite, say P = P(;41),- We have a concrete play
Pom in S with @(pom) < Pom, and must extend this underneath P'. Consider the compos-
ite @(pom)Pimt1)yn < Pon; this is legal since h(pm) = Pp,. Since a(S) is downward closed it
follows @(S), so by definition of @(S) there is some rq(, 1) following S with @(ry,,-1)) <
a({pm})P(m+1)(n_1) (taking P(m+1)(n—1) empty if m + 1 = n). Then P, = h(r,) for some
Ty € S(To(n—l)-

We need not have r; = p; where both are defined, but we do have r; ~ p;, which enables us to
adjust 7y to 7, With @(rm,) = a@(r),,) and rl, = p,,. Now take pp,n, = r,,,,. Then po, ~ ro, SO
since rom follows S, poy, follows S.

For the other case, suppose P" does not contain any A-chosen position (it may be finite or
infinite), so that P is the final chunk of P. Then if P" is finite then since it ends in a B-choice
A wins as required. If P" is infinite, then again A wins by the condition on W4 in the definition
of abstract game.

(ii) Let T be a downwards closed winning A-strategy for GA. Since T is downward closed, p
follows ¥(T') exactly when @(p) follows T'. The conditions on @ required it to preserve winners, so
to show that 5(T') is a winning strategy we only have to show that 5(T') is complete. Now if po,
follows ¥(T') and A should move from p,, then since @(po,) follows the winning strategy T there
is some abstract move, U say, such that U € T'(a(p)). Take @(po,) and this U in the definition of
~(T). Pick some minimal hu < U; by downwards closure of T this is still in T'(a(p)). Then there
is v ~ p,, such that u € moves®(v), so there is u' ~ u such that u' € moves(p,); take ppy1 = u'.
This is in 5(T)(pon) by construction.

10

