
Small-scale XMI programming:
a revolution in UML tool use?

Perdita Stevens
Division of Informatics
University of Edinburgh

1 Introduction
UML, the Unified Modeling Language, is a standard
diagrammatic language for recording the design of sys-
tems, especially object-oriented software systems. One
of the main benefits of a unified modeling language is
that it enables competition between tool vendors and
allows users a wide choice of tools. Getting the most
out of a tool - which is often a significant investment -
means using it as more than a fancy drawing tool. In
this position paper I will argue that the combination
of XML and UML - especially in the form of XMI, the
OMG’s standard XML Metadata Interchange format - is
crucial enabling technology for getting good value out of
a UML tool. Indeed, I believe that it may revolutionise
the use of modelling tools in future.

2 Small-scale tool development and integration
Let us compare the facilities long available to the pro-
grammer with those available to the designer until now.
Coders have the culture that they are in control; their
tools are there to assist. The artefact they are produc-
ing - the code - is visible and available to them as plain
text, so all text-manipulation facilities can be applied to
code. For example, the developer can load the code into
a more or less intelligent editor and hack it about, either
with a specific plan or in an attempt to understand it;
they can apply editing macros; they can write scripts
in their favourite text manipulation language, e.g. Perl,
to do what they will with the code. Any professional
software engineer is used to doing this kind of manipu-
lation on their code, and sometimes on other people’s,
on an ad hoc basis. For example, some of the tasks I’ve
carried out personally are:

• “grep”ing for particular relevant identifiers, or for
other patterns, in order to find relevant sections of
code quickly;

• writing small scripts to check for, and in some cases
correct, errors not caught by the type checker of the
language, or for violations of coding standards;

• extracting comments and formatting them for use
in an in-house, non-standard help system whose use
was mandated;

• extracting information about method signatures
etc. for insertion in (LaTeX, in the case in point)
documentation.

Any of these things could be done by hand, but, given
the appropriate tools, can be automated so easily that
the effort of automation is often justified even for a one-
off instance of the task. Thus they fall into the category
of mini-tools that may be developed by any developer,
not just by those designated as project toolsmiths, let
alone by specialised tool companies.

Note that an interesting feature of ad hoc utilities writ-
ten for immediate use by the developer who wants them
is that it is possible for them to be much simpler than
a generic tool written by a third party to do the same
task could be, because they can take advantage of any
simplifying assumptions that can be made about this
particular problem, e.g. things the developer happens
to know about the nature of the code to which the script
is to be applied. We will take full advantage of this in
our examples (which are in any case simple for presen-
tational reasons). As always, it is important that every-
one involved understands the difference between an ad
hoc script that solves the problem at hand and a robust
tool that will work or fail gracefully in a wide variety of
circumstances.

When UML first appeared, there was no standard for-
mat for interchange of UML models; most individual
tools had their own textual format which you could
reverse engineer if you really wanted to hack it, but
the results tended to be unpredictable, because the for-
mats had not been designed for such use. XMI, the
OMG’s XML Metadata Interchange format, is a vendor-
independent format for saving and loading UML mod-
els. (Some incompatibilities between XMI written by
different tools still exist, but this will settle as XMI
and the tools mature. All XMI files used with the
scripts described here are written by Argo/UML 0.8
(http://www.argouml.org.) So far most of the inter-
est in XMI has come from tool vendors and has in-
evitably been for rather heavyweight tool integration
(see e.g.[1]), though a partial exception is [2]. In this

1

paper we argue that, important as this is, the main im-
pact of XMI may be for lightweight tool development and
integration of the kind that can be done in minutes or
hours, rather than days, weeks or months, by any devel-
oper.

XMI is not an easy format for a human to read, and even
small models can translate into large XMI files. How-
ever, the big advantage of XMI being based on XML is
that the whole range of generic XML tools is available.
Developers writing scripts to work on code generally
avoid the need to parse the code, but scripts working on
XMI can easily take advantage of parse tree information,
because XML parsers are available in every popular lan-
guage. The ability to analyse and manipulate XMI files
means:

• Analyses or changes that used to be tedious to do
by hand using the GUI of a UML tool can be au-
tomated; and so the temptation to let the UML
model get out of step with the code is decreased.
For example, changes made to the model may prop-
agate to the code using tools’ own forward/reverse
engineering combinations, so that a developer may
choose to make a change to the model and prop-
agate it to the code rather than just changing the
code.

• Any developer can write a script to extract infor-
mation from XMI files and turn it into the input
format of a proprietary tool they may be familiar
with.

We will illustrate each.

3 Model analysis example
Any technology should make simple things simple. To
start at the simplest conceivable level, consider a case
in which a developer wishes to change some identifier
wherever it occurs in the model. This can be done by
loading the XMI file into any reasonable editor and ap-
plying search-and-replace capabilities, with or without
querying the user for confirmation; or alternatively, by a
script in any text manipulation language, such as Perl.
The reason why this is worth saying at all is to illus-
trate that the problem faced by a developer wanting
to manipulate a particular model is simpler than that
faced by a tool vendor wanting to allow such editing
capabilities within their tool. For example, the devel-
oper may be confident that a simple “replace retrieve by
get” will do, whereas a vendor writing a capability that
should work on any model would have to worry more
about the other contexts in which “retrieve” might oc-
cur and whether the replaced “get” version will clash
with anything already in existence. The addition of hu-
man intelligence from the developer makes the problem
soluble with much less programmed intelligence.

To take a slightly less trivial example, demonstrating
what can be done with an XML parser, consider the
case in which a developer wants to find all public at-
tributes (but not operations) of classes, perhaps prior to
replacing them with non-public attributes with get/set
methods. If the model is large this can be a tedious
task to do graphically with a UML tool, or even with
an unfamiliar proprietary scripting language. Figure 1
shows a Perl script that accomplishes it.

However daunting this may look to non-Perl-devotees,
this is quite straightforward to someone who knows Perl;
it’s the kind of thing that could be written in minutes
(especially if this is not the first time the developer has
used the XML::Parser module) and might save effort
even if it was used only once. As prefigured above, this
script takes advantage of hypothesised simplicities of the
target model, e.g., it takes no account of packages. Note
also that the only component used is a simple XML
parser. If one were going to do a lot of this kind of
thing it would probably be worth writing a specialist
XMI package, but even without one the script is only 42
lines long. It would not, of course, be hard to extend the
script in various ways, for example to modify the XMI
rather than merely examining it, if this was required.

4 Tool integration example
In this section we aim to back up our claims by giving
an example of how a UML tool that exports XMI can
simply be integrated with another tool. The aim of the
example is not to do clever tool integration - reports of
much more impressive integrations have been published
- but to show that something that may be worthwhile
in context can be done very easily.

A script very similar to the one shown above (but a lit-
tle longer: 136 lines; see http://www.dcs.ed.ac.uk/
home/pxs/XSE2001/state.pl) is used to extract the
structure of any single flat FSM-like state diagram (no
concurrency, actions etc.; though again, extending the
script to more features would not be hard) and trans-
late it into a Calculus of Communicating Systems (CCS)
agent described in the input format of the Edinburgh
Concurrency Workbench (CWB, see http://www.dcs.
ed.ac.uk/home/cwb). The CWB is a broad verification
tool (over 60 commands) in which many kinds of anal-
ysis can be carried out on such CCS agents, including
model checking the full modal mu calculus with game-
based feedback and many versions of equivalence and
preorder checking.

Finally, Figures 2-4 show an example of a UML state
diagram drawn in Argo/UML, the CWB input file pro-
duced by the script from the saved XMI file, and a few
CWB commands carried out on that input file (com-
ments in [square brackets]).

Figure 1: Identifying public attributes

#!/usr/local/bin/perl
use XML::Parser;
my $file = shift;
die "Can’t find file \"$file\"" unless -f $file;
my $parser = new XML::Parser(Style => Tree, ErrorContext => 2);
my $pairref = $parser->parsefile($file);

$VISIBILITY = ’Foundation\.Core\.ModelElement\.visibility’;
$CLASS = ’Foundation\.Core\.Class$’;
$NAME = ’Foundation\.Core\.ModelElement\.name$’;
$ATTRIBUTE = ’Foundation\.Core\.Attribute’;

mypair(undef, undef, @$pairref);

take hashrefs for current class and attribute, plus tag-content pair
sub mypair {

my ($recclass, $recattr, $tag, $content) = @_;
return $content unless $tag; # deal with non-element nodes, i.e. text
if ($tag=~/$ATTRIBUTE/) {

my $attr = {}; # the attr we’ve found, rep by new ref to anon hash
myarray($recclass, $attr, @$content);
print "Attr $$attr{name} in class $$recclass{name} is public\n"

if $$attr{visibility} =~ ’public’;
}
elsif ($tag=~/$VISIBILITY/ && $recattr)

{ $$recattr{visibility} = ${$$content[0]}{’xmi.value’}; }
elsif ($tag=~/$NAME/ && $recattr){$$recattr{name} = @$content[2];}
elsif ($tag=~/$CLASS/) {myarray({}, $recattr, @$content);}
elsif ($tag=~/$NAME/) {

$$recclass{name} = @$content[2] unless $$recclass{name};
}
else { myarray($recclass, $recattr, @$content); }

}

take hashrefs for current class and attribute, plus an element content, viz
a hashref for attributes, which we ignore, followed by (tag,content)*
sub myarray {

my ($class, $attr, $attributes, @rest) = @_;
while (@rest) {

mypair ($class, $attr, shift @rest, shift @rest);
}

}

Figure 4: Using the CWB to analyse the behaviour

Edinburgh Concurrency Workbench, version 7.1,
Sun Jul 18 21:19:30 1999
Process algebra: CCS
Optional modules in this build: AgentExtra,Graph,Divergence,Contraction,
Equivalences,Logic,Simulation,Testing
Command: input "foo.cwb";
Command: deadlocks S1;
--- a d ---> S4
Command: deadlocks S3;
--- c a d ---> S4
Command: checkprop (S1, max (X.<->X));
true [i.e. there is an infinite path from S1]
Would you like to play (and lose!) a game against the CWB? (y or n) y
[output omitted]
Command: agent T = a.b.c.T + b.c.T;
Command: dftrace (S1,T);
Agent
S1
can perform action sequence
a,d
which agent
T
cannot.
Command:

Figure 2: CWB input file (foo.cwb) produced by script

agent S3 = c.S1;
agent S4 = 0;
agent S1 = a.S2 + b.S3;
agent S2 = b.S3 + d.S4;

Figure 3: State diagram for class Foo, drawn in
Argo/UML

5 Conclusion
We have demonstrated that the use of XMI can make it
easy to carry out small tasks on (possibly large) UML
models. In particular, such techniques can make tool
integration available to developers in a way which is
quite new. Whilst we acknowledge the danger that such
rapidly written ad hoc scripts may contain bugs, in the
context of tasks carried out by the developer who writes
the script the risk is likely to be acceptably small, es-
pecially when the alternative is to carry out the same
task by hand: carrying out repetitive, boring tasks on
large models is also error prone! Further work will focus
on the development of lightweight utilities, patterns and
methods for maximising the benefits and minimising the
risks of these techniques.

Acknowledgements
I would like to thank the referees, and the EPSRC for
financial support in the form of an Advanced Research
Fellowship.

REFERENCES

[1] Steve Brodsky. Xml metadata interchange.
http://www-4.ibm.com/software/ad/standards/
xmi.html/xmiwhite0399.pdf.

[2] C. Nentwich, W. Emmerich, A. Finkelstein, and A. Zis-
man. Box: Browsing objects in xml. Software Practice
and Experience, 30:1–16, 2000.

