Overview

- Statistical modeling
- EM algorithm
- Improved word alignment
- Phrase-based SMT

Statistical Modeling

- Learn $P(f|e)$ from a parallel corpus
- Not sufficient data to estimate $P(f|e)$ directly

Statistical Modeling (2)

- Break the process into smaller steps

Statistical Modeling (3)

- Probabilities for smaller steps can be learned

Statistical Modeling (4)

- Generate a story how an English string e gets to be a foreign string f
 - choices in story are decided by reference to parameters
 - e.g., $p(\text{bruja} | \text{witch})$
- Formula for $P(f|e)$ in terms of parameters
 - usually long and hairy, but mechanical to extract from the story
- Training to obtain parameter estimates from possibly incomplete data
 - off-the-shelf EM
Parallel Corpora

... la maison ... la maison blue ... la fleur ...
... the house ... the blue house ... the flower ...

- Incomplete data
 - English and foreign words, but no connections between them

- Chicken and egg problem
 - if we had the connections, we could estimate the parameters of our generative story
 - if we had the parameters, we could estimate the connections

EM Algorithm

- Incomplete data
 - if we had complete data, we could estimate model
 - if we had model, we could fill in the gaps in the data

- EM in a nutshell
 - initialize model parameters (e.g. uniform)
 - assign probabilities to the missing data
 - estimate model parameters from completed data
 - iterate

EM Algorithm (2)

... la maison ... la maison blue ... la fleur ...
... the house ... the blue house ... the flower ...

- Initial step: all connections equally likely

- Model learns that, e.g., *la* is often connected with the

EM Algorithm (3)

... la maison ... la maison blue ... la fleur ...
... the house ... the blue house ... the flower ...

- After one iteration

- Connections, e.g., between *la* and *the* are more likely

EM Algorithm (4)

... la maison ... la maison bleu ... la fleur ...
... the house ... the blue house ... the flower ...

- After another iteration

- It becomes apparent that connections, e.g., between *fleur* and *flower* are more likely (pigeon hole principle)

EM Algorithm (5)

... la maison ... la maison bleu ... la fleur ...
... the house ... the blue house ... the flower ...

- Convergence

- Inherent hidden structure revealed by EM
EM Algorithm (6)

- la maison ... la maison bleu ... la fleur ...
 - the house ... the blue house ... the flower ...

\[p(\text{la} | \text{the}) = 0.453 \]
\[p(\text{le} | \text{the}) = 0.334 \]
\[p(\text{maison} | \text{house}) = 0.876 \]
\[p(\text{bleu} | \text{blue}) = 0.563 \]

- Parameter estimation from the connected corpus

IBM Model 1

\[p(\mathbf{e}, \mathbf{a} | \mathbf{f}) = \frac{\epsilon}{(l+1)^m} \prod_{j=1}^{m} f_j(a_j) \]

- What is going on?
 - foreign sentence \(\mathbf{f} = f_1 \ldots f_m \)
 - English sentence \(\mathbf{e} = e_1 \ldots e_l \)
 - each English word \(e_j \) is generated by an English word \(f_{a(j)} \), as defined by the alignment function \(a \), with the probability \(t \)
 - the normalization factor \(\epsilon \) is required to turn the formula into a proper probability function

IBM Model 1 and EM

- EM Algorithm consists of two steps
 - Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
 - Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
 - Iterate these steps until convergence

IBM Model 1 and EM: Expectation Step

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection
 - We already have the formula for \(p(\mathbf{e}, \mathbf{a} | \mathbf{f}) \) (definition of Model 1)
IBM Model 1 and EM: Expectation Step

- We need to compute \(p(e|f) \)

\[
p(e|f) = \sum_a \frac{p(a|e,f)}{\sum_a p(a|e,f)}
= \frac{1}{\sum_a p(a|e,f)} \sum_a p(a|e,f)
= \frac{1}{\sum_a p(a|e,f)} \sum_a \sum_{a_{j=0}}^t \sum_{a_{j=0}}^t \sum_{a_{j=0}}^t \prod_{j=1}^m t(e_j|f_{a(j)})
= \frac{1}{\sum_a p(a|e,f)} \sum_a \sum_{a_{j=0}}^t \sum_{a_{j=0}}^t \sum_{a_{j=0}}^t \prod_{j=1}^m t(e_j|f_{a(j)})
= \frac{1}{\sum_a p(a|e,f)} \sum_a \sum_{a_{j=0}}^t \sum_{a_{j=0}}^t \sum_{a_{j=0}}^t \prod_{j=1}^m t(e_j|f_{a(j)})
\]

- Note the trick in the last line

 \(\quad \sum_{a_{j=0}}^t \sum_{a_{j=0}}^t \sum_{a_{j=0}}^t \prod_{j=1}^m t(e_j|f_{a(j)}) \)

 this makes IBM Model 1 estimation tractable

IBM Model 1 and EM: Maximization Step

- Now we have to collect counts

- Evidence from a sentence pair \(e,f \) that word \(e \) is a translation of word \(f \):

\[
c(e|f; e, f) = \sum_a p(a|e,f) \sum_{j=1}^m \delta(e, e_j) \delta(f, f_{a(j)})
\]

- With the same simplification as before:

\[
c(e|f; e, f) = \frac{t(e|f)}{\sum_j t(e|f_{a(j)})} \sum_{j=1}^m \delta(e, e_j) \sum_{i=0}^t \delta(f, f_i)
\]

IBM Model 1 and EM: Pseudocode

```
initialize t(e|f) uniformly
do
  set count(e|f) to 0 for all e,f
  set total(f) to 0 for all f
  for all sentence pairs (e_s,f_s)
    for all unique words e in e_s
      n_e = count of e in e_s
      total_s += t(e|f) * n_e
    for all unique words f in f_s
      total_s += t(e|f) * n_e * n_f / total_s
    count(e|f) += t(e|f) * n_e * n_f / total_s
    total(f) += t(e|f) * n_e * n_f / total_s
  for all f in domain( total(f) )
  for all e in domain( count(.|f) )
    t(e|f) = count(e|f) / total(f)
  until convergence
```

Higher IBM Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Model 1</td>
<td>lexical translation</td>
</tr>
<tr>
<td>IBM Model 2</td>
<td>adds absolute reordering model</td>
</tr>
<tr>
<td>IBM Model 3</td>
<td>adds fertility model</td>
</tr>
<tr>
<td>IBM Model 4</td>
<td>relative reordering model</td>
</tr>
<tr>
<td>IBM Model 5</td>
<td>fixes deficiency</td>
</tr>
</tbody>
</table>

- Computationally biggest change in Model 3

 - trick to simplify estimation does not work anymore

 - exhaustive count collection becomes computationally too expensive

 - sampling over high probability alignments is used instead
Flaws of Word-Based MT

- Multiple English words for one German word
 - one-to-many problem: Zeitmangel → lack of time

 German: Zeitmangel erschwert das Problem .

 Gloss: LACK OF TIME MAKES MORE DIFFICULT THE PROBLEM .

 Correct translation: Lack of time makes the problem more difficult.

 MT output: Time makes the problem .

- Phrasal translation
 - non-compositional phrase: erübrigt sich → there is no point in

 German: Eine Diskussion erübrigt sich demnach

 Gloss: A DISCUSSION IS MADE UNNECESSARY ITSELF THEREFORE

 Correct translation: Therefore, there is no point in a discussion.

 MT output: A debate turned therefore .

Word Alignment

- Notion of word alignments valuable
- Trained humans can achieve high agreement
- Shared task at NAACL 2003 and ACL 2005 workshops

Improved Word Alignments

- Intersection of GIZA++ bidirectional alignments

IBM Models create a many-to-one mapping
- words are aligned using an alignment function
- a function may return the same value for different input
 (one-to-many mapping)
- a function can not return multiple values for one input
 (no many-to-one mapping)

But we need many-to-many mappings

Grow additional alignment points
[Och and Ney, CompLing2003]
Growing Heuristic

\[\text{GROW-DIAG-FINAL}(e2f, f2e): \]
\[\text{neighboring} = \{(\pm 1, 0), (0, \pm 1), (1, 0), (0, 1), (-1, 0), (-1, 1), (1, -1), (1, 1)\} \]
\[\text{alignment} = \text{intersect}(e2f, f2e); \]
\[\text{GROW-DIAG}(); \text{FINAL}(e2f); \text{FINAL}(f2e); \]
\[\text{GROW-DIAG}(): \]
\[\text{iterate until no new points added} \]
\[\text{for English word } e = 0 \ldots en \]
\[\text{for foreign word } f = 0 \ldots fn \]
\[\text{if } (e \text{ aligned with } f) \]
\[\text{for each neighboring point } (e\text{-new, } f\text{-new}): \]
\[\text{if } \{ (e\text{-new not aligned and } f\text{-new not aligned }) \text{ and } \{
\text{e-new, f-new } \} \text{ in union(e2f, f2e) } \} \]
\[\text{add alignment point } (e\text{-new, f-new}) \]
\[\text{FINAL}(a): \]
\[\text{for English word } e\text{-new} = 0 \ldots en \]
\[\text{for foreign word } f\text{-new} = 0 \ldots fn \]
\[\text{if } \{ (e\text{-new not aligned or } f\text{-new not aligned }) \text{ and } \{
\text{e-new, f-new } \} \text{ in alignment a } \} \]
\[\text{add alignment point } (e\text{-new, f-new}) \]

Phrase-Based Translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered
- See [Koehn et al., NAACL2003] as introduction

Advantages of Phrase-Based Translation

- Many-to-many translation can handle non-compositional phrases
- Use of local context in translation
- The more data, the longer phrases can be learned

How to Learn the Phrase Translation Table?

- Start with the word alignment:
- Collect all phrase pairs that are consistent with the word alignment

Consistent with Word Alignment

- Consistent with the word alignment :=
 phrase alignment has to contain all alignment points for all covered words
 \[(\bar{e}, \bar{f}) \in BP \Leftrightarrow \forall e_i \in \bar{e}: (e_i, f_j) \in A \rightarrow f_j \in \bar{f} \]
 \[\text{AND} \forall f_j \in \bar{f}: (e_i, f_j) \in A \rightarrow e_i \in \bar{e} \]
Word Alignment Induced Phrases (2)

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch)

Word Alignment Induced Phrases (3)

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)

Word Alignment Induced Phrases (4)

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch), (Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch)

Word Alignment Induced Phrases (5)

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the), (bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch), (Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch), (no daba una bofetada a la bruja verde, did not slap the green witch), (Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)

Probability Distribution of Phrase Pairs

- We need a probability distribution $\phi(\mathcal{F} | \mathcal{E})$ over the collected phrase pairs

 \Rightarrow Possible choices

 - relative frequency of collected phrases:
 $\phi(\mathcal{F} | \mathcal{E}) = \frac{\text{count}(\mathcal{F}, \mathcal{E})}{\sum_{\mathcal{F}} \text{count}(\mathcal{F}, \mathcal{E})}$
 - or, conversely $\phi(\mathcal{E} | \mathcal{F})$
 - use lexical translation probabilities

Reordering

- Monotone translation
 - do not allow any reordering
 - worse translations
 - however: limiting reordering to maximum movement helps

- Distance-based reordering cost
 - moving a foreign phrase over n words: $\text{cost} \propto \omega^n$

- Lexicalized reordering model
 - $p(\text{monotone} | e, f)$
 - $p(\text{swap} | e, f)$
 - $p(-3 | e, f)$
Log-Linear Models

- IBM Models provided mathematical justification for factoring components together
 \[P_{LM} \times P_{DM} \times P_D \]
- These may be weighted
 \[P_{LM}^{\lambda_w} \times P_{DM}^{\lambda_x} \times P_D^{\lambda_d} \]
- Many components \(p_i \) with weights \(\lambda_i \)
 \[\prod_i p_i^{\lambda_i} = e^{\sum_i \lambda_i \log(p_i)} \]
 \[\log \prod_i p_i^{\lambda_i} = \sum_i \lambda_i \log(p_i) \]

Set Feature Weights

- Contribution of components \(p_i \) determined by weight \(\lambda_i \)
- Methods
 - manual setting of weights: try a few, take best
 - automate this process
- Learn weights
 - set aside a development corpus
 - set the weights, so that optimal translation performance on this development corpus is achieved
 - requires automatic scoring method (e.g., BLEU)

Additional Features

- Word count
 - add fixed factor for each generated word
 - if output is too short \(\rightarrow \) add benefit for each word
- Phrase count
 - add fixed factor for each phrase
 - balances use of longer or shorter phrases