
Convergence of Translation Memory
and Statistical Machine Translation

Philipp Koehn
University of Edinburgh

10 Crichton Street
Edinburgh, EH8 9AB

Scotland, United Kingdom
pkoehn@inf.ed.ac.uk

Jean Senellart
Systran

La Grande Arche
1, Parvis de la Défense

92044 Paris, France
senellart@systran.fr

Abstract

We present two methods that merge ideas
from statistical machine translation (SMT)
and translation memories (TM). We use a TM
to retrieve matches for source segments, and
replace the mismatched parts with instructions
to an SMT system to fill in the gap. We
show that for fuzzy matches of over 70%, one
method outperforms both SMT and TM base-
lines.

1 Introduction

Two technological advances in the field of au-
tomated language translation, translation memory
(TM) and statistical machine translation (SMT),
have seen vast progress over the last decades, but
they have been developed very much in isolation.
The reason for this is that different communities
played a role in each technology’s development.

TMs are a tool for human translators. Since many
translation needs are highly repetitive (translation of
updated product manuals, or several drafts of leg-
islation), being able to find existing translations of
segments of the source language text, alleviates the
need to carry out redundant translation. In addition,
finding close matches (so-called fuzzy matches),
may dramatically reduce the translation workload.
Various commercial vendors offer TM software and
the technology is in wide use by translation agen-
cies.

Instead of building machine translation systems
by manually writing translation rules, SMT sys-

tems (Koehn, 2010) are built by fully automati-
cally analyzing translated text and learning the rules.
SMT has been embraced by the academic and com-
mercial research communities as the new dominant
paradigm in machine translation. Almost all re-
cently published papers on machine translation are
published on new SMT techniques. The method-
ology has left the research labs and become the
basis of successful companies such as Language
Weaver and the highly visible Google and Microsoft
web translation services. Even traditional rule-based
companies such as Systran have embraced statisti-
cal methods and integrated them into their systems
(Dugast et al., 2007).

The two technologies have not touched much in
the past not only because of the different devel-
opment communities (software suppliers to transla-
tion agencies vs. mostly academic research labs).
Another factor is that TM and SMT have recently
addressed different translation challenges. While
TM have addressed the need of translation agencies
to produce high-quality translations of often repet-
itive material, SMT has set itself the challenge of
open domain translations such as news stories and is
mostly satisfied with translation quality that is good
enough for gisting, i.e., transmitting the meaning of
the source text to a target language speaker (consider
web page translation or information gathering by in-
telligence agencies).

Currently, SMT receives increasing attention by
translation agencies, who would like to employ the
technology in a workflow of first automatic transla-
tion and then human post-editing. One possible user

scenario is to offer a human translator a fuzzy match
from a TM, or an SMT translation, or both. What
to show may be decided by an automatic classifier
(Simard and Isabelle, 2009; Soricut and Echihabi,
2010; He et al., 2010) or may be based on fuzzy
match score or SMT confidence measures (Specia
et al., 2009).

In this paper, we argue that the two technologies
have much more in common that commonly per-
ceived. We present a method that integrates TM
and SMT and that outperforms either technology
for fuzzy matches of more than 80%. In a second
method, we encode TM matches as very large trans-
lation rules and outperform all other methods for
fuzzy match ranges over 70%.

2 XML Method

The main idea of our method is as follows: If we
are able to find a sufficiently good fuzzy match for a
given source segment in the TM, then we detect the
location of the mismatch in source and target of the
retrieved TM segment pair, and let the SMT system
translate the mismatched area. We use the capabil-
ity of the Moses SMT decoder (Koehn et al., 2007)
to use XML markup to specify required translations
for the matched parts of the source sentence, hence
forcing it to only translate the unmatched part.

Recent work has explored similar strategies. Mo-
tivated by work in EBMT, Smith and Clark (2009);
Zhechev and van Genabith (2010) use syntactic in-
formation to align TM segments. Then they create
an XML frame to be passed to Moses. Both show
weaker performance (on different data sets) than we
report here. Smith and Clark (2009) never over-
comes the SMT baseline. Zhechev and van Gen-
abith (2010) only beat the SMT system in the 90-
99% fuzzy match range.

The work by Biçici and Dymetman (2008) is
closer to our approach: They align the TM seg-
ments using GIZA++ posterior probabilities to in-
dentify the mismatch in the target and add one non-
contiguous phrase rule to their phrase-based de-
coder. They show significant improvements over
both SMT and TM baselines, but their SMT seems
to perform rather badly — it is outperformed by raw
TM matches even in the 74-85% fuzzy match range.

2.1 Example
To illustrate the process (see also Figure 1), let us
first go over one example. Let us say that the fol-
lowing source segment needs translation:

The second paragraph of Article 21 is deleted .

The TM does not contain this source segment, but
it contains something very similar:

The second paragraph of Article 5 is deleted .

In the TM, this segment is translated as:

À l’ article 5 , le texte du deuxiéme alinéa est supprimé .

The mismatch between our source segment and
the TM source segment is the word 21 or 5, respec-
tively. By letting the SMT system translate the true
source word 21, but otherwise trusting the target side
of the TM match, we construct the following (sim-
plified) XML frame:

<xml translation="À l’ article"/> 21
<xml translation=", le texte du deuxiéme alinéa est

supprimé ."/>

Or, to use a more compact formalism for the pur-
poses of this paper:
<À l’ article> 21 <, le texte du deuxiéme alinéa est

supprimé .>

The XML frame consists of specified translations
(e.g., À l’ article) and source words (e.g., 21). The
decoder is instructed to use the specified translations
in its output. The remaining source words are trans-
lated as usual, by consulting a phrase translation ta-
ble, and search for the best translation according
to various scoring functions including a language
model.

In our example, the SMT decoder produces the
following output:

À l’ article 21 , le texte du deuxiéme alinéa est supprimé.

A perfectly fine translation.

2.2 Fuzzy Matching
The first processing step is to retrieve the best match
from the TM. Such fuzzy matches are measured by
a fuzzy match score, and the task is to find the best
segment pair in the TM under this score.

There are several different implementation of the
fuzzy match score, and commercial products typi-
cally do not disclose their exact formula. However,
most are based on the string edit distance, i.e., the

number of deletions, insertions, and substitutions
needed to edit the source segment to the TM seg-
ment.

Our implementation of the fuzzy match score
uses word-based string edit distance, and uses let-
ter string edit distance as a tie breaker. We define
the fuzzy match score as:

FMS = 1− edit-distance(source, tm-source)
max(|source|, |tm-source|)

For our example, the word-based string edit distance
is 89% (one substitution for 9 words), and the letter-
based string edit distance is 95% (one substitution
and one deletion for 37 letters, not counting spaces).

2.3 Word Alignment of TM

The mismatch between the source segment and the
TM source segment is easy to detect. As with our
fuzzy match metric, we compute the string edit dis-
tance between the two, which detects the inserted,
deleted and substituted words.

A harder problem is to determine which target tar-
get words are affected by the mismatch. For this,
we need a word alignment between the source words
and the target words in the TM segment.

Word alignment is a standard problem in SMT,
and many algorithms have been proposed and im-
plemented. Most commonly used is the implemen-
tation of the IBM Models (Brown et al., 1993) in the
toolkit GIZA++ (Och et al., 1999), combined with
symmetrization heuristics. This toolkit is also used
by the Moses SMT training pipeline. So, if we build
an SMT system on the TM data, then the word align-
ment falls out as a by-product.

2.4 Construction of XML Frame

We now have all the necessary ingredients to con-
struct the XML frame that we will pass to the SMT
decoder. See Figure 1 for an illustration of our ex-
ample. Given the string edits and the word align-
ment, we can track the mismatched source word to
the TM target word.

We construct the XML frame by subtraction. All
of the TM target segment is passed as a specified
translation to the SMT decoder, except for the sub-
traction of the mismatch. The TM target word
aligned to the mismatched source word is not part of

a specified translation, and instead the source word
is inserted in their place.

A mismatch may consist of a sequence of multiple
words in source, TM source, or TM target. We treat
such a block the same way we treat single words:
they are removed as a block from the TM target and
the source block is inserted.

There may be multiple non-neighboring mis-
matched sequences. We treat each separately and
perform the subtraction process for each.

2.5 Special Cases
There are a number of special cases (also illustrated
in Figure 2):

Pure insertion: If the source segment has an in-
serted block that is not present in the TM source
segment, we add these source words to the
XML frame. The location of the words is after
the TM target word aligned to the TM source
word just prior to the insertion point.

Pure deletion: If the TM source segment has addi-
tional words, then these are removed from the
specified translation in the XML frame.

Unaligned mismatched words: If the mismatched
source words are unaligned, then we find the
closest aligned previous source word and spec-
ify them after this target position.

Non-contiguous alignments: If a TM source seg-
ment has non-contiguous alignments to the TM
target segment, we first try to resolve this by
splitting up blocks. If this does not help, then
the mismatched source words are placed at the
position of the first aligned TM target block.

The basic principles of the heuristic are: all mis-
matched source words are inserted; all TM target
words aligned to mismatched TM source words are
removed; if the alignment to the TM target words
fails, then go to the previous TM source word and
follow its alignment.

The detailed pseudo-code of the algorithm is
given in Figure 3.

3 Experiments

We carried out experiments using two data sets: an
English–Italian commercial product manual corpus

À l' article 5 , le texte du deuxième alinéa est supprimé .

The second paragraph of Article 21 is deleted .

The second paragraph of Article 5 is deleted .

Source

TM Source

TM Target

String Edit

Word Alignment

<À l' article> 21 <, le texte du deuxième alinéa est supprimé .>XML Frame

Figure 1: Construction of the XML frame: The mismatched source word is tracked to the TM target word.

les poissons

the big fish

the fish

Source

TM Source

TM Target

String Edit

Word Alignment

<les> big <poissons>XML Frame

les gros poissons

the fish

the big fish

<les> <poissons>

les poissons

the green fish

the big fish

<les> green <poissons>

Insertion Deletion Unaligned

joe ne mange pas

joe will eat

<joe> will <mange>

Multiple Alignments

joe does not eat

Figure 2: Special Cases: The basic principles are: all mismatched source words are inserted, all TM target words
aligned to mismatched TM source words are removed, if the alignment to the target words fails, go to previous word
and follow its alignment.

Acquis Corpus Test
segments 1,165,867 4,107
English words 24,069,452 129,261
French words 25,533,259 135,224

Product Corpus Test
segments 83,461 2,000
English words 1,038,762 24,643
French words 1,110,284 26,248

Table 1: Statistics of the corpus used in experiments

(Product) and the English–French part of the pub-
licly available JRC-Acquis corpus1 (Acquis), for
which we use the same test set as Koehn et al.
(2009). See Table 1 for basic corpus statistics.

The Acquis corpus is a collection of laws and reg-
ulations that apply to all member countries of the
European Union. It has more repetitive content than
the parallel corpora that are more commonly used in
machine translation research. Still, the commercial

1http://wt.jrc.it/lt/Acquis/ (Steinberger et al., 2006)

Product corpus is more representative of the type of
data used in TM systems. It is much smaller (around
a million words), with shorter segments (average 12
words per segments).

We are especially interested in the performance of
the methods for sentences for which we find highly
scoring fuzzy matches, since we do not expect fuzzy
matches to be very useful otherwise. See Table 2
for statistics on the subsets based on fuzzy match
ranges. The sentences with 100% fuzzy match are
much shorter, but otherwise there is no strong cor-
relation between fuzzy match score and sentence
length. Note that we do not break out a 100% fuzzy
match subset for the Product corpus, since the test
data is drawn from a TM, so we do not expect to
find valid 100% matches (since we exclude the test
data from the TM used in training and testing).

3.1 SMT Training

We train SMT systems using the Moses toolkit. We
use a standard setup with lexicalized reordering and
5-gram language model.

Input: match path M ,
input i,
TM source s,
TM target t,
alignment a

Output: xml frame
1: global M , i, s, t, a, insertion
2: posi = 0;
3: poss = 0;
4: matching = false;
5: matched-target([0; |t|]) = true // matched words
6: for all edit e ∈ M do
7: if matching AND e != ’match’ then
8: // beginning of mismatch
9: starti = posi;

10: starts = poss;
11: matching = false;
12: else if !matching AND e==’match’ then
13: // end of mismatch
14: mismatch(starti,posi-1, starts,poss-1)
15: matching = true;
16: end if
17: posi++ unless edit == ’deletion’
18: poss++ unless edit == ’insertion’
19: end for
20: if !matching then
21: mismatch(starti,posi,starts,poss)
22: end if
23: return construct-xml()

function mismatch:
Input: starti,endi, starts,ends

1: // remove use of affected target words
2: for all source positions s ∈ [starts; ends] do
3: for all target positions t ∈ a(s) do

4: matched-target(t) = false;
5: end for
6: end for
7: // find insertion position
8: inst = min({t ∈ a([starts; ends])})
9: while inst undefined do

10: inst = min({t ∈ a(--starts)})
11: end while
12: if inst undefined then
13: inst = -1 // sentence start
14: inst = |i| if endi == |i| // end
15: end if
16: // locate inserted words
17: insertion[inst] = i[starti;endi]

function construct-xml:
1: xml = ””
2: included = false
3: startt = −1
4: for all target positions t ∈ [0; |t|[do
5: if !included AND matched-target(t) then
6: startt = −1
7: included = true
8: else if included AND (!matched-target(t) OR

insertion[t]) then
9: if startt ≥ 0 then

10: xml += ”<xml translation=”
11: xml += t[startt, t]
12: xml += ”> x </xml>”
13: end if
14: included = false
15: end if
16: xml += insertion[t]
17: end for
18: return xml

Figure 3: Algorithm to construct the XML frame: The main function first detects all mismatched sequences in the
string edit distance path. Mismatched sequences (function mismatch) trigger de-activation of aligned target words
(variable matched-target) and an insertion record for mismatched input words (variable insertion). During the XML
construction, matched target words are included as markup (lines 10–12 in function construct-xml), in addition to
inserted input words (line 16, ibid.).

Acquis Sentences Words W/S
100% 1395 14,559 10.4
90-99% 433 12,775 29.5
80-89% 154 5,347 34.7
70-79% 250 6,767 27.1

Product Sentences Words W/S
95-99% 230 3,006 13.1
90-94% 225 2,968 13.2
85-89% 177 2,000 11.3
80-84% 185 1,950 10.5
75-79% 152 1,350 8.9
70-74% 98 987 10.1

Table 2: Composition of the test subsets based on fuzzy
match scores (letter-based string edit distance).

To increase word-level matches between input
and TM, we use an aggressive tokenization scheme
that separates out hyphens as separate tokens and
splits up letter/number combinations (e.g., XR300
becomes XR ∼@∼ 300).

To improve word alignment quality of the Product
system, we add training data from Europarl when
running GIZA++. We only use the data to obtain
better word alignments, we do not use it in the trans-
lation model or as TM.

When using the XML frames, we specify its use
to the decoder as exclusive, i.e., the decoder may not
override it with its own translations.

3.2 Basic Method

We compare our method using XML frames against
two baselines: (a) the basic SMT system, and (b) us-
ing TM matches unmodified. The latter is only rea-
sonable, if we find sufficiently good fuzzy matches.

We expect the methods to perform differently in
different match ranges. If we find a very close
match, we would expect the TM to produce a very
good translation, and hopefully the XML method an
even better one. If no close match exists, we expect
the baseline SMT system to outperform the other
methods.

This expectation is confirmed by our experiments.
In Figure 4, we plot the BLEU scores for subsets of
the test sets where we have a find a fuzzy match of
at least 70%. Our XML method performs best for

sentence which have fuzzy matches of at least 80%,
SMT is best below this threshold.

3.3 Multiple Fuzzy Matches

When we described our method in Section 2, we
skipped over some choices we have to make when
constructing an XML frame:

1. If the fuzzy match score to the source is the
same for several TM source segments, which
TM match should be picked?

2. If the source has multiple targets, which target
should be picked? Note that this happens typ-
ically in a parallel corpus such as the Acquis
data set, less so in a real TM.

3. If we run the decoder with an XML frame what
translation should be picked?

In the basic results, we answered these questions
as follows:

1. randomly chosen from best matches according
to letter string edit distance

2. most frequent
3. highest model score

By choosing the most frequent target translation
of a TM source segment, we do better than choosing
one at random (for 100% matches the BLEU score
is 79.9 vs. 78.7 on Acquis).

But would we also do better if we did not chose a
TM match at random, but find some other criterion
at a later stage to pick a translation. Maybe the SMT
system offers scoring functions that would aid a de-
cision? Experience in SMT research shows that an
integrated approach with a global scoring function
almost always outperforms a pipelined approach.

To keep with our three questions, we would like
to now attempt the following answers:

1. all matches with best word string edit distance
2. all
3. language model score / full decoder score

Not only do we now use all source matches and all
their target translations and a 10-best list of transla-
tions. We pick the best translation based on (a) the
language model score and (b) the full decoder score.
The full decoder score also contains the word count

Acquis

Product

Figure 4: Basic Results: BLEU scores for different fuzzy match ranges. Our XML method performs best for sentence
which have fuzzy matches of at least 80%, SMT is best below this threshold.

Model 70s 80s 90s 100
SMT 59.5 62.0 66.6 75.8
XML baseline 58.5 62.7 71.6 79.9
XML + LM score 59.0 63.6 71.2 77.7
XML + SMT score 59.6 63.3 72.1 66.7

Table 3: Using SMT scores to decide among multiple
XML frames and translations

feature. Also, if there are different XML frames, dif-
ferent words are translated, hence we have different
translation model scores.

Table 3 shows the results with these variations.
Except for the 100% matches, one of the multiple
XML frame methods outperforms the basic XML
method and the SMT system, but the differences are
not very large.

The decoder could also use additional scoring
functions in its model, such as the fuzzy match
scores. The XML frames could also be scored with
methods used in the SMT system, such as lexical
smoothing. But before we go further down the road,
let us shortly reflect into which direction we are
heading.

4 Fuzzy Matches as Very Large Rules

Readers familiar with the hierarchical model in SMT
(Chiang, 2007) will notice the similarities between
our XML frame construction and the construction
of hierarchical phrase rules. Let us quickly review
this model.

4.1 Hierarchical Phrase Rules

If we have the following sentence pair with mono-
tone word alignment

• the big fish
• les gros poissons

we can create phrase-based translation rules from
the following phrase pairs:

• (the ; les)
• (the big ; les gros)
• (the big fish ; les gros poissons)
• (big ; gros)
• (big fish ; gros poissons)
• (fish ; poissons)

Hierarchical phrase-based rules are constructed
by removing a smaller phrase pairs from a larger
phrase pairs. For instance, by taking the phrase pair:

(the big fish ; les gros poissons)

and removing the phrase pair

(big ; gros)

we create the rule

(the X fish ; les X poissons)

The symbol X is called a non-terminal, since the
translation rule is viewed as a synchronous context-
free grammar rule. In essence it is a place-holder for
recursively nested sub-phrases.

Hierarchical rules require a different decoding
algorithm that is typically drawn from syntactic
parsing methods, but otherwise use a very similar
training, tuning, and testing pipeline as traditional
phrase-based models (Hoang et al., 2009).

4.2 TM Matches as Very Large Rules
How does that relate to our XML frames? Recall the
XML frame that we constructed in Section 2.1:

<À l’ article> 21 <, le texte du deuxiéme
alinéa est supprimé .>

Instead of replacing the source sentence

The second paragraph of Article 21 is
deleted .

with the XML frame, we can rewrite this frame as
a hierarchical phrase rule and provide it to a hierar-
chical decoder:

(The second paragraph of Article X is
deleted . ; À l’ article X , le texte du
deuxiéme alinéa est supprimé .)

In practice, hierarchical models do not use such
large rules (and keep in mind, this particular rule is
drawn from a relatively short sentence, thus contain-
ing few words and only one non-terminal). But this
is purely due to scaling issues and concerns about
the size of the rule table.

The issues can be resolved. In fact, Lopez (2007)
presented a method to compute very large transla-
tion rules on the fly for hierarchical models. While
these rules were limited to two non-terminals, they
could contain any number of words — a very similar
situation to our XML frames.

Acquis

Figure 5: TM matches as very large rules (VLR): Encoding TM match frames as very large hierarchical grammar
rules (VLR) outperforms all previous methods.

4.3 Results

We train a hierarchical phrase-based model with
Moses, which has very similar performance as the
phrase-based model used in the previous experi-
ments. Instead of using XML frames, we create very
large rules (VLR) that we store in a second trans-
lation table. Thus, the VLR rule table has its own
feature functions. We also do this for the tuning
data, hence optimizing the weighting between the
two rule tables.

This approach uses

1. all TM matches with best word string edit dis-
tance

2. all target translations of each TM match
3. integrated scoring of VLR rules and basic

translation rules

In other words, this is a fully integrated approach
that uses all available choices at every stage.

Results are presented in Figure 5. The VLR
approach outperms all other methods on all fuzzy
match ranges. It even outperforms the SMT sys-

tem on the 70-79% match range, where our XML
method scores worse.

5 User Interaction

The translations generated by our methods may be
presented to a human translator the same way cur-
rently TM matches are presented. However, we may
decorate them additionally for added benefit. Since
we know which parts of the translation were gener-
ated by the SMT system, we can highlight it to alert
the translator to potential flaws.

We did not carry out a user study to demonstrate
how much productivity increase can be expected
along with the improved translation performance
that we measured with the BLEU score. However,
results suggest that these improvements correspond
to a 5–10% increase in fuzzy match score.

On the Product and Acquis corpus, the BLEU
score for our method on each of the 70-75% and 75-
80% subsets is as good as a the TM score for the
ranges with 10% higher fuzzy match. For subsets
with higher fuzzy match scores, results are almost
as good. We suspect that the BLEU scores actually

underestimate these improvements, since they tend
to be too literal and do not sufficiently appreciate al-
ternate acceptable translations.

We would like to evaluate these user issues in
forthcoming work.

6 Conclusion

We presented two methods that convergence ideas
from TM and SMT. The first method constructed
XML frames that provided specified translations for
part of the segments (the matched part) and rely in
the SMT decoder to fill in the remainder (the un-
matched part). We showed experimentally on two
data sets that we outperform those technologies for
relatively high fuzzy match ranges (80-99%). Either
XML or SMT always outperform TM matches.

The second method encodes these XML frames as
very large hierarchical phrase rules, and uses these
in a secondary rule table of a hierarchical phrase-
based model. This method outperforms SMT on all
tested fuzzy match ranges (≥70%).

These results suggest that fuzzy TM matches can
be seen as just another way to generate translation
rules for an SMT system, and that there is little value
is using TM without SMT.

We would like to evaluate the utility of our meth-
ods in user studies in future work.

Acknowledgement

This work was partly supported by the EuroMatrix-
Plus project funded by the European Commission
(7th Framework Programme).

References

Biçici, Ergun and Marc Dymetman. 2008. Dy-
namic Translation Memory: Using Statistical Ma-
chine Translation to Improve Translation Mem-
ory. In Gelbukh, Alexander F., editor, Proceed-
ings of the 9th Internation Conference on Intelli-
gent Text Processing and Computational Linguis-
tics (CICLing), volume 4919 of Lecture Notes in
Computer Science, pages 454–465. Springer Ver-
lag.

Brown, Peter F., Stephen A. Della-Pietra, Vincent J.
Della-Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation.
Computational Linguistics, 19(2):263–313.

Chiang, David. 2007. Hierarchical Phrase-
Based Translation. Computational Linguistics,
33(2):201–228.

Dugast, Loı̈c, Jean Senellart, and Philipp Koehn.
2007. Statistical Post-Editing on SYSTRAN’s
Rule-Based Translation System. In Proceedings
of the Second Workshop on Statistical Machine
Translation, pages 220–223, Prague, Czech Re-
public, June. Association for Computational Lin-
guistics.

He, Yifan, Yanjun Ma, Andy Way, and Josef van
Genabith. 2010. Integrating N-best SMT Out-
puts into a TM System. In Coling 2010: Posters,
pages 374–382, Beijing, China, August. Coling
2010 Organizing Committee.

Hoang, Hieu, Philipp Koehn, and Adam Lopez.
2009. A unified framework for phrase-based, hi-
erarchical, and syntax-based statistical machine
translation. In Proceedings of the Interna-
tional Workshop on Spoken Language Translation
(IWSLT), pages 152–159, December.

Koehn, Philipp, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Christopher J. Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open Source Toolkit
for Statistical Machine Translation. In Proceed-
ings of the 45th Annual Meeting of the Associ-
ation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic,
June. Association for Computational Linguistics.

Koehn, Philipp, Alexandra Birch, and Ralf Stein-
berger. 2009. 462 Machine Translation Systems
for Europe. In Proceedings of the Twelfth Ma-
chine Translation Summit (MT Summit XII). In-
ternational Association for Machine Translation.

Koehn, Philipp. 2010. Statistical Machine Transla-
tion. Cambridge University Press.

Lopez, Adam. 2007. Hierarchical Phrase-Based
Translation with Suffix Arrays. In Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 976–985.

Och, Franz Josef, Christoph Tillmann, and Her-
mann Ney. 1999. Improved Alignment Models
for Statistical Machine Translation. In Proceed-
ings of the Joint Conference of Empirical Methods
in Natural Language Processing and Very Large
Corpora (EMNLP-VLC), pages 20–28.

Simard, Michel and Pierre Isabelle. 2009.
Phrase-based Machine Translation in a Computer-
assisted Translation Environment. In Proceedings
of the Twelfth Machine Translation Summit (MT
Summit XII). International Association for Ma-
chine Translation.

Smith, James and Stephen Clark. 2009. EBMT for
SMT: A New EBMT-SMT Hybrid. In Forcada,
Mikel L. and Andy Way, editors, Proceedings
of the 3rd International Workshop on Example-
Based Machine Translation, pages 3–10.

Soricut, Radu and Abdessamad Echihabi. 2010.
TrustRank: Inducing Trust in Automatic Trans-
lations via Ranking. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 612–621, Uppsala, Swe-
den, July. Association for Computational Linguis-
tics.

Specia, Lucia, Marco Turqui, Zhuoran Wang, John
Shawe-Taylor, and Craig Saunders. 2009. Im-
proving the Confidence of Machine Translation
Quality Estimates. In Proceedings of the Twelfth
Machine Translation Summit (MT Summit XII).
International Association for Machine Transla-
tion.

Steinberger, Ralf, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, Tomaz Erjavec, Dan Tufis, and
Daniel Varga. 2006. The JRC-Acquis: A multilin-
gual aligned parallel corpus with 20+ languages.
In 5th Edition of the International Conference on
Language Resources and Evaluation (LREC ’06),
pages 2142–2147.

Zhechev, Ventsislav and Josef van Genabith. 2010.
Seeding Statistical Machine Translation with
Translation Memory Output through Tree-Based
Structural Alignment. In Proceedings of the 4th
Workshop on Syntax and Structure in Statistical
Translation, pages 43–51, Beijing, China, Au-
gust. Coling 2010 Organizing Committee.

