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A B S T R A C T
The Covid-19 pandemic has forced the workforce to switch to working from home, which has put
significant burdens on the management of broadband networks and called for intelligent service-
by-service resource optimization at the network edge. In this context, network traffic prediction is
crucial for operators to provide reliable connectivity across large geographic regions. Although recent
advances in neural network design have demonstrated potential to effectively tackle forecasting, in
this work we reveal based on real-world measurements that network traffic across different regions
differs widely. As a result, models trained on historical traffic data observed in one region can hardly
serve in making accurate predictions in other areas. Training bespoke models for different regions is
tempting, but that approach bears significant measurement overhead, is computationally expensive,
and does not scale. Therefore, in this paper we propose TransMUSE (Transferable Traffic Prediction in
MUlti-Service Edge Networks), a novel deep learning framework that clusters similar services, groups
edge-nodes into cohorts by traffic feature similarity, and employs a Transformer-based Multi-service
Traffic Prediction Network (TMTPN), which can be directly transferred within a cohort without any
customization. We demonstrate that TransMUSE exhibits imperceptible performance degradation in
terms of mean absolute error (MAE) when forecasting traffic, compared with settings where a model is
trained for each individual edge node. Moreover, our proposed TMTPN architecture outperforms the
state-of-the-art, achieving up to 43.21% lower MAE in the multi-service traffic prediction task. To the
best of our knowledge, this is the first work that jointly employs model transfer and multi-service traffic
prediction to reduce measurement overhead, while providing fine-grained accurate demand forecasts
for edge services provisioning.

1. Introduction
Edge computing pushes computation and data storage

closer to the user, thereby improving response times and
saving communication bandwidth, while serving multiple
applications simultaneously, e.g., video streaming, gaming,
content delivery, etc. As people work increasingly more
often remotely following the Covid-19 outbreak and require
network support for different services, the edge computing
paradigm is witnessing growing uptake.

In order to optimise user experience and operational
costs, infrastructure providers have been pursuing dynamic
provisioning of network resources based on predictions of
user demand [1]. Previous efforts in tackling network traf-
fic prediction frequently exploit the ability of deep neural
networks (DNNs) to learn complex patterns from historical
data [2, 3, 4, 5, 6, 7]. However, existing solutions either
require training one dedicated model for each geographic
region and hence have limited transferability (which is of
paramount importance in reducing computational costs and
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Figure 1: A snapshot of the volume of traffic consumed by four
different services as observed at an edge node in a network
deployment in Sichuan (China) over one week.

the environmental footprint of training DNNs) [2, 3, 4, 5], or
disregard essential correlations among services [6, 7].
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In practical large-scale network deployments (i) per-
service patterns are often distinct within a region, as ex-
emplified in Figure 1, while (ii) certain areas may exhibit
similar characteristics that would allow for direct transfer of
models among them, without the need of retraining. These
key observations are confirmed by our analysis of a real-
world network traffic dataset collected in a major city in
Sichuan province, China, serving 2.6 million users, spanning
6.3 square kilometers, and comprising eight edge nodes.
This motivates us to propose TransMUSE, a transferable
traffic prediction framework in multi-service edge networks,
which first groups edge-nodes according to per-service sta-
tistical features. Within each cohort, reference neural mod-
els are chosen and trained on data collected only in the
region with the highest overall traffic consumption, which
can be then transferred to other group members. As refer-
ence model, we put forward a Transformer-based [8] Multi-
service Traffic Prediction Network (TMTPN). Furthermore,
we propose WK-means, a service clustering algorithm based
on Wasserstein distance to categorize services according to
their similarity. We train separately a TMTPN model for
each service cluster to boost prediction performance at a
regional level. Finally, the reference models are transferred
to other regions directly, without adaptation.

Our proposed model transfer framework, TransMUSE,
provides a comprehensive and cost-effective solution for
traffic prediction in multi-service edge networks. The key
advantages of TransMUSE are as follows: (i) it provides a
model transfer approach among edge nodes to reduce mea-
surement and computational overhead without compromis-
ing prediction accuracy – compared with training a model
individually on local data for each edge node, TransMUSE
exhibits imperceptible performance degradation, with only
1.7% and 0.26% higher MAE and RMSE, respectively; (ii)
the proposed TMTPN takes service correlation into con-
sideration to further reduce overhead and the energy that
would have otherwise been required to maintain a separate
prediction model for each service; our experiments demon-
strate that TMTPN outperforms the state-of-the-art MTNet
benchmark [2] on the multi-service traffic prediction task
by 18.74% and 18.49%, in terms of MAE and respectively
RMSE; (iii) the WK-means service clustering tackles both
model under-fitting and speed of convergence, improving the
TMTPN prediction performance, as it attains 17.59% and
27.89% lower MAE and respectively RMSE, as compared
to predicting without prior service clustering. To the best of
our knowledge, TransMUSE is the first multi-service traffic
forecasting solution for edge networks that leverages model
transfer and service clustering to achieve high accuracy at a
low measurement cost.

The rest of the paper is organised as follows. The multi-
service prediction problem is formalised in Section 2. The
proposed TransMUSE framework is discussed in detail in
Section 3. Section 4 provides exhaustive experimental re-
sults to demonstrate TransMUSE’s efficacy. Section 5 dis-
cusses the most relevant related work and Section 6 con-
cludes the paper.

2. Problem Formulation
Our aim is to address the challenges of handling spatial

heterogeneity of service traffic in edge networks and reduc-
ing model training costs when forecasting future demands in
edge networks, to support the effective management of their
resources.

Formally, multi-service traffic forecasting seeks to max-
imize the probability that, given 𝑇 previous measurements
of the traffic volume consumed by 𝐾 services, the predicted
traffic consumption over 𝐹 future time steps is as close
as possible to the ground truth. Denoting by 𝑥𝑘𝑡 the traffic
volume of service 𝑘 at timestamp 𝑡 and 𝑡 ∶= [𝑥1𝑡 , ..., 𝑥

𝐾
𝑡 ]the snapshot of all 𝐾 services at time 𝑡, and considering

a forecasting model that is parameterized by 𝜃, the multi-
service traffic forecasting problem is equivalent to:

argmax
𝜃

𝑝𝜃
(

𝑡+1, ...,𝑡+𝐹 |𝑡−𝑇+1, ...,𝑡
)

.

To solve this problem, we design a Transformer-based
Multi-service Traffic Prediction Network (TMTPN) that
captures temporal correlations among traffic time series via
multi-head attention, then improve forecasting accuracy via
service-clustering, as we detail next.

3. TransMUSE Framework
We propose TransMUSE, a deep learning framework for

accurate and cost-effective multi-service forecasting at the
network edge. Figure 2 gives an overview of the different
components this framework entails and the relationship be-
tween them, namely:

1. Edge Node Clustering: We cluster edge nodes by
a set of service-level statistical features using the
K-means algorithm, to determine the neural model
transfer scope.

2. Reference Node Selection: Within each scope, we se-
lect the node with the overall highest traffic consump-
tion as the reference node; reference neural models for
forecasting will be trained with data collected at such
nodes.

3. Service Grouping: As certain mobile services ex-
hibit statistical similarities, we cluster services us-
ing a modified K-means algorithm based on Wasser-
stein distance, aiming to reduce the number of multi-
service neural models to be employed for prediction.

4. Model Training: At the level of each reference node,
we train a dedicated TMTPN model for each service
cluster, which will simultaneously predict the volume
of traffic for all services within such clusters.

5. Model Transfer: We transfer the trained reference
models from each reference edge node to all other
nodes within the corresponding clusters, where they
will be applied for inference without further training.

Next, we discuss in details the key stages of our TransMUSE
framework.
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Figure 2: The proposed TransMUSE framework incorporates five stages: 1) Edge nodes are grouped into several node clusters,
within which model transfer is to be conducted; 2) In each cluster, the edge node with the largest traffic volume is selected as
reference (highlighted with hashed patterns); 3) At each reference node, services are further partitioned into service clusters by
WK-Means; 4) One TMPTN is trained for each service cluster; 5) The models trained on reference nodes are transferred to the
recipients (highlighted on the right) within the corresponding node clusters.

3.1. Edge Model Transfer
In Multi-access Edge Computing (MEC) scenarios, it is

often impractical to train a neural model at each individual
edge node, as their computational power is limited and
the operational costs and energy expenditure can become
prohibitive to operators when deployment density increases.
Edge model transfer aims to reduce the cost of measure-
ment collection and model training, by confining these tasks
to designated nodes and reusing models trained there on
other nodes, without further local tuning. Different from
cloud–edge approaches where a central node maintains a
global model refined through model updates resulting from
local training (federated learning), edge model transfer only
considers the model to be transferred among edge nodes
without the need for a central cloud. This brings additional
merits in terms of data privacy and communication overhead
reduction, as the transfer process is confined within a limited
scope. A model to be transferred is called a reference model,
the node where a reference model is trained is called a
reference node, and the edge nodes that adopt it are referred
to as recipients.

There are two key issues to address in the edge model
transfer process. The first, is determining the scope of model
transfer. Different edge nodes may observe distinct traf-
fic patterns due to geographic dissimilarities in terms of
mobile user demographics [9] or socioeconomic function
(residential areas, business districts, shopping centers, etc.).
Edge model transfer, therefore, should be applied across
edge nodes (within a cluster) with similar traffic features.
Secondly, choosing at which edge node to train a reference
model to be transferred within the corresponding cluster
will impact the inference accuracy. We put forward an edge

model transfer strategy that deals with these two issues as
follows:

• Determining Transfer Scope: We use K-means clus-
tering to group edge nodes according to nine statis-
tical features, i.e., mean, standard deviation, maxi-
mum value, minimum value, skewness, kurtosis, and
the 1st, 2nd, and 3rd quartiles of traffic volume for
each service over the historical traffic data for model
training. Specifically, we used an 8:1:1 data split for
training, validation and testing. With 20 services, each
edge node is represented by a matrix of shape 20 × 9.
A model will only be transferred within the same
cluster of edge nodes. In the deployment process in
a real network environment, the operator will have the
freedom to select a broader range of relevant statistical
features for this task.

• Reference Model Training: Within each cluster,
a reference model will be trained only with data
from the edge node where the overall highest traffic
consumption is observed. Reference models are then
transferred to the recipients within the corresponding
clusters. The results we present in Section 4 confirm
the generalization abilities of this approach.

At the level of a reference node, a set of neural models
will be trained, each of which targets future traffic predic-
tions for groups of services with similar characteristics, as
we explain next.
3.2. WK-means Service Clustering

Traffic patterns and volumes may differ among services
due to content popularity, number of service subscribers,
service scope, etc. (see Figure 1), leading to high information
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entropy if observing all services together. Note however that
it would be impractical and expensive to maintain a specific
prediction model for each service. Therefore, we propose
a service clustering algorithm based on the Wasserstein
distance (WD) between per-service time-series data points,
which we name WK-means. We resort to WK-means to re-
duce the number of prediction models by grouping services
into clusters according to their traffic pattern similarity. In
such manner, we employ a single model for each service
cluster, which can learn specific patterns corresponding to
the unique cluster features. Accordingly, we don’t have to
maintain too many models, thereby reducing training cost
and potentially saving energy. By grouping services with
WK-means, we ensure the model learns from enough data
and a rich set of features, so that it does not perform poorly
when predicting on the test set (i.e. we avoid under-fitting).

There are two key factors to consider when measuring
time-series similarity, namely, magnitude and ‘shape’. The
former indicates how comparable the traffic volume of dif-
ferent services is; the latter indicates any similarities in terms
of periodicity and short-term temporal patterns. The WD
takes these two factor into consideration at the same time,
which makes it particularly suitable for our grouping task.
Originally the WD was proposed to measure the similarity
between two probability distributions, and was recently em-
ployed in optimal transportation problems [10]:

𝑊𝑝( ,) =
(

inf
𝜇∈Γ( ,)∫ 𝜌(𝑥, 𝑦)𝑝𝑑𝜇(𝑥, 𝑦)

)1∕𝑝
, (1)

where  and  are two probability distributions in ℝ𝑑 , and
Γ( ,) is the set of all probability measures onℝ𝑑×ℝ𝑑 with
marginals and. 𝜌(𝑥, 𝑦)𝑝 is a measure of distance between
𝑥 ∈  and 𝑦 ∈  (e.g., 𝑝 = 2 for Earth mover’s distance).
Intuitively, the WD represents the minimal distance for
moving the mass of distribution  to exactly fit the mass
of distribution .

Unlike other distance metrics, such as Euclidean dis-
tance, JensenâĂŞShannon (JS) divergence or Kullback-
âĂŞLeibler (KL) divergence, WD has the following key ad-
vantages: (i) if the target distributions lie in low-dimensional
manifolds or share disjoint support, which is not uncommon
for high-dimensional data, WD offers a more informative
measure (which is not the case for KL and JS divergence
that return a constant value or infinity) [11, 12]; and (ii) WD
maintains the underlying geometry of the space [13], that is,
it not only takes the quantitative value into consideration, but
also pays attention to the similarity of distributions’ shapes.
In contrast, the Euclidean distance cannot quantify shape
differences or capture the degree of changes between two
times series [14].

Based on WD, we propose the WK-means service clus-
tering algorithm, summarized by the pseudo-code in Al-
gorithm 1. To generate 𝑁 clusters from 𝑆 services, WK-
means initially sorts all the services by their volume and
splits the sorted sequence at

[

𝑆
𝑁 , 2𝑆𝑁 , ..., (𝑁−1)𝑆

𝑁

]

. That is, the
sorted sequence is evenly divided into 𝑁 segments (lines

2-6). WK-means further chooses the service in the middle
of each segment as cluster center (lines 8-13). Instead of
using random initialization, this approach speeds up the
convergence process. Then, the WD between each service
and sub-cluster center is calculated, and each service is re-
assigned to its nearest sub-cluster (lines 14-24). Finally, each
sub-cluster center is updated (line 25) and the previous two
steps are iterated until all sub-clusters convergence or the
iteration epoch reaches a predefined limit (lines 7-26).

In a setting with multiple edge nodes, it is possible
that WK-means may generate different service clustering
results on different nodes. To comply with our model transfer
strategy, we first conduct WK-means at the level of every
edge-node and select the most frequent clustering pattern as
the global service grouping. Such pattern is applied to all
other nodes in our design.
Algorithm 1 WK-means Service Clustering
Require: 𝑋(list::service time series), 𝑁(int::cluster),

𝐼(int::max iteration)
Ensure: 𝐿(list::cluster results)

1: 𝑚𝑒𝑎𝑛_𝑙𝑖𝑠𝑡 = [ ], 𝑐𝑒𝑛𝑡𝑒𝑟𝑠_𝑙𝑖𝑠𝑡 = [ ], 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0
2: for 𝑖 = 0 → 𝑙𝑒𝑛(𝑋) do
3: 𝑚𝑒𝑎𝑛_𝑙𝑖𝑠𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑒𝑎𝑛(𝑋[𝑖]))
4: end for
5: 𝑚𝑒𝑎𝑛_𝑙𝑖𝑠𝑡 = 𝑠𝑜𝑟𝑡𝑒𝑑(𝑚𝑒𝑎𝑛_𝑙𝑖𝑠𝑡)
6: Initialize 𝑋 into 𝑁 clusters by 𝑚𝑒𝑎𝑛_𝑙𝑖𝑠𝑡[0 ∶ 𝑙𝑒𝑛(𝑋) ∶

𝑙𝑒𝑛(𝑋)∕𝑁]
7: repeat
8: for each cluster 𝐶 do
9: if 𝑚𝑒𝑎𝑛(𝑋[𝑖]) == 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶) then

10: 𝐶𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑋[𝑖]
11: end if
12: 𝑐𝑒𝑛𝑡𝑒𝑟𝑠_𝑙𝑖𝑠𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝐶𝑐𝑒𝑛𝑡𝑒𝑟)
13: end for
14: for 𝑖 = 0 → 𝑙𝑒𝑛(𝑋) do
15: 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 = 10000
16: 𝑓𝑙𝑎𝑔 = 0
17: for 𝑗 = 0 → 𝑁 do
18: 𝑑𝑖𝑠𝑡𝑖𝑗 = 𝑊𝐷(𝑋[𝑖], 𝑐𝑒𝑛𝑡𝑒𝑟𝑠_𝑙𝑖𝑠𝑡[𝑗])
19: if 𝑑𝑖𝑠𝑡𝑖𝑗 <= 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 then
20: 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡𝑖𝑗 and 𝑓𝑙𝑎𝑔 = 𝑗
21: end if
22: end for
23: 𝐿[𝑖] = 𝑓𝑙𝑎𝑔
24: end for
25: update each cluster & 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + +
26: until 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝐼 or 𝐿 is unchanged

3.3. TMTPN Model Design
To perform multi-service traffic forecasting, we design

Transformer-based Multi-service Traffic Prediction Net-
works (TMTPNs), each of which inherits from the canonical
Transformer architecture and is dedicated to each individ-
ual service cluster. Transformers have shown remarkable
performance in processing sequential data and have been
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Figure 3: TMTPN architecture based on an Encoder-Decoder
design. Historical traffic input combined with positional encod-
ing (PE) is processed by the Encoder, which gives the output
to each Decoder block. Within each, the core components are
a multi-head Attention block and a Linear block.

adopted previously for natural language processing [15],
computer vision [16], and vehicular traffic prediction [17]
tasks. Our TMTPN model is illustrated in Figure 3 and
follows an Encoder-Decoder paradigm, encompassing the
following components:

• Multi-Head Attention: Multi-head attention consists
of multiple scaled dot-product attention structures that
capture temporal dependencies in long sequences. The
attention block receives three inputs: 𝑄 ∈ ℝ𝑇×𝑑𝑘

(query), 𝐾 ∈ ℝ𝑇×𝑑𝑘 (key) and 𝑉 ∈ ℝ𝑇×𝑑𝑘 (value), in
which 𝑇 represents the sequence length and 𝑑𝑘 is the
embedding dimension of each item in the sequence.
Attention is computed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 .

𝑄𝐾𝑇 generates a 𝑇 × 𝑇 matrix of alignment scores,
where each entry denotes the correlations between
two instances in the sequence. The matrix is scaled
and then multiplied by 𝑉 to generate the hidden rep-
resentation of the input that incorporates attention

information. Multi-head attention splits 𝑄, 𝐾 and
𝑉 into multiple chunks, which are processed with
independent attention blocks. The outputs of all the
attention blocks are concatenated and projected back
into hyperspace ℝ𝑑𝑘 .

• Encoder and Decoder Layers: The encoder layers
(Figure 3 left) contain a multi-head attention block
and a linear block, each of which utilizes a skip con-
nection and layer normalization to prevent over-fitting.
For the encoder, only the input sequence is given to
the multi-head attention block, i.e., 𝑋 = 𝑄 = 𝐾 = 𝑉 ,
where self-attention is computed. The decoder (Fig-
ure 3 right) incorporates an extra attention block.
Specifically, the first attention block in the decoder
computes the self-attentional representations of the
decoder input, and the second block takes the encoder
output as the key 𝐾 ∈ ℝ𝑇×𝑑𝑘 and the value 𝑉 ∈
ℝ𝑇×𝑑𝑘 , querying which historical inputs are important
when making future predictions.

• Positional Encoding (PE): Since transformers do not
contain any sequential structure, timing features are
not encoded in the network by default. Therefore,
positional encoding is added to the input sequence,
which reflects the relative position of each timestamp.
PE is computed as:

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = sin(𝑝𝑜𝑠∕10, 0002𝑖∕𝑑𝑚𝑜𝑑𝑒𝑙 ),

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = cos(𝑝𝑜𝑠∕10, 0002𝑖∕𝑑𝑚𝑜𝑑𝑒𝑙 ),

where 𝑝𝑜𝑠 denotes the position index of the item in the
sequence and 𝑑𝑚𝑜𝑑𝑒𝑙 is the dimension of the encoded
position.

• Parallel Decoding: Traditional seq2seq models [7]
perform decoding in an auto-regressive manner dur-
ing training. That is, decoding the 𝑡𝑡ℎ element in
a sequence relies on the hidden states passed from
timestamp 𝑡−1 and the decoded (𝑡 − 1)th item, which
are provided as the input. It is therefore impossible
to decode all the items in parallel. Transformers over-
come this problem during training by introducing the
shifted decoder input and look-ahead mask. Assume
that the ground truth to be provided to the decoder
is 𝑌 = [𝑦1, ..., 𝑦𝐹 ], then the input is the shifted-
right ground truth 𝑋 = [0, 𝑦1, ..., 𝑦𝐹−1]. The look-
ahead mask (𝑀) is introduced when computing the
alignment scores as follows:

𝐴 = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘
𝑀

)

,

where 𝑋 = 𝑄 = 𝐾 , and M is a 𝐹 ×𝐹 matrix with each
entry above the diagonal equal to negative infinity, and
below/on the diagonal equal to 0. The scaled matrix
of alignment scores is masked with M, which yield
a 𝐹 × 𝐹 lower triangular matrix, meaning that at a
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given timestamp 𝑖, there is no correlation (𝐴𝑖𝑗 = 0)
with the input from any future timestamp 𝑗 (𝑗 > 𝑖).
By masking, the decoder can approximate the output
at 𝐹 timestamps, 𝑌 = [�̂�1, ..., �̂�𝐹 ], in parallel. This
technique is only applied during training, while dur-
ing testing the transformer decodes step-by-step, as
seq2seq models.

Overall, the proposed TMTPN architecture has several
merits: (i) it can be trained fast due as the look-ahead mask
and the shifted decoder input that facilitate parallelization;
(ii) it can process longer sequences than traditional seq2seq
models; and (iii) it captures the most essential historical in-
formation that impacts most on prediction results, irrespec-
tive of the length of an input sequence, thanks to Position
Encoding and Multi-Head Attention.

4. Experiments
We implement TransMUSE and its TMTPN models, as

well as a set of benchmark neural models in Tensorflow
v2.3.0 using the cuDNN v7.6 and CUDA v10.1 libraries. To
demonstrate the performance gains of our solution, we train
and evaluate the neural models and experiment on a large-
scale real-world wired network traffic dataset collected by a
network operator in Sichuan Province, China. For this, we
employ a high-performance computing cluster comprising
12 servers, each equipped with a 32-cores Intel E5-2620
CPU and running Red Hat Enterprise Linux, and accelerate
the training process with multiple GPUs out of a pool of 96
Nvidia RT2080Ti units.

We conduct three sets of experiments to demonstrate (1)
multi-service traffic prediction performance gains attained
by our TMTPN models; (2) the benefit of employing service
clustering with WK-means; and (3) forecasting performance
with edge model transfer.
4.1. Dataset & Pre-processing

The dataset we employ was collected in a city with over 6
km2 land coverage, administratively divided into 7 districts
and 1 core urban area, and with a population of approxi-
mately 2.7 million inhabitants. The traffic within each dis-
trict (D1 to D8) is handled by a dedicated edge node, and the
high level structure of the deployment is illustrated in Figure
4. Traffic data was collected by Deep Packet Inspection
(DPI) via port mirroring, between July 1st and 31st, 2020.
Traffic was aggregated at session level, with only application
type, district identifier, direction (uplink/downlink), total
volume and timing information (session start/end) being
recorded, to preserved anonymity. In total, 20 service types
are distinguished, as summarised in Table 1, where these are
sorted in descending order by their volume across the entire
deployment, and indexed. The traffic volume distribution
for the top-8 services is shown in Figure 5, where bars
depict the fraction of the overall volume and the line the
corresponding values. Due to the commercially sensitive
nature of the dataset, we cannot disclose the precise identity

D1 D2 D7 D8

access
switch

access
switch

core
router

Firewall NAT

Carrier
network

Internet

Traffic
capture

DPI

D2D3

D4D5

D6

D7

D8D1

Figure 4: Network topology and district map of the target city.
Traffic measurements collected via DPI and further processed
at the core router.

of the city, nor the specific service names for which traffic
measurements were collected.
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Figure 5: Service traffic volume (line) and fraction of the total
(bar) in the city across 8 districts over 31 days.

Over the 31 consecutive days of measurements, we sam-
ple the traffic consumption every minute, assuming uniform
consumption per session throughout their duration. This
is reasonable, given the predominantly short-lived nature
of sessions, leading to temporal sequences of 44,640 data
points for each service in each region. We normalize service
traffic volumes to the 0–1 range, to ensure similar mag-
nitudes during training. We use an 80/10/10 data split for
training, validation, and testing, and train models separately
on a region-by-region basis.
4.2. Benchmarks & Metrics

For comparison, we consider the following state-of-the-
art DL models as baselines:

• LSTM, which is now a classic structure for tackling
regression tasks, and has been extensively used for
traffic prediction [18, 19]. We implement a three-
layer LSTM, which offers an appropriate complexity–
effectiveness tradeoff.
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1: Web Video 2: Generic Apps 3: Other Apps 4: P2P VOD 5: Chat 6: P2P Download 7: Online Games
8: P2P Video 9: Cloud Storage 10: Shopping Online 11: Live Stream 12: Music Stream 13: News Apps 14: Generic Video
15: VoIP 16: Stock Apps 17: Travelling Websites 18: Mail Apps 19: Living Apps 20: Portal Webs

Table 1
Service names and indexing for the traffic dataset used in our experiments.

Model\District D1 D2 D3 D4 D5 D6 D7 D8
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 45.20 125.90 47.05 136.75 51.37 145.39 21.20 60.98 21.65 63.74 15.69 44.36 18.78 56.67 50.43 147.15
AttentionAR 61.80 176.89 63.08 184.99 65.40 181.71 24.24 66.58 27.79 81.35 19.06 53.05 23.70 70.21 64.11 180.17
GraphConv 107.42 300.25 110.15 327.21 116.61 317.44 36.44 99.49 40.93 123.34 23.18 66.13 34.41 108.22 118.35 340.68

MTNet 44.15 127.37 46.78 136.54 48.97 138.71 21.86 62.33 23.70 71.22 16.40 48.22 18.54 57.21 46.51 133.26
GASTN 48.28 137.85 47.91 145.03 53.92 156.82 20.98 58.25 23.30 72.51 15.83 44.88 20.47 61.13 51.29 149.57

TMTPN (ours) 37.69 106.19 38.16 118.76 43.27 124.86 16.57 46.80 17.99 53.91 12.04 34.94 14.91 45.98 41.49 117.44

Table 2
MAE and RMSE performance (in MB) on the multi-service traffic forecasting task with LSTM, AttentionAR, GraphConv, MTNet,
GASTN and our TMTPN across 8 districts.

• MTNet, which was designed for multivariate time
series prediction and adopts an encoder-decoder ar-
chitecture to extract both long- and short-term hidden
representations correlation among these [2].

• GraphConv, which is also aimed at tackling mul-
tiple time series predictions [20], integrating graph
convolution [21] and an LSTM network to extract
correlations between multiple sequences and tempo-
ral patterns. We employ the Spektral library for our
implementation [22].

• AttentionAR, a model that we implement based on
the Bahdanau Attention structure [23] with rolling
prediction through a LSTM cell. Attention is used to
assign weights to historical input.

• GASTN, which was proposed in [24] for mobile traffic
prediction based on attention and recurrent neural
networks.

To evaluate the performance of our proposed models
and that of the benchmarks considered, we compute the
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). In essence, these metrics quantify the difference
between ground-truth and predicted values, and are defined
as follows [25]:

𝑀𝐴𝐸 = 1
𝑆 × 𝐹

𝑆
∑

𝑖=1

𝐹
∑

𝑗=1
|𝑦𝑖𝑗 − �̂�𝑖𝑗|; (2)

𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑆 × 𝐹

𝑆
∑

𝑖=1

𝐹
∑

𝑗=1
(𝑦𝑖𝑗 − �̂�𝑖𝑗)2, (3)

where 𝑆 is the number of services, 𝑇 represents the number
of prediction steps, and 𝑦𝑖𝑗 and 𝑦𝑖𝑗 denote the ground truth
and respectively predicted traffic volume for service 𝑖 at
timestamp 𝑗.

4.3. Multi-service Traffic Prediction by TMTPN
We first examine TMTPN’s performance vis-a-vis that

of the benchmarks considered, then investigate the influence
that input/output lengths have on this.
4.3.1. Forecasting Comparison

We first train and test different models for every district
separately, using traffic solely observed within each of these.
We take input sequences of length 30 (i.e., 30-min historical
data) and predict the traffic volume per service over 5 future
timestamps. The obtained results are summarized in Table 2,
where lower MAE and RMSE values indicate superior pre-
diction performance.

Observe that the TMTPN models we propose consis-
tently outperform the state-of-the-art neural networks con-
sidered. In particular, when compared with the second best
model, LSTM, our TMTPN reduces the MAE and RMSE
on avergae by 18.95% and respectively 17.74%, across the
eight districts. This is because the multi-head attention struc-
ture adopted by our design allows the model to jointly
extract information from different representation sub-spaces
at different points in time, giving higher weights to the
most significant historical patterns, to enhance prediction
performance.

The performance of LSTM and MTNet is relatively
similar. GASTN’s performance is inferior to that of MT-
Net in districts with large traffic volumes, but outperforms
MTNet in districts where the traffic volume is smaller, i.e.,
D4, D5, D6. However, AttentionAR largely overestimates
traffic demand, indicating that the traditional attention mech-
anism is not best-suited to multi-service prediction tasks.
Finally, GraphConv performs poorly in comparison with our
TMTPN and the other two benchmarks we consider. This
is likely because no strong spatial relationships between the
different services exist in edge network settings.

To better appreciate the forecasting performance of our
proposed TMTPN model at service level, in Table 3 we
summarize that across two districts with dissimilar service
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DIS Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D1 TMTPN 187.05 250.79 97.91 52.54 23.71 31.94 5.36 10.85 16.71 24.90 4.32 11.01 2.77 1.13 0.59 0.58 0.29 0.12 0.12 0.03
LSTM 257.40 310.18 121.12 65.28 33.13 49.63 7.92 15.47 17.39 36.40 6.26 10.35 2.81 2.00 0.82 0.70 0.26 0.10 0.09 0.03

D2 TMTPN 270.20 241.52 113.04 56.58 29.85 34.36 6.46 10.15 17.50 8.83 5.66 9.30 2.53 1.04 0.53 0.43 0.08 0.07 0.13 0.03
LSTM 277.28 293.57 125.73 68.20 30.70 47.22 8.12 15.04 18.88 11.03 7.09 8.73 2.65 1.49 0.67 0.45 0.08 0.06 0.12 0.03

Table 3
Per-service prediction performance in terms of MAE (MB) in districts D1 and D2. Service names given in Table 1 by index.
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(b) Service-level predictions in district D2

Figure 6: 5-step forecasting performance with TMTPN and LSTM at service level over 5 busy hours (15:00 to 20:00 on 29 July,
2020) vs Ground truth.

usage patterns, namely D1 and D2, while in Figure 6 we
illustrate 5-step prediction instances performed in the two
districts across 5-hour windows (busy hours between 15:00
and 20:00 on 29 July, 2020) for 4 randomly selected ser-
vices (chat, web video, live streaming, P2P video). We only
compare TMTPN with LSTM in this and the subsequent
experiments, because LSTM appears to be an effective deep
learning model that achieves solid performance, which the
results in Table 2 and prior work [6, 7] confirm. As can been
seen from the figure, TMTPN is superior to LSTM, as it
tracks more closely the ground truth traffic that would be
available under ideal circumstances. This is especially clear
to observe on ‘Chat’ traffic forecasting in D1 (sub-figure (a))
and ‘Live Streaming’ traffic in D2 (sub-figure (b)).
4.3.2. Impact of Input and Output Length

In this subsection, we evaluate the long-term and short-
term prediction performance of our TMTPN, focusing again
on districts D1 and D2. We examine the MAE across all
services as the forecasting horizon varies between 5 and

30 steps, while we also vary the input size, i.e., 5, 15
and 30 historical traffic snapshots. The obtained results are
summarized in Figure 7, where the x-axis represents the
combination of input and output length (e.g., 30-5 indicates
the model uses the previous 30 minutes traffic data to predict
the upcoming 5 minutes traffic demand). The top sub-figure
corresponds to district D1 and the bottom to district D2.

Observe that TMTPN is consistently superior to LSTM,
as it achieves lower prediction errors. The performance
gains grow with the length of the forecasting horizon,
with TMTPN reducing the MAE experienced with LSTM
on long-term predictions by 43.21% and 40.77% in dis-
trict D1 and D2, respectively. Benefits are also observable
short-term, where TMTPN attains 15.02% and respectively
22.74% lower MAE than LSTM in the two districts, when
the input and output lengths are both 5 (5-5). These gains
can be attributed to the multi-head attention mechanism that
our design adopts. In addition, the shifted input with look-
ahead mask not only enables training parallelization, but also
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Figure 7: Impact of different Input-Output lengths on fore-
casting performance (in terms of MAE) with LSTM and our
TMTPN in districts D1 (top) and D2 (bottom).

ensures TMTPN can predict the future sequence on a rolling
basis, unlike the LSTM, which predicts multiple future steps
at once and is thus prone to larger errors.

Lastly, we note that the input length has only marginal
impact on TMTPN’s forecasting accuracy, with input size
impacting performance slightly differently at the level of the
two districts examined. Yet in both cases the best perfor-
mance is attained with 15 historical snapshots. Based on
these results, we argue that if the input length is too short
(5), the model may not be able to capture certain periodic
information or longer trends.
4.4. Multi-service Clustering

Recall that the aim of service clustering in TransMUSE
is to further improve forecasting performance by grouping
services into different clusters, according to their tempo-
ral similarity. Here, we demonstrate the benefits of us-
ing our WK-means algorithm for this task (hereafter de-
noted as WASS), as compared to three benchmarks that can
be applied to time series data, namely K-means clustering
based on Euclidean distance (EUC), K-means based on
Cosine similarity [26] (COS), and (3) Derivative Dynamic
Time Warping (DTW) clustering [6] implemented with the
tslearn library [27].
4.4.1. Number of Clusters

Before comparing the clustering algorithms, the appro-
priate number of clusters 𝐾 needs to be determined. The
Silhouette score is routinely employed to characterize clus-
tering performance, which is computed as the difference
between the mean of the intra-cluster distances and the
mean of the nearest-cluster distances, normalized by the
maximum between the two [28]. The silhouette score ranges
between [-1, 1], where 1 indicates the best cluster separation,
values near 0 indicate overlapping clusters, and negative

K\Algorithm EUC COS DTW WASS

2 0.851 0.157 0.852 0.869
3 0.788 0.06 0.814 0.779
4 0.706 -0.09 0.782 0.801
5 0.651 -0.109 0.712 0.732

Table 4
Silhouette score comparison with associated distance metric
for different numbers of clusters 𝐾 and the four clustering
algorithms considered, in district D1.

ones suggest that a sample has been assigned to the wrong
cluster.

With this, we validate the effectiveness of our WK-
means algorithm vis-a-vis that of the benchmarks consid-
ered, on the eight districts separately. For each district,
𝐾 is chosen in the {2,… , 5} range, and we compute the
silhouette score for each 𝐾 value. The results on district D1
are given in Table 4, which suggest 𝐾 = 2 is the optimum
value. The same holds for the vast majority of other districts,
with 𝐾 = 3 yielding marginally higher silhouette scores
(0.01 difference) in 2 out of 32 instances. Hence we select
𝐾 = 2 for all the remaining experiments. When the number
of services grows, the same approach is suitable.
4.4.2. Clustering Algorithms Comparison

Next we evaluate forecasting performance with TMTPN
when a model is trained individually on services clusters,
following grouping of the 20 services into 𝐾 = 2 clusters
using the proposed WK-means and the benchmark algo-
rithms. We resort again to MAE and RMSE for evaluation
and summarize the results obtained in Table 5.

The results demonstrate that all clustering algorithms
can reduce the prediction errors, which is more apparent in
districts with larger traffic volumes, such as D1, D2, D3 and
D8. Our WASS solution is superior to COS, because cosine
similarity gives priority to the direction of two vectors, such
as the semantic similarity between two sentences. DTW
and EUC are essentially based on the Euclidean distance
between traffic magnitude, whereas the “shape” of a time
series is an important feature when measuring the similarity
between two time series. Our WK-means algorithm (WASS)
based on Wasserstein distance possesses such ability, which
is reflected in the lower prediction errors obtained (bottom
row in Table 5).
4.4.3. Cluster Visualization

To better appreciate where the differences in the perfor-
mance attained with WK-means and the 3 benchmarks stem
from, in Figure 8, we visualize the cluster membership of
the different services in a randomly chosen district (D2).
We can draw the conclusion that the traffic magnitude and
‘shape’ do have an impact on the clustering results. Observe
that both DTW and EUC rely on the Euclidean distance and
only services with very large traffic magnitude are grouped
into the same cluster. The fact that service No. 2 belongs to
different clusters in DTW and EUC confirms the importance
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Algorithm\District D1 D2 D3 D4 D5 D6 D7 D8
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

No Custering 37.69 106.19 38.16 118.76 43.26 124.86 16.57 46.80 17.99 53.91 12.04 34.94 14.91 45.98 41.49 117.43
EUC 31.22 81.26 31.68 86.91 33.67 88.83 15.00 42.63 16.49 47.62 10.80 30.77 13.21 39.82 33.04 91.57
COS 35.78 100.92 37.18 109.03 41.08 116.10 15.67 43.47 17.83 52.98 11.74 34.19 14.46 43.59 38.65 111.33
DTW 31.22 81.26 33.35 92.38 35.92 98.38 15.45 42.49 16.49 47.62 10.80 30.77 13.21 39.82 34.82 92.63

WASS(ours) 28.98 81.14 30.60 85.09 32.20 72.87 14.65 39.36 15.76 46.91 10.45 30.37 12.99 39.14 32.32 87.95

Table 5
Clustering algorithms comparison based on MAE and RMSE (MB) of forecasts obtained with TMTPN applied on service clusters
across the 8 districts.
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Figure 8: Clustering visualization for the four algorithms. Service bars with the same colour are grouped in the same cluster.
Service indexes are sorted in descending by traffic volume, and the service name can be obtained by mapping in Table 1

of service traffic shape. In contrast, WASS clusters services
from 1 to 6 into one category even though their traffic quanti-
ties are distinct. Figure 9 further illustrates the importance of
traffic ‘shape’ as captured with our WASS approach. When
we compare cluster 1 and cluster 2 in each sub-figure, it is
obvious that the traffic volume range is different. Observe
the sub-figures corresponding to WASS, where the services
in each cluster share similar traffic patterns, albeit having
services with different traffic volume in cluster 1. In contrast,
the service shapes in cluster 2 obtained with DTW are
more heterogeneous. Cosine similarity pays more attention
to the difference between two vectors in direction rather than
distance or length. In our service clustering task, the traffic
magnitude is the primary consideration, therefore cosine
similarity is less effective in clustering service time series,
which is also confirmed by our previous results reported in
Table 5, where COS performs worst than the other three
algorithms in all 8 districts.
4.5. Edge Model Transfer

Finally, we demonstrate the merits of model transfer in
TransMUSE by showing that reusing models trained at ref-
erence nodes within a node cluster, with the aim of reducing
computational overhead, does not impact negatively on the
forecasting performance.
4.5.1. Region Clustering

Recall that the first step in transferring reference models
is to decide the transfer scope. We use K-means clustering to

k 2 3 4 5 6 7
score 0.441 0.380 0.341 0.259 0.112 0.109

Table 6
Silhouette score of edge node clustering by K-means based on
9 statistical features with different number of clusters 𝑘 from
2 to 7.

group regions according to the statistical features of all the
service traffic time series. We resort again to the silhouette
score to determine the optimal number of region clusters,
which we compute for 𝑘 ∈ {2, 3, 4, 5, 6, 7} in Table 6. We
conclude that 𝑘 = 2 produces the highest score and districts
D1, D2, D3, D5, and D8 should be grouped together, with
the remaining 3 regions belonging to the second edge node
cluster.

Our focus is on maintaining a small number of models
while ensuring model transferability. Our real-world dataset
contains district-level edge nodes (rather than base stations).
In deployments with many more edge nodes, one can put
constraints on the maximum number of groups/the maxi-
mum number of members in a group, to maintain a desired
complexity/transferability trade-off.
4.5.2. Model Transfer Validation

We order the regions according to the overall traffic
volume and conclude that D4 and D3 are to be selected as
reference nodes for cluster 1 and 2, respectively. We quantify
the generalization ability of the models trained by comparing
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Figure 9: Service cluster membership and traffic pattern visualization over one week in District No. 2 (D2) when using WASS
(left) and DTW (right).

the RMSE when performing forecasting following model
transfer (TransMUSE) versus when models are trained lo-
cally at individual region level (Original). To add further
perspective and verify our hypothesis that models trained at
edge nodes witnessing large traffic volumes have stronger
generalization abilities, we also examine the forecasting
performance when models are trained on regions where the
traffic volume is the lowest among cluster members, prior to
transfer (Ctrl-Exp).

The result are illustrated in Figure 10 for the two clusters,
where regions appear in descending order by the overall
traffic volume. Observe that when the reference models are
trained on regions with the highest traffic demand (Trans-
MUSE), the RMSE values are almost identical to those
obtained when training models individually at each edge
node. The largest performance gap is at the level of D6,
where a 0.26% performance degradation is observed in terms
of forecasting accuracy (RMSE). In contrast, if reference
models were to be trained at edge nodes with lowest traffic
volumes (D6 in cluster 1 and D5 in cluster 2), the forecasting
performance would suffer (Ctrl-Exp). Specifically, the aver-
aged RMSE error over 8 regions is 9.26 MB, which is 92
times larger than with TransMUSE.

We conclude that, as the number of edge nodes increases
with the growing adoption of the MEC paradigm, our pro-
posed model transfer strategy will help reduce training time
and energy consumption. TransMUSE will only need to
revisit cluster membership and will circumvent the need to
persistently collect taffic data in each district.

5. Related Work
Network traffic prediction is critical to network resource

management, optimization and QoS improvement. While
this topic has received a lot of attention over the recent years,
aspects including service-level traffic forecasting and pre-
dicting with low computational overhead have been largely
overlooked. Here, we summarise the most relevant work
related to our contribution.
5.1. Traffic Forecasting

The main approaches to time sequence prediction are
State Space Models (SSMs) and sequential models that
frequently use deep learning (DL) [29]. The most representa-
tive SSMs are Auto-Regressive Integrated Moving Average
(ARIMA) models and variants of these, which have been
widely adopted for mobile traffic forecasting [30, 31, 32].
Their major drawback is that they require manual parameter
selection on a sequence-by-sequence basis. In addition, they
perform poorly when inputs exhibit high variability.

DL has made advances in multiple domains, with Long-
Short Term Memory (LSTM) models proven to be superior
to traditional models such as ARIMA when predicting wired
and wireless traffic [18, 33, 34, 35]. Given that spatial
correlations exist between traffic generated at different base
stations in wireless networks, LSTM models have been
combined with Convolutional Neural Networks (CNNs) to
tackle this problem. Zhang et al. proposed a ConvLSTM
model to predict multi-service mobile traffic [7] and a graph-
sequence spatio-temporal model is introduced in [36] to
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Figure 10: Traffic forecasting performance comparison when
model transfer is employed based on highest traffic demand
(TransMUSE), a control experiment where reference models
are trained at lightly-loaded edge nodes (Ctrl-Exp), and no
edge node clustering is performed, i.e. models trained individ-
ually at each location (Original).

forecast cellular traffic demand. More recently, attention and
transformer architectures demonstrated the ability to handle
long sentences in the NLP domain, which subsequently led
to their adoption in time series forecasting tasks [6, 29].

However, none of these prior works builds on the obser-
vation that spatial correlations are weak in wired networks
and correlations among services matter most.
5.2. Edge Model Transfer

As edge computing is getting traction, there have been
several research projects focusing on cloud-edge model
training based on collaborative learning. He et al. design
a collaborative global-local learning scheme that leverages

the generalization capability of the global model and the
personalization ability of local models to boost the training
performance of a graph attention spatio-temporal network
(GASTN) for city-wide mobile traffic prediction [6]. Yan
et al. propose COLLA, a collaborative learning framework
that allows devices and the cloud to learn collectively user
locations [37]. Zhang et al. design a collaborative cloud-edge
computation method for driving behavior modeling, which
trains and prunes common models in the cloud and conducts
transfer learning at the edge [38]. Cartel is proposed in [39]
for cloud-edge collaborative learning, aiming at distributing
and updating machine learning models across geographi-
cally distributed edge clouds.

These works are mostly set on the premise that there
exists plenty of data in the cloud to train global models.
Edge-edge collaboration, in scenarios where data is largely
available only at the network edge, has received less atten-
tion. Further, the cost of data transfer overhead has been
thus far overlooked, which is non-negligible for network
operators.

6. Conclusion
In this paper, we tackled network traffic prediction in

multi-service edge networks with spatially heterogeneous
demands. We proposed TransMUSE, a framework that
groups edge nodes into cohorts and trains transformer-
based (TMTPN) models at reference locations, which can be
transferred within cohorts without any adaptation. By means
of extensive experiments with real-world data, we demon-
strated TransMUSE’s forecasting performance is compara-
ble with that of training individual models with local data
at each node. We further propose WK-means, a service
clustering routine, which allows to reduce the number of
TMTPN models to be maintained for forecasting, based on
service similarities. All of these facilitate accurate short-
and long-term multi-service traffic prediction with reduced
measurement and training costs, which is essential for fine-
grained network management.
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