
Breaking Fitness Records without Moving:

Reverse Engineering and Spoo�ng Fitbit

Hossein Fereidooni1, Jiska Classen2, Tom Spink3

Paul Patras3, Markus Miettinen2

Ahmad-Reza Sadeghi2, Matthias Hollick2, and Mauro Conti1

1 University of Padua, Italy
{hossein,conti}@math.unipd.it

2 Technische Universität Darmstadt, Germany
{markus.miettinen,ahmad.sadeghi}@trust.tu-darmstadt.de

{jclassen,mhollick}@seemoo.de
3 University of Edinburgh, United Kingdom

{tspink,ppatras}@inf.ed.ac.uk

Abstract. Tens of millions of wearable �tness trackers are shipped yearly
to consumers who routinely collect information about their exercising
patterns. Smartphones push this health-related data to vendors' cloud
platforms, enabling users to analyze summary statistics on-line and ad-
just their habits. Third-parties including health insurance providers now
o�er discounts and �nancial rewards in exchange for such private infor-
mation and evidence of healthy lifestyles. Given the associated monetary
value, the authenticity and correctness of the activity data collected be-
comes imperative. In this paper, we provide an in-depth security anal-
ysis of the operation of �tness trackers commercialized by Fitbit, the
wearables market leader. We reveal an intricate security through obscu-
rity approach implemented by the user activity synchronization protocol
running on the devices we analyze. Although non-trivial to interpret, we
reverse engineer the message semantics, demonstrate how falsi�ed user
activity reports can be injected, and argue that based on our discoveries,
such attacks can be performed at scale to obtain �nancial gains. We fur-
ther document a hardware attack vector that enables circumvention of
the end-to-end protocol encryption present in the latest Fitbit �rmware,
leading to the spoo�ng of valid encrypted �tness data. Finally, we give
guidelines for avoiding similar vulnerabilities in future system designs.

Keywords: �tness trackers, reverse engineering, spoo�ng, Fitbit

1 Introduction

Market forecasts indicate 274 million wrist-based �tness trackers and smart-
watches will be sold worldwide by 2020 [1]. Such devices already enable users
and healthcare professionals to monitor individual activity and sleep habits, and
underpin reward schemes that incentivize regular physical exercise. Fitbit main-
tains the lead in the wearables market, having shipped more units in 2016 than
its biggest competitors Apple, Garmin, and Samsung combined [2].

2 H. Fereidooni et al.

Fitness trackers collect extensive information which enables infering the users'
health state and may reveal particularly sensitive personal circumstances. For in-
stance, one individual recently discovered his wife was pregnant after examining
her Fitbit data [3]. Police and attorneys start recognizing wearables as �black
boxes� of the human body and use statistics gathered by activity trackers as
admissible evidence in court [4,5]. These developments highlight the critical im-
portance of both preserving data privacy throughout the collection process, and
ensuring correctness and authenticity of the records stored. The emergence of
third-party services o�ering rewards to users who share personal health informa-
tion further strengthens the signi�cance of protecting wearables data integrity.
These include health insurance companies that provide discounts to customers
who demonstrate physical activity through their �tness tracker logs [6], websites
that �nancially compensate active users consenting to �tness monitoring [7], and
platforms where players bet on reaching activity goals to win money [8]. Unfor-
tunately, such on-line services also bring strong incentives for malicious users to
manipulate tracking data, in order to fraudulently gain monetary bene�ts.

Given the value �tness data has towards litigation and income, researchers
have analyzed potential security and privacy vulnerabilities speci�c to activity
trackers [9�12]. Following a survey of 17 di�erent �tness trackers available on the
European market in Q1 2016 [15], recent investigations into the security of Fitbit
devices (e.g. [12]), and the work we present herein, we found that in comparison
to other vendors, Fitbit employs the most e�ective security mechanisms in their
products. Such competitive advantage, giving users the ability to share statistics
with friends, and the company's overall market leadership make Fitbit one of
the most attractive vendors to third parties running �tness-based �nancial re-
ward programs. At the same time it motivates us to choose Fitbit trackers as the
target of our security study, in the hope that understanding their underlying se-
curity architecture can be used to inform the security and privacy of future �tness
tracker system designs. Rahman et al. have investigated the communication pro-
tocols used by early Fitbit wearables when synchronizing with web servers and
possible attacks against this [9]. Cyr et al. [10] studied the di�erent layers of the
Fitbit Flex ecosystem and argued correlation and man-in-the-middle (MITM)
attacks are feasible. Recent work documents �rmware vulnerabilities found in
Fitbit trackers [11], and the reverse engineering of cryptographic primitives and
authentication protocols [12]. However, as rapid innovation is the primary busi-
ness objective, security considerations remain an afterthought rather than em-
bedded into product design. Therefore, wider adoption of wearable technology
is hindered by distrust [13,14].

Contributions: We undertake an in-depth security analysis of the Fitbit
Flex and Fitbit One �tness trackers and reveal serious security and privacy
vulnerabilities present in these devices which, although di�cult to uncover, are
reproducible and can be exploited at scale once identi�ed. Speci�cally, we re-
verse engineer the primitives governing the communication between trackers and
cloud-based services, implement an open-source tool to extract sensitive personal
information in human-readable format, and demonstrate that malicious users

Breaking Fitness Records without Moving 3

can inject fabricated activity records to obtain personal bene�ts. To circumvent
end-to-end protocol encryption implemented in the latest �rmware, we perform
hardware-based reverse engineering (RE) and document successful injection of
falsi�ed data that appears legitimate to the Fitbit cloud. The weaknesses we
uncover, as well as the design guidelines we provide to ensure data integrity, au-
thenticity and con�dentiality, build foundations for more secure hardware and
software development, including code and build management, automated test-
ing, and software update mechanisms. Our insights provide valuable information
to researchers and practitioners about the detailed way in which Fitbit operates
their �tness tracking devices and associated services. These may help IoT man-
ufacturers in general to improve their product design and business processes,
towards developing rigorously secured devices and services.

Responsible Disclosure: We have contacted Fitbit prior to submitting
our work, and informed the company about the security vulnerabilities we dis-
covered. We disclosed these vulnerabilities to allow su�cient time for them to
�x the identi�ed problems before the publication of our �ndings. At the time of
writing, we are aware that the vendor is in the process of evaluating the disclosed
vulnerabilities and formulating an e�ective response to them.

Fig. 1: Adversary model considered for (a) devices not implementing encryption
and (b) trackers using encryption.

2 Adversary Model

To retrieve the statistics that trackers collect, users predominantly rely on smart-
phone or tablet applications that extract activity records stored by the devices,
and push these onto cloud servers. We consider the adversarial settings depicted
in Fig. 1, in which users are potentially dishonest, whilst the server is provably
trustworthy. We assume an active adversary model in which the wristband user
is the primary adversary, who has both the means and motive to compromise
the system. Speci�cally, the attacker (a) views and seeks to manipulate the data
uploaded to the server without direct physical control over the device, or (b) in-
spects and alters the data stored in memory prior to synchronization, having

4 H. Fereidooni et al.

full hardware control of the device. The adversary's motivation is rooted in the
potential to obtain �nancial gains by injecting fabricated �tness data to the re-
mote server. Smartphone and cloud platform security issues are outside the of
scope of this paper, therefore not considered in our analysis.

2.1 Target Fitbit Devices

The adversary's target devices are the Fitbit Flex and Fitbit One wrist-based
�tness trackers, which record user step counts, distance traveled, calories burned,
�oors climbed (Fitbit One), active minutes, and sleep duration. These particular
trackers have been on the market for a number of years, they are a�ordable and
their security and privacy has been scrutinized by other researchers. Thus, both
consumers and the vendor would expect they are not subject to vulnerabilities.

We subsequently found that other Fitbit models (e.g. Zip and Charge) imple-
ment the same communication protocol, therefore may be subject to the same
vulnerabilities we identify in this work.

2.2 End-to-End Communication Paradigms

Following initial pairing, we discover Fitbit trackers are shipped with one of two
di�erent �rmwares; namely, the latest version (Flex 7.81) which by default en-
crypts activity records prior to synchronization using the XTEA algorithm and a
pre-installed encryption key; and, respectively, an earlier �rmware version (Flex
7.64) that by default operates in plaintext mode, but is able to activate mes-
sage encryption after being instructed to do so by the Fitbit server. If enabled,
encryption is end-to-end between the tracker and the server, whilst the smart-
phone app is unaware of the actual contents pushed from tracker to the server.
The app merely embeds encrypted records retrieved from the tracker into JSON
messages, forwards them to the Fitbit servers, and relays responses back to the
tracker. The same functionality can be achieved through software running on a
computer equipped with a USB Bluetooth LE dongle, including the open-source
Galileo tool, which does not require user authentication [16].

Even though only the tracker and the server know the encryption key, upon
synchronization the smartphone app also receives statistic summaries from the
server in human readable format over an HTTPS connection. As such, and fol-
lowing authentication, the app and authorized third parties can connect to a user
account via the Fitbit API and retrieve activity digests�without physical access
to the tracker. We also note that, despite newer �rmware enforcing end-to-end
encryption, the Fitbit server continues to accept and respond to unencrypted
activity records from trackers that only optionally employ encryption, thereby
enabling an attacker to successfully modify the plaintext activity records sent to
the server.

Breaking Fitness Records without Moving 5

Fig. 2: Schematic illustration of the testbed used for protocol reverse engineering.
Linux-based laptop used as wireless Internet gateway and running MITM proxy.

3 Protocol Reverse Engineering

In this section, we reverse engineer the communication protocol used by the Fit-
bit trackers studied, uncovering an intricate security through obscurity approach
in its implementation. Once we understand the message semantics, we show that
detailed personal information can be extracted and fake activity reports can be
created and remotely injected, using an approach that scales, as documented in
Sec. 4.

3.1 MITM Setup

To intercept the communication between the tracker and the remote server, we
deploy an MITM proxy on a Linux-based laptop acting as a wireless Internet
gateway, as illustrated in Fig. 2. We install a fake CA certi�cate on an An-
droid phone and trigger tracker synchronization manually, using an unmodi�ed
Fitbit application. The application synchronizes the tracker over Bluetooth LE
and forwards data between the tracker and the server over the Wi-Fi connec-
tion, encapsulating the information into JSON messages sent over an HTTPS
connection. This procedure resembles typical user engagement with the tracker,
however the MITM proxy allows us to intercept all communications between the
tracker and the server, as well as between the smartphone and the server. In
the absence of end-to-end encryption, we can both capture and modify messages
generated by the tracker. Even with end-to-end encryption enabled, we can still
read the activity digests that the server provides to logged-in users, which are
displayed by the app running on their smartphones.

3.2 Wireshark Plugin Development and Packet Analysis

To simplify the analysis process and ensure repeatability, we develop a custom
frame dissector as stand-alone plugin programmed in C for the Wireshark net-
work analyzer [17].4 Developing this dissector involves cross-correlating the raw

4 The source code of our plug-in is available at https://seemoo.de/�tbit-wireshark.

https://seemoo.de/fitbit-wireshark

6 H. Fereidooni et al.

messages sent by the tracker with the server's JSON responses to the client
application. After repeated experiments, we infer the many protocol �elds that
are present in tracker-originated messages and that are encoded in di�erent for-
mats as detailed next. We use the knowledge gained to present these �elds in a
human-readable format in the protocol analyzer.

There are two types of tracker-originated messages we have observed during
our analysis, which will be further described in the following sections:

1. Microdumps: A summary of the tracker status and con�guration.
2. Megadumps: A summary of user activity data from the tracker.

Fig. 3: Generic microdump in plain-text, as displayed by the wireshark dissector
we implement. Note the ability to �lter by `�tbit' protocol type in the analyzer.

3.3 Microdump

Depending on the action being performed by the user (e.g. authentication and
pairing, synchronizing activity records), the smartphone app makes HTTPS re-
quests to the server using speci�c URLs, e.g. POST https://<�tbit_server_ip>
/1/devices/client/.../validate.json?btle_Name=Flex&secret=null&btAddress=
<6Byte_tracker_ID> for initial authentication. Each basic action is accompa-
nied by a so-called microdump, which is required to identify the tracker, and
to obtain its state (e.g. its current �rmware version). Irrespective of whether or
not the tracker implements protocol encryption, the microdump header includes
the tracker ID and �rmware version, and is sent in plain-text. Fig. 3 illustrates
a microdump sent along with a �rmware update request, as interpreted by our
Wireshark dissector.

https://<fitbit_server_ip>/1/devices/client/.../validate.json?btle_Name=Flex&secret=null&btAddress=
https://<fitbit_server_ip>/1/devices/client/.../validate.json?btle_Name=Flex&secret=null&btAddress=
<6Byte_tracker_ID>

Breaking Fitness Records without Moving 7

We also note that the only validation feature that plain-text messages imple-
ment is a CRC-CCITT checksum, presumably used by the server to detect data
corruption in tracker-originated messages. In particular, this acquired knowl-
edge will allow us to inject generic messages into the server and obtain replies,
even when a valid tracker ID is already associated with a person's existing ac-
count. Yet, microdumps only contain generic information, which does not allow
the spoo�ng of user activity records. In what follows, we detail the format of
messages sent to the server to synchronize the tracked user activity.

Note that the plain-text format does not provide measures for verifying the
integrity and authenticity of the message contents except for a checksum, which is
deterministically calculated from the values of the message �elds. This allows the
adversary to inject generic messages to the server and receive replies, including
information about whether a tracker ID is valid and associated with a user
account.

3.4 Megadump Synchronization Message

Step counts and other statistics are transmitted by the tracker in the form of a
so-called megadump. Independent of encrypted or plain-text mode, neither the
Fitbit smartphone application nor the Galileo synchronization tool are aware of
the exact meaning of this payload. The megadump is simply forwarded to the
server, which in turn parses the message and responds with a reply. This reply is
then forwarded (by the corresponding application) back to the tracker, con�rm-
ing to the tracker that the data was synchronized with the server successfully.

Despite this behavior, the Fitbit smartphone application�in contrast to
Galileo�is aware of the user's statistics. However, this is due to the applica-
tion making requests to the Fitbit Web API. Once authenticated, this API can
be used to retrieve user information from the server in JSON format. The Fit-
bit smartphone application periodically synchronizes its display via the Fitbit
Web API, allowing the user to see the latest information that was uploaded by
the most recent tracker megadump. A plain-text example of this is shown in
Fig. 4. Note that the Fitbit Web API separates data by type, such that not all
information transmitted within one megadump is contained within one JSON
response. From the megadump a total distance of 522 720mm can be extracted,
which equals to the 0.52 km from the JSON.

We use this information to reverse engineer and validate the megadump
packet format, and have identi�ed that each megadump is split into the following
sections: a header, one or more data sections, and a footer. These sections start
with a section start sequence of bytes: c0 cd db dc; and end with a section

terminator byte: c0. If the byte c0 is required to be used within a data section,
it is escaped in a manner similar to RFC 1055.5

Message Header The megadump header is very similar to the microdump
header, but contains a few di�erences. Fig. 5 shows how this header is structured.

5 A Non-standard for transmission of IP Data-grams over Serial Lines: SLIP

8 H. Fereidooni et al.

Date, start
of 1st record
subsection.

Date, start
of 2nd record
subsection.

Fig. 4: Megadump frame in plain-text format as transmitted to the Fitbit server
(main window) and the human-readable JSON status response by the Fitbit
Web API (top right).

Data Sections Following the header are one or more data sections. Each
data section contains various statistics in a particular format, and may even
be blank. As previously mentioned, each data sections start with c0 cd db dc,
and are terminated by a single c0 character. Therefore, the data sections are of
variable length. From the packets we have analyzed, it has been observed that
there are typically four data sections, which all appear in the following order,
and have the following format:

(1) Daily Summary: The �rst data section contains activity information
across a number of di�erent absolute timestamps. This section contains a series
of �xed-length records that begin with a little-endian timestamp, and end with
a section terminator byte (c0).

Breaking Fitness Records without Moving 9

28 02 00 00 00 00 00 00 00 00
be 33 18 30 14 07
07 40 07 40
fe 03 00 00 00 00 00 00 00 00 14 14
73 10 14 60
00 00 00 00
d7 02 bb 04
f1 2c 52 09 1b 17 00 00 00 00 00 00 00 ff 48 00
20 20 20 20 20 20 20 20 20 20 48 45 4c 4c 4f 20 20 20 20 20
48 4f 57 44 59 20 20 20 20 20 57 4f 4f 54 21 20 20 20 20 20
29 00 00 00 00 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 04 00 c0 db dc dd

Message Type Device Type Encrypted Packet?

Sequence Number
Firmware

Version

Charge (mV)

Walking
Stide (mm)

Running
Stide (mm)

Charge (%)

Greetings/
Cheering

Delimiter

Fig. 5: Megadump Header Structure

c0 db dc dd
58 aa be 20
81
00 00 00 ff
00 01 00 ff
00 02 00 ff
00 03 00 ff
 ...
00 59 00 c0

Timestamp
Records

Start

Step count

Record
Terminators

Section
Terminator

Step Count
Records

Fig. 6: Per-minute Summary

(2) Per-minute Summary: The next data section is a per-minute summary,
comprising a series of records that indicate user activity on a per-minute gran-
ularity. The structure of this data section is shown in Fig. 6.

The section begins with a timestamp (unlike other timestamps, this �eld is
big-endian), which acts as the base time for this sequence of step counts. Each
step count record is then an increment of a time period (typically two minutes),
from this base time. Following the timestamp is a byte indicating the start of
the step count records. The full meaning of this byte is unclear, but we believe
it indicates the time period between each step count record. Following this, a
series of records consisting of four bytes state the number of steps taken per-
time period. The second byte indicates the number of steps taken, and the fourth
byte is either ff to indicate another record follows, or c0 (for the last record) to
terminate the data section.

(3) Overall Summary: This data section contains a summary of the previous
records, although as will be demonstrated later it is not validated against �per-
minute� or �per-day� data. The format of this section is shown in Fig. 7.

This section starts with a timestamp, indicating the base time for this sum-
mary data. Following this timestamp is a 16-bit value that holds the number of
calories burned. Following on from this is a 32-bit value containing the number of

10 H. Fereidooni et al.

30 56 7b 58 64 00 10 27 00 00 80 96 98 00 00 00 00 00 00 00 c0

Section
Terminator

Active
minutes

Floors

ElevationDistance (mm)

Total No. Steps

Calories

Timestamp

c0 cd db dc

Fig. 7: Megadump Summary Fields

63 f0 00 00 00 00 00 00 b5 01 00

Payload Length

Checksum

Fig. 8: Megadump Footer Fields

steps taken, and a 32-bit value containing the distance travelled in millimeters.
Finally, the summary ends with elevation, �oors climbed and active minutes�all
16-bit values.

(4) Alarms: The �nal data section contains information about what alarms
are currently set on the tracker, and is typically empty unless the user has
instructed the tracker to create an alarm.

Message Footer The megadump footer contains a checksum and the size
of the payload, as shown in Fig. 8.

4 Protocol-based Remote Spoo�ng

This section shows that the construction of a megadump packet containing fake
information and the subsequent transmission to the Fitbit server is a viable
approach for inserting fake step data into a user's exercise pro�le. This attack
does not actually require the possession of a physical tracker, but merely a known
tracker ID to be associated with the user's Fitbit account. This means that one
can fabricate fake data for any known and actively used tracker having a �rmware
version susceptible to this vulnerability. In order to construct a forged packet,
however, the format of the message must be decoded and analyzed to determine
the �elds that must be populated.

4.1 Submission of Fake Data

The Fitbit server has an HTTPS endpoint that accepts raw messages from track-
ers, wrapped in an XML description. The raw message from the tracker is Base64
encoded, and contains various �elds that describe the tracker's activity over a
period of time.

The raw messages of the studied trackers may or may not be encrypted,
but the remote server will accept either. Even though the encryption key for a
particular tracker is unknown, it is possible to construct an unencrypted frame

Breaking Fitness Records without Moving 11

(a) Before submission (b) After submission

Fig. 9: The result of replaying data from another Fitbit tracker to a di�erent
tracker ID. Fig. 9a shows the Fitbit user activity screen before the replay attack,
and Fig. 9b shows the results after the message is formed by changing the tracker
ID, and submitted to the server.

and submit it to the server for processing, associating it with an arbitrary tracker
ID. Provided that all of the �elds in the payload are valid and the checksum is
correct, the remote server will accept the payload and update the activity log
accordingly. In order to form such a message, the raw Fitbit frame must be
Base64 encoded and placed within an XML wrapper as shown in Listing 1.1:

Listing 1.1: Fitbit frame within an XML wrapper

1 <?xml version=" 1 .0 "?>
2 <ga l i l e o−c l i e n t version=" 2 .0 ">
3 <c l i e n t−i n f o>
4 <c l i e n t−id>
5 6de4df71−17f9−43ea−9854−67 f842021e05
6 </ c l i e n t−id>
7 <c l i e n t−version>1 . 0 . 0 . 2 2 9 2</ c l i e n t−version>
8 <c l i e n t−mode>sync</ c l i e n t−mode>
9 <dongle−version major="2" minor="5" />

10 </ c l i e n t−i n f o>
11 <tracke r t racker−id="F0609A12B0C0">
12 <data>∗∗∗ BASE64 PACKET DATA ∗∗∗</data>
13 </ t ra cke r>
14 </ ga l i l e o−c l i e n t>

The fabricated frame can be stored in a �le, e.g. payload, and then submit-
ted with the help of an HTTP POST request to the remote server as shown in
Listing 1.2, after which the server will respond with a con�rmation message.

Listing 1.2: Submitting fake payload to the server

1 $ cu r l − i −X POST https :// c l i e n t . f i t b i t . com/ t ra cke r / c l i e n t /message \
2 −H "Content−Type : t ext /xml" \
3 −−data−binary @payload

12 H. Fereidooni et al.

Impersonation Attack: In order to test the susceptibility of the server to
this attack, a frame from a particular tracker was captured and re-submitted to
the server with a di�erent tracker ID. The di�erent tracker ID was associated
with a di�erent Fitbit user account. The remote server accepted the payload,
and updated the Fitbit user pro�le in question with identical information as for
the genuine pro�le, con�rming that simply altering the tracker ID in the sub-
mission message allowed arbitrary unencrypted payloads to be accepted. Fig. 9
shows the Fitbit user activity logs before and after performing the impersonation
attack. The fact that we are able to inject a data report associated to any of
the studied trackers' IDs reveals both a severe DoS risk and the potential for
a paid rogue service that would manipulate records on demand. Speci�cally, an
attacker could arbitrarily modify the activity records of random users, or manip-
ulate the data recorded by the device of a target victim, as tracker IDs are listed
on the packaging. Likewise, a sel�sh user may pay for a service that exploits this
vulnerability to manipulate activity records on demand, and subsequently gain
rewards.

(a) Before submission (b) After submission

Fig. 10: Fig. 10a shows the Fitbit user activity screen before fake data were
submitted, and Fig. 10b shows the screen after the attack. In this example,
10000 steps and 10 km were injected for the date of Sunday, January 15th, 2017
by fabricating a message containing the data shown in Tbl. 1.

Fabrication of Activity Data: Using the information gained during the
protocol analysis phase (see Sec. 3), we constructed a message containing a frame
with fake activity data and submitted it to the server, as discussed above. To
do this, the payload of a genuine message was used as a skeleton, and each data
section within the payload was cleared by removing all data bytes between the
delimiters. Then, the summary section was populated with fake data. Using only
the summary section was enough to update the Fitbit user pro�le with fabricated
step count and distance traveled information. The format of the summary section
is shown in Tbl. 1, along with the fake data used to form the fabricated message.

Fig. 10 again shows a before and after view of the Fitbit user activity screen,
when the fake message is submitted. In this example, the packet is constructed

Breaking Fitness Records without Moving 13

Table 1: Data inserted into the packet summary section
Range Usage Value

00-03 Timestamp 30 56 7b 58 15/01/17
04-05 Calories 64 00 100
06-09 Number of Steps 10 27 00 00 10000
0A-0D Distance in mm 80 96 98 00 10000000
0E-0F Elevation 00 00 00 00 0

so that 10000 steps and a distance traveled of 10 km were registered for the 15th
of January 2017. This attack indicates that it is possible to create an arbitrary
activity message and have the remote server accept it as a real update to the
user's activity log.

Exploitation of Remote Server for Field Deduction: A particular
problem with the unencrypted packets was that it was not apparent how the
value of the CRC �eld is calculated (unlike the CRC for encrypted packets).
However, if a message is sent to the server containing an invalid CRC, the server
responds with a message containing information on what the correct CRC should
be (see Listing 1.3).

Listing 1.3: Response from the Fitbit server when a payload with an invalid
checksum is submitted.

1 $ cu r l − i −X POST <target−u r l> −−data−binary @payload
2 <?xml version=" 1 .0 " encoding="UTF−8" standalone="yes "?>
3 <ga l i l e o−s e r v e r version=" 2 .0 ">
4 <er r o r>INVALID_DEVICE_DATA:com. f i t b i t . p ro to co l . s e r i a l i z e r .

DataProcess ingExcept ion : Pars ing f i e l d
5 [s i gna tu r e] o f the ob j e c t o f type CHECKSUM. IO e r r o r −> ; Remote

checksum [2246 | 0 x8c6] and l o c a l
6 checksum [60441 | 0 xec19] do not match .</ e r r o r>
7 </ ga l i l e o−s e r v e r>

This information can be used to reconstruct the packet with a valid CRC.
Such an exploit must be used sparingly, however, as the remote server will refuse
to process further messages if an error threshold is met, until a lengthy timeout
(on the order of hours) expires.

5 Hardware-Based Local Spoo�ng

We now demonstrate the feasibility of hardware-based spoo�ng attacks focusing
on Fitbit Flex and Fitbit One devices. We �rst conducted an analysis of the
Fitbit protocol as previously described in Sec. 3. However, since the newest
�rmware (Fitbit 7.81) uses end-to-end encryption with a device-speci�c key, the
data cannot be manipulated using MITM attacks, as described in the previous
section. Therefore, we resort to a physical attack on the tracker's hardware. We
reverse engineered the hardware layout of the devices to gain memory access,
which enabled us to inject arbitrary stepcount values into memory, which the
tracker would send as valid encrypted frames to the server.

14 H. Fereidooni et al.

5.1 Device Tear-Down

In order to understand how to perform the hardware attack, we needed to tear
down the devices. In the following section, we give an overview of the tools
required for this process.

Tools: The tools to perform the hardware attack were relatively inexpensive
and easy to purchase. To accomplish the attack, we used (i) a digital multimeter,
(ii) a soldering iron, thin gauge wire, �ux (iii) tweezers, (iv) a soldering heat
gun, (v) the ST-LINK/v2 in circuit debugger/programmer, and (vi) the STM32
ST-LINK utility.

The digital multimeter was used to locate the testing pins associated with
the debug interface of the microcontroller. However, attackers performing the
attack would not require a multimeter, as long as the layout of the testing pins
is known. The soldering heat gun and tweezers were utilized to perform the
mechanical tear-down of the device casing. The soldering iron and accessories
were used to solder wires to the identi�ed testing pins. We used the ST-LINK/v2
and STM32 ST-LINK utilities to connect to the device in order to obtain access
to the device's memory.

Costs: The required tools for performing the hardware attack are relatively
cheap. The STLINK/v2 is a small debugger/programmer that connects to the
PC using a common mini-USB lead and costs around $15. The corresponding
STM32 ST-LINK utility is a full-featured software interface for programming
STM32 microcontrollers, using a mini-USB lead. This is free Windows software
and that can be downloaded from ST6. General-purpose tools (e.g. hair dryer)
can be employed to tear-down the casing. Therefore the total costs make the
attack accessible to anyone who can a�ord a �tness tracker. We argue that
hardware modi�cations could also be performed by a third party in exchange of
a small fee, when the end user lacks the skills and/or tools to exploit hardware
weaknesses in order to obtain �nancial gains.

Tear-Down Findings: According to our tear-down of the Fitbit trackers
(Fitbit Flex and Fitbit One), as shown in Fig. 11, the main chip on the moth-
erboard is an ARM Cortex-M3 processor. This processor is an ultra-low-power
32-bit MCU, with di�erent memory banks such as 256KB �ash, 32KB SRAM
and 8KB EEPROM. The chip used for Fitbit Flex is STM32L151UC WLCSP63

and for Fitbit One STM32L152VC UFBGA100. The package technology used in
both micro-controllers is ball grid array (BGA) which is a surface-mount package
with no leads and a grid array of solder balls underneath the integrated circuit.
Since the required speci�cations of the micro-controller used in Fitbit trackers
are freely available, we were able to perform hardware reverse-engineering (RE).

5.2 Hardware RE to Hunt Debug Ports

We discovered a number of testing points at the back of the device's main board.
Our main goal was to identify the testing points connected to debug interfaces.

6 http://www.st.com/en/embedded-software/stsw-link004.html

http://www.st.com/en/embedded-software/stsw-link004.html

Breaking Fitness Records without Moving 15

According to the IC's datasheet, there are two debug interfaces available for
STM32L: (i) serial wire debug (SWD) and (ii) joint test action group (JTAG).

ST-LINK/V2 SWD Pins Description

Pin 1 Vcc Target board Vcc

Pin 7 SWDIO The SWD Data Signal

Pin 8 GND Ground

Pin 9 SWCLK The SWD Clock Signal

Pin 15 RESET System Reset

Fig. 12: Connecting the tracker to the debugger.

We found that the Fitbit trackers were using the SWD interface. However,
the SWD pins were obfuscated by placing them among several other testing
points without the silkscreen identifying them as testing points. SWD technology
provides a 2-pin debug port, a low pin count and high-performance alternative to
JTAG. The SWD replaces the JTAG port with a clock and single bidirectional
data pin, providing test functionality and real-time access to system memory.
We selected a straightforward approach to �nd the debug ports (other tools that
can be exploited include Arduino+JTAGEnum and Jtagulator). We removed
the micro-controller from the device printed circuit boards (PCBs). Afterward,
using the IC's datasheet and a multimeter with continuity tester functionality,
we traced the debug ports on the device board, identifying the testing points
connected to them.

Fig. 11: Fitbit tear-down and connecting Fitbit micro-controller to the debugger.

16 H. Fereidooni et al.

5.3 Connecting Devices to the Debugger

After discovering the SWD debug pins and their location on the PCB, we sol-
dered wires to the debug pins. We connected the debug ports to ST-LINK v2
pin header, according to Fig. 12.

Dumping the Firmware: After connecting to the device micro-controller,
we were able to communicate with MCU as shown in Fig. 11. We extracted
the entire �rmware image since memory readout protection was not activated.
There are three levels of memory protection in the STM32L micro-controller:
(i) level 0: no readout protection, (ii) level 1: memory readout protection, the
Flash memory cannot be read from or written to, and (iii) level 2: chip readout

protection, debug features and boot in RAM selection are disabled (JTAG fuse).
We discovered that in the Fitbit Flex and the Fitbit One, memory protection
was set to level 0, which means there is no memory readout protection. This
enabled us to extract the contents of the di�erent memory banks (e.g., FLASH,
SRAM, ROM, EEPROM) for further analysis.

Note that it is also possible to extract the complete �rmware via the MITM
setup during an upgrade process (if the tracker �rmware does not use encryp-
tion). In general, sni�ng is easier to perform, but does not reveal the memory
layout and temporal storage contents. Moreover, hardware access allows us to
change memory contents at runtime.

Device Key Extraction: We initially sni�ed communications between the
Fitbit tracker and the Fitbit server to see whether a key exchange protocol is
performed, which was not the case. Therefore, we expected pre-shared keys on
the Fitbit trackers we connected to, including two di�erent Fitbit One and three
di�erent Fitbit Flex devices. We read out their EEPROM and discovered that
the device encryption key is stored in their EEPROM. Exploring the memory
content, we found the exact memory addresses where the 6-byte serial ID and
16-byte encryption key are stored, as shown in Fig. 13. We con�rm that each
device has a device-speci�c key which likely is programmed into the device during
manufacturing [12].

Disabling the Device Encryption: By analyzing the device memory
content, we discovered that by �ipping one byte at a particular address in EEP-
ROM, we were able to force the tracker to operate in unencrypted mode and
disable the encryption. Even trackers previously communicating in encrypted
mode switched to plaintext after modifying the encryption �ag (byte). Fig. 13
illustrates how to �ip the byte, such that the the tracker sends all sync messages
in plaintext format (Base64 encoded) disabling encryption.

Injecting Fabricated Data Activities: We investigated the EEPROM
and SRAM content to �nd the exact memory addresses where the total step
count and other data �elds are stored. Based on our packet format knowledge and
previously sni�ed megadumps, we found that the activity records were stored in
the EEPROM in the same format. Even encrypted frames are generated based
on the EEPROM plaintext records. Therefore, oblivious falsi�ed data can be
injected, even with the newest �rmware having encryption enabled. As it can be
seen in Fig. 14a and Fig. 14b, we managed to successfully inject 0X00FFFFFF steps

Breaking Fitness Records without Moving 17

Fig. 13: Device key extraction and disabling encryption.

equal to 16 777 215 in decimal into Fitbit server by modifying the corresponding
address �eld in the EEPROM and subsequently synchronising the tracker with
the server.

6 Discussion

In this section we give a set of implementation guidelines for �tness trackers.
While Fitbit is currently the only manufacturer that puts e�ort into securing
trackers [15], our guidelines also apply to other health-related IoT devices. We
intend to transfer the lessons learned into open security and privacy standards
that are being developed.7

False data injection as described in the previous sections is made possible
by a combination of some of the design choices in the implementation of the
Fitbit trackers and in the communication protocol utilized between the track-
ers and Fitbit application servers. These design choices relate to how encryption
techniques have been applied, the design of the protocol messages, and the imple-
mentation of the hardware itself. To overcome such weaknesses in future system
designs, we propose the following mitigation techniques.

Application of encryption techniques: The examined trackers support
full end-to-end encryption, but do not enforce its use consistently.8 This allows
us to perform an in-depth analysis of the data synchronization protocol and
ultimately fabricate messages with false activity data, which were accepted as
genuine by the Fitbit servers.

Suggestion 1

End-to-end encryption between trackers and remote servers should be consistently

enforced, if supported by device �rmware.

7 See https://www.thedigitalstandard.org
8 During discussions we had with Fitbit, the company stressed that models launched
after 2015 consistently enforce encryption in the communications between the tracker
and server.

18 H. Fereidooni et al.

(a) Fitbit app (b) Fitbit web interface

Fig. 14: The results of injecting fabricated data. Fig. 14a shows the Fitbit app
screenshot, and Fig. 14b demonstrates the Fitbit web interface.

Protocol message design: Generating valid protocol messages (without
a clear understanding of the CRC in use) is enabled by the fact that the server
responds to invalid messages with information about the expected CRC values,
instead of a simple �invalid CRC�, or a more general �invalid message� response.

Suggestion 2

Error and status noti�cations should not include additional information related

to the contents of actual protocol messages.

CRCs do not protect against message forgery, once the scheme is known. For
authentication, there is already a scheme in place to generate subkeys from the
device key [12]. Such a key could also be used for message protection.

Suggestion 3

Messages should be signed with an individual signature subkey which is derived

from the device key.

Hardware implementation: The microcontroller hardware used by both
analyzed trackers provides memory readout protection mechanisms, but were not
enabled in the analyzed devices. This opens an attack vector for gaining access to
tracker memory and allows us to circumvent even the relatively robust protection
provided by end-to-end message encryption as we were able to modify activity
data directly in the tracker memory. Since reproducing such hardware attacks
given the necessary background information is not particularly expensive, the
available hardware-supported memory protection measures should be applied
by default.

Suggestion 4

Hardware-supported memory readout protection should be applied.

Speci�cally, on the MCUs of the investigated tracking devices, the memory of
the hardware should be protected by enabling chip readout protection level 2.

Breaking Fitness Records without Moving 19

Fraud detection measures: In our experiments we were able to inject
fabricated activity data with clearly unreasonably high performance values (e.g.
more than 16 million steps during a single day). This suggests that data should
be monitored more closely by the servers before accepting activity updates.

Suggestion 5

Fraud detection measures should be applied in order to screen for data resulting

from malicious modi�cations or malfunctioning hardware.

For example, accounts with unusual or abnormal activity pro�les should be
�agged and potentially disquali�ed, if obvious irregularities are detected.

7 Related Work

Researchers at the University of Toronto [18] have investigated transmission
security, data integrity, and Bluetooth privacy of eight �tness trackers including
Fitbit Charge HR. They focused on transmission security, speci�cally at whether
or not personal data is encrypted when transmitted over the Internet in order
to protect con�dentiality. They also examined data integrity concentrating on
whether or not �tness data can be considered authentic records of activity that
have not been tampered with. They did not attempt to reverse engineer the
proprietary encoding or encryption used for transmitting data.

In 2013, Rahman et al. [9] studied the communication between Fitbit Ul-
tra and its base station as well as the associated web servers. According to
Rahman et al., Fitbit users could readily upload sensor data from their Fitbit
device onto the web server, which could then be viewed by others online. They
observed two critical vulnerabilities in the communication between the Fitbit
device's base station, and the web server. They claimed that these vulnerabil-
ities could be used to violate the security and privacy of the user. Speci�cally,
the identi�ed vulnerabilities consisted of the use of plaintext login information
and plaintext HTTP data processing. Rahman et al. then proposed FitLock as a
solution to the identi�ed vulnerabilities. These vulnerabilities have been patched
by Fitbit and no longer exist on contemporary Fitbit devices. Zhou et al. [20]
followed up on Rahman's work by identifying shortcomings in their proposed
approach named FitLock, but did not mention countermeasures to mitigate the
vulnerabilities that they found. In 2014, Rahman et al. published another pa-
per detailing weaknesses in Fitbit's communication protocol, enabling them to
inject falsi�ed data to both the remote web server and the �tness tracker. The
authors proposed SensCrypt, a protocol for securing and managing low power
�tness trackers [21]. Note that Fitbit's communication paradigm has changed
considerably since Fitbit Ultra, which uses ANT instead of Bluetooth, and is
not supported by smartphone applications, but only by a Windows program last
updated in 2013. Neither the ANT-based �rewalls FitLock nor SensCrypt would
work on recent Fitbit devices. Transferring their concept to a Bluetooth-based
�rewall would not help against the attacks demonstrated in this paper, since

20 H. Fereidooni et al.

hardware attacks are one level below such �rewalls, while our protocol attacks
directly target the Fitbit servers.

Cyr et al. [10] analyzed the Fitbit Flex ecosystem. They attempted to do a
hardware analysis of the Fitbit device but because of the di�culties associated
with debugging the device they decided to focus on other parts such as Bluetooth
LE, the associated Android app and network analysis. The authors explained the
data collected by Fitbit from its users, the data Fitbit provided to Fitbit users,
and methods of recovering data not made available to device owners.

In the report released by AV TEST [19], the authors tested nine �tness
trackers including Fitbit Charge and evaluated their security and privacy. The
authors tried to �nd out how easy it is to get the �tness data from the �tness
band through Bluetooth or by sni�ng the connection to the cloud during the
synchronization process.

AV TEST reported some security issues in Fitbit Charge [11]. They dis-
covered that Fitbit Charge with �rmware version 106 and lower allows non-
authenticated smartphones to be treated as authenticated if an authenticated
smartphone is in range or has been in range recently. Also, the �rmware version
allowed attackers to replay the tracker synchronization process. Both issues have
been now �xed by Fitbit.

In [12], the authors captured the �rmware image of the Fitbit Charge HR
during a �rmware update. They reversed engineer the cryptographic primitives
used by the Fitbit Charge HR activity tracker and recovered the authentication
protocol. Moreover, they obtained the cryptographic key that is used in the au-
thentication protocol from the Fitbit Android application. The authors found
a backdoor in previous �rmware versions and exploiting this backdoor they ex-
tracted the device speci�c encryption key from the memory of the tracker using
Bluetooth interface. Memory readout has been �xed in recent �rmware versions.

Principled understanding of the Fitbit protocol remains open to investigation
as the open-source community continues to reverse-engineer message semantics
and server responses [16].

8 Conclusion

Trusting the authenticity and integrity of the data that �tness trackers generate
is paramount, as the records they collect are being increasingly utilized as evi-
dence in critical scenarios such as court trials and the adjustment of healthcare
insurance premiums. In this paper, we conducted an in-depth security analysis of
two models of popular activity trackers commercialized by Fitbit, the market
leader, and we revealed serious security and privacy vulnerabilities present in
these devices. Additionally, we reverse engineered the primitives governing the
communication between these devices and cloud-based services, implemented an
open-source tool to extract sensitive personal information in human-readable for-
mat and demonstrated that malicious users could inject spoofed activity records
to obtain personal bene�ts. To circumvent the end-to-end protocol encryption
mechanism present on the latest �rmware, we performed hardware-based RE and

Breaking Fitness Records without Moving 21

documented successful injection of falsi�ed data that appears legitimate to the
Fitbit cloud. We believe more rigorous security controls should be enforced by
manufacturers to verify the authenticity of �tness data. To this end, we provided
a set of guidelines to be followed to address the vulnerabilities identi�ed.

Acknowledgments

Hossein Fereidooni is supported by the Deutsche Akademische Austauschdienst
(DAAD). Mauro Conti is supported by the EU TagItSmart! Project (agree-
ment H2020-ICT30-2015-688061) and IT-CNR/Taiwan-MOST 2016-17 �Veri�-
able Data Structure Streaming". This work has been co-funded by the DFG
as part of projects S1 and S2 within the CRC 1119 CROSSING, and by the
BMBF within CRISP. Paul Patras has been partially supported by the Scottish
Informatics and Computer Science Alliance (SICSA) through a PECE grant.

We thank the Fitbit Security Team for their professional collaboration with
us, and their availability to discuss our �ndings and address the vulnerabilities
we identi�ed.

References

1. Forbes. Wearable tech market to be worth $34 billion by 2020.
https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-
be-worth-34-billion-by-2020, February 2016.

2. International Data Corporation. Worldwide quarterly wearable device tracker.
https://www.idc.com/tracker/showproductinfo.jsp?prod_id=962, March 2017.

3. Mashable. Husband learns wife is pregnant from her Fitbit data. http://mashable.
com/2016/02/10/�tbit-pregnant/, Feb. 2016.

4. The Wall Street Journal. Prosecutors say Fitbit device exposed �bbing in
rape case. http://blogs.wsj.com/law/2016/04/21/prosecutors-say-�tbit-device-
exposed-�bbing-in-rape-case/, April 2016.

5. The Guardian. Court sets legal precedent with evidence from Fitbit health
tracker. https://www.theguardian.com/technology/2014/nov/18/court-accepts-
data-�tbit-health-tracker, November 2014.

6. VitalityHealth. https://www.vitality.co.uk/rewards/partners/activity-tracking/.
7. AchieveMint. https://www.achievemint.com.
8. StepBet. https://www.stepbet.com/.
9. Mahmudur Rahman, Bogdan Carbunar, and Madhusudan Banik. Fit and Vul-

nerable: Attacks and Defenses for a Health Monitoring Device. In Proc. Privacy
Enhancing Technologies Symposium (PETS), Bloomington, IN, USA, July 2013.

10. Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter. Security Analysis of
Wearable Fitness Devices (Fitbit). https://courses.csail.mit.edu/6.857/2014/�les/
17-cyrbritt-webbhorn-specter-dmiao-hacking-�tbit.pdf, 2014.

11. Eric Clausing, Michael Schiefer, and Maik Morgenstern. AV TEST Analysis of Fit-
bit Vulnerabilities. Available at: https://www.av-test.org/�leadmin/pdf/avtest_
2016-04_�tbit_vulnerabilities.pdf, 2016.

12. Maarten Schellevis, Bart Jacobs, , and Carlo Meijer. Security/privacy of wearable
�tness tracking IoT devices. Radboud University. Bachelor thesis: Getting access
to your own Fitbit data., August 2016.

https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-be-worth-34-billion-by-2020
https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-be-worth-34-billion-by-2020
https://www.idc.com/tracker/showproductinfo.jsp?prod_id=962
http://mashable.com/2016/02/10/fitbit-pregnant/
http://mashable.com/2016/02/10/fitbit-pregnant/
http://blogs.wsj.com/law/2016/04/21/prosecutors-say-fitbit-device-exposed-fibbing-in-rape-case/
http://blogs.wsj.com/law/2016/04/21/prosecutors-say-fitbit-device-exposed-fibbing-in-rape-case/
https://www.theguardian.com/technology/2014/nov/18/court-accepts-data-fitbit-health-tracker
https://www.theguardian.com/technology/2014/nov/18/court-accepts-data-fitbit-health-tracker
https://www.vitality.co.uk/rewards/partners/activity-tracking/
https://www.achievemint.com
https://www.stepbet.com/
https://courses.csail.mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf
https://courses.csail.mit.edu/6.857/2014/files/17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf
https://www.av-test.org/fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf
https://www.av-test.org/fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf

22 H. Fereidooni et al.

13. Accenture. Digital trust in the IoT era, 2015.
14. PwC 2016. Use of wearables in the workplace is halted by lack of trust. http:

//www.pwc.co.uk/who-we-are/regional-sites/northern-ireland/press-releases/
use-of-wearables-in-the-workplace-is-halted-by-lack-of-trust-pwc-research.html.

15. Hossein Fereidooni, Tommaso Frassetto, Markus Miettinen, Ahmad-Reza Sadeghi,
and Mauro Conti. Fitness Trackers: Fit for Health but Un�t for Security and
Privacy. In Proc. IEEE International Workshop on Safe, Energy-Aware, & Reli-
able Connected Health (CHASE workshop: SEARCH 2017), in press, Philadelphia,
Pennsylvania, USA, July 17-19, 2017.

16. Galileo project. https://bitbucket.org/benallard/galileo/.
17. Wireshark network protocol analyzer. https://www.wireshark.org/.
18. Andrew Hilts, Christopher Parsons, and Jerey Knockel. Every Step You Fake:

A Comparative Analysis of Fitness Tracker Privacy and Security. Open E�ect
Report. https://opene�ect.ca/reports/Every_Step_You_Fake.pdf, 2016.

19. Eric Clausing, Michael Schiefer, and Maik Morgenstern. Internet of Things: Secu-
rity Evaluation of nine Fitness Trackers. AV TEST, The Independent IT-Security
institue, Magdeburg, Germany, June 2015.

20. W. Zhou and S. Piramuthu. Security/privacy of wearable �tness tracking IoT
devices. IEEE Iberian Conference on Information Systems and Technologies, 2014.

21. Mahmudur Rahman, Bogdan Carbunar, and Umut Topkara. Secure Management
of Low Power Fitness Trackers. Published in IEEE Transactions on Mobile Com-
puting, Volume 15 Issue 2, Pages 447-459, February 2016.

http://www.pwc.co.uk/who-we-are/regional-sites/northern-ireland/press-releases/use-of-wearables-in-the-workplace-is-halted-by-lack-of-trust-pwc-research.html
http://www.pwc.co.uk/who-we-are/regional-sites/northern-ireland/press-releases/use-of-wearables-in-the-workplace-is-halted-by-lack-of-trust-pwc-research.html
http://www.pwc.co.uk/who-we-are/regional-sites/northern-ireland/press-releases/use-of-wearables-in-the-workplace-is-halted-by-lack-of-trust-pwc-research.html
https://bitbucket.org/benallard/galileo/
https://www.wireshark.org/
https://openeffect.ca/reports/Every_Step_You_Fake.pdf

	Breaking Fitness Records without Moving: Reverse Engineering and Spoofing Fitbit

