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Abstract—The uptake of digital services and IoT technology
gives rise to increasingly diverse cyber attacks, with which
commonly-used rule-based Network Intrusion Detection Systems
(NIDSs) struggle to cope. Therefore, Artificial Intelligence (AI)
supports a second line of defense, since this methodology helps
in extracting non-obvious patterns from network traffic and
subsequently in detecting more confidently new types of threats.
Cybersecurity is however an arms race and intelligent solutions
face renewed challenges as attacks evolve while network traffic
volumes surge. We propose Adaptive Clustering-based Intrusion
Detection (ACID), a novel approach to malicious traffic classi-
fication and a valid candidate for deployment at the network
edge. ACID addresses the critical challenge of sensitivity to subtle
changes in traffic features, which routinely leads to misclassifica-
tion. We circumvent this problem by relying on low-dimensional
embeddings learned with a lightweight neural model comprising
multiple kernel networks that we introduce, which optimally
separates samples of different classes. Extensive experiments
with datasets spanning 20 years demonstrate ACID attains 100%
accuracy and F1-score, and 0% false alarm rate, significantly
outperforming state-of-the-art clustering methods and NIDSs.
Furthermore, our results show that ACID offers a high degree of
robustness to input perturbations, while intrinsically providing a
framework for continual learning.

Index Terms—network intrusion detection; kernel-based clus-
tering; deep learning; continual learning

I. INTRODUCTION

The adoption of Internet of Things (IoT) devices and cloud-
based services continues to grow sharply [2], leading to a
pressing need for robust and efficient defense mechanisms to
safeguard the networking infrastructure and users’ private data.
This is particularly critical as attackers continue to discover
new system/software vulnerabilities on a daily basis [3]. As
a result, cybercrime costed businesses and individuals in the
United States alone $3.5 billion in 2019 [4]. Meanwhile,
traditional security measures such as firewalls, anti-viruses,
and rule-based Network Intrusion Detection Systems (NIDSs)
are unable to keep up with the most recent and sophisticated
attacks that exploit loopholes to bypass the perimeter defenses
set by these measures [5]. In particular, widely-deployed
NIDSs, including Snort [6], Zeek [7], or Suricata [8] present
a number of disadvantages. Namely, they (i) require frequent
updates of signature databases; (ii) exhibit high false alarm
rates when classifying traffic with evolving behavior; and
(iii) depend on considerable levels of human expert interven-
tion for system tuning and manual decision making.

A preliminary version of this paper was published at IEEE Conference on
Computer Communications 2021 (INFOCOM’21) [1].
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In this context, Artificial Intelligence (AI)- and Machine
Learning (ML)-based techniques such as Artificial Neural
Networks, Clustering, and Ensemble Learning are increasingly
appealing for building automatic network threat or anomaly
detection systems [9], [10]. This is largely due to the unique
ability of neural models to discover hidden patterns in vast
amounts of data, which helps boosting classification accuracy,
as already demonstrated in several research areas including
speech recognition [11], computer vision [12], and wireless
and mobile networking [13].

However, despite the rapid progress of AI-based approaches
to Network Intrusion Detection (NID), existing solutions (e.g.,
[14]–[16]) remain extremely sensitive to small changes in
individual features of network traffic flows, which dilutes their
effectiveness in the face of continuous software updates and
evolving traffic landscapes, as we reveal. Specifically, since
these techniques learn from features of individual samples,
training them on small subsets of carefully crafted features,
unwittingly mislabelled samples, or unbalanced datasets neg-
atively impacts on their generalization abilities, thereby ren-
dering the detection of new malicious network activity very
difficult. Additionally, current NIDSs introduce application
latency due to their complexity, while their architectures are
usually fixed, thus requiring retraining for every new task.

To tackle these problem, in this paper, we propose ACID,
a classifier-agnostic and highly-effective Adaptive Clustering-
based Intrusion Detection system. Our design incorporates an
original multi-kernel based neural network that enables our
NIDS to generalize well, regardless of any small changes in-
curred by small groups of packets or the unbalanced nature of
the training dataset. We achieve this by means of a clustering
algorithm that learns low-dimensional embeddings from linear
and non-linear combinations of network flow features, which
makes it possible to unambiguously separate these flows. By
combining the cluster centers learned through our clustering
network with statistical and semantic features extracted from
packet sequences, and feeding the resulting feature vectors to a
classifier, we effectively improve the detection performance of
the NIDS while minimizing the false alarm rate. In light of the
practical challenges faced by current NIDS solutions, there is
a growing demand for advanced defense mechanisms that can
adapt to the evolving threat landscape. Addressing issues such
as dealing with increasing volume and complexity of network
traffic, designing efficient and adaptive algorithms, detecting
threats with minimal human intervention, and guaranteeing
reduced false alarm rates is therefore crucial for ensuring
the effective deployment and operation of NIDS. To this
end, our proposed solution provides a reliable and efficient
framework for building defenses against emerging threats in
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the digital domain. In a nutshell, our key contributions can
be summarized as follows:

[C1] We introduce a novel supervised Adaptive Clustering
(AC) technique to learn cluster centers that can be
used to expand the features of a given dataset. This
approach improves the robustness against outliers and
the generalization abilities of any classification model.
The solution is generally applicable to classification
tasks in any domain, but is particularly useful for NID.

[C2] We study the ability of our approach to discover low-
dimensional representations that can simplify separating
a dataset into distinct classes, and show that our algo-
rithm quickly self-adapts to complex, intertwined, and
evolving structures, such as non-linearly separable data
in multi-dimensional spaces, e.g., network traffic flows.

[C3] Building on our clustering approach, we design a NIDS
that extracts a range of features from raw packets,
extends these with the learned cluster centers, and feeds
them to a classifier of choice to achieve binary and
multi-label classification with high reliability.

[C4] To demonstrate the effectiveness of our solution, we
evaluate ACID on three different network traffic datasets
containing illicit flows that encompass 40 attack types
spanning 20 years (i.e., KDD Cup’99 [17], ISCX-IDS
2012 [18], and CSE-CIC-IDS 2018 [19]) and reveal
it consistently achieves F1-scores of 100.0%, thereby
outperforming existing NID approaches by up to 47%.

[C5] We assess the complexity of our approach in terms of
computational requirements and runtime, and show that
our model only requires 80ms per inference instance,
making the case for ACID as a fast and lightweight
candidate for deployment on constrained edge devices.

[C6] We study the behaviour of our proposed framework
under challenging scenarios often encountered during
practical deployments of NIDS, and confirm its robust-
ness against various degrees of random perturbations.

[C7] We address challenges of model resilience and adapt-
ability in the context of emerging and ever-evolving
nature of cyber threats, by showing that ACID inherently
supports continual learning tasks, ensuring effective and
up-to-date performance even as the nature of attacks and
the underlying data change over time.

To the best of our knowledge, ACID is the first Deep
Learning (DL)-based NIDS that exploits adaptive clustering to
minimize false alarm rates, it is robust to a range of malicious
traffic types, and it is amenable to prototyping on commodity
gateways for real-time threat detection at the network edge.

II. RELATED WORK

We briefly overview NID approaches related to our ACID
system, with a focus on deep learning and clustering based
approaches and their limitations. We also discuss the current
state of continual learning research, specifically from the
standpoint of model resilience and adaptability, and highlight
the shortcomings that our proposed solution aims to address.

A. Deep Learning-based Intrusion Detection

Most DL-based NIDSs attempt to match observed network
flows against previously learned patterns. Despite increasing
adoption, they produce unacceptably high false alarm rates for
relatively small gains in detection performance. This signifi-
cantly limits their applicability to real-life scenarios. Auto-
Encoders (AEs) can learn latent representations of features
and reduce their dimensionality in order to minimize memory
consumption, which motivates their use for anomalous traffic
detection [20]–[22]. Tan et al. apply Convolutional Neural
Networks (CNNs) to learn spatial representations of packets,
followed by image classification methods to identify malware
traffic [23]. Wang et al. combine CNNs and Long Short-
Term Memory (LSTM) structures to learn both spatial and
temporal correlations between features [24]. Despite the ef-
fectiveness of these techniques, they completely ignore time-
based statistical features that can be inferred from packets
and the semantic relationships within packet payloads. Min
et al. use these ignored attributes and apply Natural Language
Processing techniques to process packet payloads [25]. This
boosts detection performances, yet still presents several im-
portant weaknesses, including ignoring dataset imbalance and
exhibiting very high processing times when dealing with large
datasets. Under- and oversampling methods [26], [27] can
mitigate this class imbalance problem, but these techniques
either reduce the number of training data samples or use
additional artificially generated data, both of which negatively
impact on the classification performance, as they restrain the
ability of ML models to learn accurate representations.

B. Clustering based Intrusion Detection

Ideally, any Intrusion Detection System (IDS) should
(i) have learning and hierarchical feature representation abil-
ities; (ii) handle high-dimensional data and extract valuable
patterns. Since clustering methods group data into meaningful
sub-classes, seeking to separate members of different clusters,
several IDSs build on this approach. Jianliang et al. use k-
means clustering to detect unknown attacks and separate large
data spaces effectively [28]. However, their approach suffers
from degeneracy and cluster dependence, which could be
overcome with the Y-means clustering algorithm proposed
in [29]. Mingqiang et al. introduce the concept of graph-based
clustering for anomaly detection, whereby a Local Deviation
Coefficient Graph Based (LDCGB) approach identifies out-
liers [30]. Li et al. use a Particle Swarm Optimization (PSO)
algorithm based on swarm intelligence [31]. This solution
avoids falling into local minima, while providing good overall
convergence. Multi-stage techniques improve NID by (i) gen-
erating meta-alerts through clustering and (ii) reducing false
alarm rates via classification of these meta-alerts [32].

However, these approaches are frequently unable to discrim-
inate superficially similar but in essence different attacks (e.g.,
U2R and R2L vs. benign), present high misclassification rates
due to their unsupervised nature, and/or are computationally
expensive, making them unfit for deployment on constrained
devices. We overcome these issues through a simple and ef-
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fective adaptive clustering approach, while offering significant
improvements in detection rate and minimizing false alarms.

C. Continual-learning

In recent years, there has been a growing interest in devel-
oping deep learning models that exhibit robustness and adapt-
ability in network intrusion detection systems (NIDS). Several
studies have explored techniques to improve the resilience of
deep learning models to random noise and enhance their sup-
port for continual learning. For instance, Goodfellow et al. [51]
investigated catastrophic forgetting in gradient-based neural
networks, aiming to develop preventative methods and ensure
efficient adaptation to new tasks as they are encountered. Von
Oswald et al. [52] proposed the use of hypernetworks for
continual learning, creating dedicated sub-networks to handle
new tasks without retraining the entire model. Draelos et al.
[53] introduced a neurogenesis deep learning approach to
extend deep networks to accommodate new classes, while
Rusu et al. [54] presented progressive neural networks that
integrate new knowledge without forgetting the old. Further-
more, Finn et al. [55] proposed a model-agnostic meta-learning
technique for fast adaptation of deep networks. In contrast
to our approach, existing work still face many issues such
as catastrophic forgetting in gradient-based neural networks,
increased model complexity, scalability issues, or dependency
on initial models.

III. THREAT MODEL

We consider both home networks and enterprise environ-
ments subject to two offensive scenarios. First, we envisage
attackers located outside the target network, to which they
attempt to gain access, compromise victim devices, or retrieve
sensitive data. In this scenario, the attacker would scan all
the devices connected to the network to find weaknesses that
would allow access. In the second scenario we consider, the
attacker is either located outside the target network, which was
already compromised (giving them the ability to control the
hijacked hosts), or is internally connected to that network. In
both cases, we assume an NIDS is deployed on an edge device,
where all incoming and outgoing network traffic packets
can be captured. Furthermore, we consider the possibility
where an attacker has acquired sufficient knowledge of the
network infrastructure, including target IP addresses, open port
numbers, etc. However, we assume the deployed NIDS is
hardened and attackers do not have the ability to access or
alter its behaviour.

Our proposed system is best suited to networks where most
user traffic belongs to a finite set of known applications.
Therefore, as we monitor all incoming and outgoing commu-
nications, we are able to train our neural model in a supervised
manner on a labelled dataset.

IV. SYSTEM ARCHITECTURE

We propose a novel Deep Learning (DL)-based NIDS that
maximizes the probability of detecting malicious network
flows and minimizes the false alarm rate. Our approach aims to
(i) quickly adapt to complex data structures and patterns, by

discovering low-dimensional embeddings of networks flows,
which optimally separate samples of different types; and (ii) be
deployable on devices with limited computational capabilities.
These are essential features any NIDS must meet to be suitable
for practical real-life environments. We fulfill these goals by
combining three key components shown in the high-level
overview of our ACID system in Fig. 1, namely:

• Feature Extractor module: transforms raw network
packets into vectors of header and statistical features, and
(optionally) semantic representations of payloads (i.e.,
additional feature vectors);

• Adaptive Clustering module: builds low-dimensional
embeddings of network flow features and computes a
set of abstract attributes that are common to samples
belonging to the same traffic type;

• Classification module: uses features extracted from both
network flows and by the clustering module to improve
detection rate and minimize the impact of outliers. This
module corrects any misclassifications made via cluster-
ing and can exploit further correlations in the inputs.

In what follows we detail the operation of each of these
modules, then demonstrate how the synergies among them lead
to remarkable malicious traffic detection performance.

A. Feature Extractor

ACID handles very large amounts of traffic by processing
streams of raw network packets into feature-based representa-
tions of bidirectional flows corresponding to communications
between (source, destination) pairs, over specific applications
or protocols. These are subsequently used for clustering and
classification. Our feature extractor comprises two parallel pro-
cessing pipelines: (1) a header analyzer logic that builds a set
of header and statistical features (including source/destination
port numbers, packet inter-arrival time, total number of packets
in a flow, etc.), which provide a compact representation of
traffic behaviors; and (2) an optional word embedding logic
that builds vectors of semantic representation of the pay-
loads, though word2vec [33] and Text-CNN [34] techniques,
similarly to the methodology previously used in [25]. While
this additional payload features extractor unit significantly in-
creases the computation costs, it can improve the performance
of the classifier. This is because the semantic representations of
payload features encode important information about contents
of payload-based attacks, such as in the case of SQL injection.

Depending on the computational power of the device where
the NIDS is deployed, the feature extraction module may
introduce some latency. Regardless, online operation is easily
achievable if running the NIDS separately from the packet
forwarding unit. It is also worth noting that by aggregating
packets into bidirectional flows, we drastically reduce the size
of the training and evaluation sets, which in turn reduces the
inference time of ACID.

B. Adaptive Clustering Module

One of our key contributions is a novel technique that
improves the generalization abilities and robustness of any
DL-based classification engine. In essence, we propose a
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Fig. 1: Overview of the proposed ACID system. Header and statistical features, and (optionally) payload features are extracted
from raw network packets, then grouped into bidirectional flows. Our AC module takes these flows, computes cluster centers,
and appends them to the extracted features, before feeding the resulting vectors to a classifier for final decisions.

clustering algorithm that produces cluster centers to be used
as extensions of the input features being clustered. As our
Adaptive Clustering (AC) approach is designed to be end-to-
end differentiable, the training is performed on mini-batches,
whereby the network learns low-dimensional representations
of the inputs and computes the corresponding kernel centers.
This operation is performed online (in an iterative manner) and
the final layer of the kernel networks yields the probabilities of
each sample in the inputs belonging to all possible classes. For
our NIDS, we retrieve the computed cluster centers of each
class and use them to expand their samples’ features, thereby
obtaining more features for each data point. These combined
features are then given to the classification module for final
decisions about the nature of the traffic observed.

Since we aim to deploy our NIDS in a live environment,
we aim at a clustering algorithm which:

• Handles very large amounts of high-dimensional data
points – This requirement prevents us from using clus-
tering approaches that need all training data at once.

• Handles incoming streams of data at random time inter-
vals – New incoming data should not require retraining
the entire clustering algorithm; instead, data distributions
should be learned on the fly.

• Quickly and effectively clusters even the most complex
data points in multi-dimensional spaces – Having seman-
tically good clusters would boost the performance of the
classifier, as proven by our experiments.

• Produces cluster centers – This is an essential require-
ment for improving the robustness and generalization
abilities of the classifier.

These set of desired properties lead to designing a plug &
play type DL-based clustering algorithm that can be trained
with batches of data at a time, which we detail in Section V.

C. Classification Module

Finally, ACID employs a classification module that pro-
cesses the combined extracted features and cluster centers for
each sample, and outputs the inferred traffic class to which
that flow belongs. While the classifier’s architecture can be
designed to obtain any desired property (e.g., exploit spatio-
temporal correlations or perform binary/multi-label classifica-
tion), the additional features provided by our AC algorithm
improve classification performance regardless of the specifics

of the classifier, as they reduce the divergence between samples
of the same class. To further reduce this divergence, we use
each sample’s corresponding cluster center instead of its low-
dimensional representation, when extending its features vector.
This not only improves the accuracy of the NIDS, but also
minimizes the impact of outliers. To support this claim, we
provide a theoretical proof of the gain introduced by using
cluster centers as additional features.

Theorem. — Clustering-based Divergence Reduction: Let
Kc be the set of features obtained from the cluster center of
a given class C. For any two samples χi, χj ∈ C,

distance(χi ∪Kc, χj ∪Kc) ≤ distance(χi, χj),

Proof. Let χi and χj be n-dimensional real-valued vectors:

χi = {xi1, xi2, ..., xin} ∈ Rn,

χj = {xj1, xj2, ..., xjn} ∈ Rn,

where xit and xjt correspond to individual features of the
sample data, with t ∈ {0, 1, ..., n}. Assume that χi and χj

both belong to the C-th cluster according to our clustering
module, and the C-th cluster center is defined as

Kc = {kc1, kc2, ..., kcm} ∈ Rm.

The aggregated features obtained after clustering are then

χ′
i = {xi1, xi2, ..., xin, kc1, kc2, ..., kcm} ∈ Rn+m,

χ′
j = {xj1, xj2, ..., xjn, kc1, kc2, ..., kcm} ∈ Rn+m.

An intuitive way to calculate the impact of the clustering on
robustness is to compare the similarities between the original
and aggregated feature vectors, i.e., Q1 = distance(χi, χj)
vs Q2 = distance(χ′

i, χ
′
j). Expanding each yields

Q1 =
1

n

n∑
α=1

(xiα − xjα)
2,

Q2 =
1

n+m

(
n∑

α=1

(xiα − xjα)
2 +

m∑
α=1

(kcα − kcα)
2

)

=
1

n+m

n∑
α=1

(xiα − xjα)
2.

Q1 −Q2 =
m

n+m
·Q1 =⇒ Q2 = β ·Q1,
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Fig. 2: Architecture of our Adaptive Clustering network.

where β = n/(n +m) ≤ 1,∀n > 0,∀m ≥ 0, is the impact
measure obtained by using the cluster centers as additional
features. This implies that Q2 ≤ Q1,∀m ≥ 0.

Hence, using cluster centers as additional features can
only improve the decision capability of the classifiers by
reducing the differences between items of the same group. The
experimental results we present in Section VII fully support
this finding. In our experiments, we will use a Random Forest
structure [35] to perform the final classification of traffic flows.

It is worth noting that our clustering approach is not limited
to NID, but can be applied to any other classification task.

V. ADAPTIVE CLUSTERING

Clustering algorithms learn some notion of similarity within
a dataset, to group similar samples together. They usually
heavily depend on individual data points and (i) bear sig-
nificant time complexity when handling large amounts of
data or large sample dimensionality; (ii) require an explicit
measure of “distance” (even in multi-dimensional spaces);
and (iii) return multiple possible interpretations of clustering
results. Neural Networks (NNs) tackle these issues, yet often at
the cost of reduced clustering performance. This is particularly
problematic when dealing with complex datasets, where the
NN, in seeking to generalize to all possible clusters (or
classes), ends up only able to correctly classify a small subset
of unambiguous samples. Unfortunately, most realistic datasets
are multi-dimensional, wherein there are no obvious distinct
patterns between members of different classes.

To tackle this problem, the Adaptive Clustering (AC)
method we propose builds on multiple kernel networks, each
learning to tailor itself to one of the possible clusters associated
with a particular type of traffic which we want to classify,
as illustrated in Fig. 2. For any observed sample, different
encoders discover its optimal low-dimensional embedding and
kernel networks learn to extrapolate a general representation
(i.e., cluster center) of its group’s members. By using encoders,
our model reduces the dimensionality of the input features to
any desired dimension. While the encoder architecture can
be selected according to the task at hand, using a simple
multi-layer, feed-forward NN allows the model to achieve
optimal clustering while minimizing the overall computational
overhead, as our results in Section VII demonstrate.

Formally, let us consider the set of N samples of n features
D ⊂ RN×n. Let ψθe(x) : Rn −→ Rm be an embedding of
a sample x mapped by a fully-connected feed-forward NN
parametrized by θe ∈ Re, onto Rm, where m is the target

dimension. The embedding of our entire dataset via ψθe can
be expressed by Ψθe : RN×n −→ RN×m. In this setting, we
also use the same dimension m for the kernels to be learned
by the kernel networks. We now define Ψθk(x) : RN×m −→
RN to be our kernel functions with parameters θk ∈ Rk. For
every target class, a new kernel network is generated such
that each network learns to represent a unique cluster from
the embedding output by the encoder.

In our design, each layer of the encoders implements an
activation-like sine function yt = wa sin(2πwfyt−1), where
yt−1 is the output of the previous layer, and wa and wf are
weight vectors of respective sizes |wa| = 1 and |wf | = |yt−1|,
which are learned by the network. The chosen sine activation-
like functions enable the networks to learn faster and adapt to
complex data structures. For the kernel networks, we use fully-
connected neural models, whose outputs are passed through
a softmax function σ(yi) = exp(yi)/

∑N
j=1 exp(yj), thereby

returning the set of probabilities that a given sample belongs
to different clusters. As such, with the kernel networks, we
aim to map any embedding from the encoder to single values
representing the likelihood estimations that samples belong to
their respective clusters. For each sample, this mapping is done
through a deep NN while simultaneously the kernel weights
defined by these networks, i.e., cluster centers, are computed
from the embeddings of all samples.

To train our AC network, we combine two distinct loss
functions, i.e., L = Lp + Lc, where Lp is the Mean Squared
Error (MSE) between the estimated probabilities of samples
belonging to clusters and the ground truth, and Lc is a
contrastive loss that aims to control the distance between the
different clusters. The latter is important when the number of
clusters grows, hence they become closer to each other and
harder to separate. To compute the MSE, we first perform
one-hot encoding of the target cluster ids (ci) as follows:

pi =

{
1, if i = ci,

0, otherwise,

then compute

Lp =
1

N

N∑
i=1

(pi − ŷi)
2,

where ŷ = {ŷ1, ..., ŷN} ∈ RN denotes the output probabilities
of the model. Lc is designed to optimize the assignments of
the clusters and is defined as

Lc = Y · dS + (1− Y ) ·max(0, δ − dD),

where dS is the distance between all pairs of similar points
and dD is the distance between all pairs of dissimilar points, Y
is a binary label indicating whether the pairs are similar (i.e.,
1 if they should be deemed similar, 0 otherwise), and δ > 0 is
a margin defining the radius around the embedding space of
a sample, so that dissimilar pairs only contribute to the loss
if dD ≤ δ. The training of the neural model combining the
encoders and kernel networks is then performed end-to-end by
running back-propagation over a suitable number of iterations.

By this approach, the embeddings learned by our AC
algorithm are easily separable even by the simplest classifiers,
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as exemplified in Fig. 3. This indicates that the AC network
automatically discovers optimal kernels to be learned, which
constitutes one of its main advantages as compared to ex-
isting clustering methods. Additionally, using cluster centers
provided by our approach as features given to classifiers inher-
ently enhances privacy, since all members of the same class
would possess the same feature values. In our experiments, we
use the same NN structure and the same hyper-parameters.
Only the number of sub-networks changes, as this is task-
specific and corresponds to the number of output classes.
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Fig. 3: Illustration of embeddings in a two-dimensional kernel
space learned with our AC method: sample datasets (above)
and their representations along with cluster centers (below).

VI. IMPLEMENTATION

We implement ACID in Python 3.7 using the PyTorch [36]
and Scikit-Learn [37] libraries. For our AC algorithm we
employ a set of encoders that are fully-connected NNs with
3 hidden layers comprising 500, 200, and 50 neurons, re-
spectively. The number of neurons in the output layers is
equal to the desired dimensionality of the kernels, which we
set to 10 in our experiments. The kernel networks are also
fully-connected, with 3 hidden layers of size 100, 50 and 30
neurons, respectively.1 Inputs are processed in mini-batches of
size 256 and we train the model using the Adam optimizer [38]
with a learning rate of 1e−4. We adopt a Random Forest (RF)
classifier due to its performance and computational efficiency,
using default parameters, except the number of trees, which
we set to 200. Our complete NIDS is trained over 100
iterations. To mimic computationally constrained edge devices,
we execute all our experiments on a virtual machine running
Ubuntu 18.04 LTS, with 4GB RAM, 50GB storage space, and
a quad-core Intel(R) Celeron(R) N4100 CPU operating at 1.1
GHz. For the same reason, we perform no parallelization and
no specific optimization of our clustering algorithm.

VII. PERFORMANCE EVALUATION

We first demonstrate the performance of our AC algorithm
on general clustering tasks using five synthetic datasets, then
evaluate ACID with three publicly-available network intrusion
datasets. To completely cover all aspects of the NID task,
we perform both binary and multi-label classifications on all

1The source code of our implementation is available at https://
github.com/Mobile-Intelligence-Lab/ACID

datasets. We further use one of these datasets for a perfor-
mance comparison with state-of-the-art NIDSs. Additionally,
we perform a complexity and runtime analysis of our solution
to understand its deployability on constrained edge devices.

A. Datasets
Synthetic Datasets: We generate five different artificial

datasets covering a range of scenarios with different levels
of complexity, including number of clusters/groups, shape,
ambiguity, and distributions. Specifically, we consider

• Two-circles: A binary classification task with samples that
fall into concentric circles. This is suitable for testing if
an algorithm can learn complex non-linear manifolds.

• Five-circles: A multi-label classification problem with
samples that fall into concentric circles. Similarly to the
Two-circles dataset, this is also suitable for testing if an
algorithm can learn complex non-linear manifolds.

• Two-moons: A binary classification problem consisting
of samples falling into two interleaved half-circles. This
dataset is suitable for testing if an algorithm can learn
non-linear and intertwined class boundaries.

• Blobs: Groups of data-points with Gaussian distributions,
which are suitable for assessing the ability of algorithms
to solve linear classification problems.

• Sine/Cosine: The samples consist of sine and cosine
data points. This dataset is suitable for testing if an
algorithm can learn complex, non-linear, and intertwined
class boundaries.

With these, we are able to compare the performance of our
clustering approach against three popular clustering methods,
and ascertaining its universal learning abilities. For visualiza-
tion purposes, each of these synthetic datasets consists of sam-
ples of 2-dimensional data points, whose features correspond
to their Cartesian coordinates, and each sample is assigned a
label corresponding to its cluster ID.

Intrusion Detection Datasets: To showcase the perfor-
mance of our NIDS, we use three datasets that capture a
total of 40 types of network attacks collected over a span
of 20 years, namely KDD Cup’99 [17], ISCX-IDS 2012 [18],
and CSE-CIC-IDS 2018 [19]. The KDD Cup’99 dataset was
produced by MIT Lincoln Labs in a LAN operated similarly
to an Air Force environment over the course of 9 weeks,
during which raw TCP data was collected [39]. The CSE-
CIC-IDS 2018 dataset is the result of a controlled attacks
campaign run by the Canadian Institute for Cybersecurity
using 50 machines that targeted a victim organization with
5 departments, involving 420 machines and 30 servers [40].

For comparison purposes, we evaluate all the benchmarks
considered on a random subset of the ISCX-IDS 2012 dataset,
which was released by the University of New Brunswick and
consists of seven days of raw network data, including benign
and four types of malicious network traffic, namely BruteForce
SSH, DDoS, HttpDoS, and Infiltration [41].

B. Preprocessing
Based on the features extracted from raw packets (including

fields in the packet headers and statistical attributes), we gen-
erate bidirectional flows, thereby incorporating more temporal
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information than what can be observed from individual packets
(e.g., the time interval between two sequential packets). The
first packet of each flow determines its direction, i.e., forward
(source to destination) or backward (destination to source).

To obtain a relatively balanced ISCX-IDS 2012 dataset for
benchmarking, we randomly select a predefined number of
malicious and benign traffic samples. The preprocessed dataset
is then divided into a training and a testing set using a 70/30
split ratio. As an example, we illustrate the preprocessing
results obtained in Table I.

Category Count Percentage Training Count Testing Count

Benign 10,000 28.28% 7,040 2,960

BFSSH 7,042 19.92% 4,960 2,082

DDoS 4,963 14.03% 3,476 1,487

HttpDoS 3,427 9.70% 2,431 996

Infiltration 9,925 28.07% 6,903 3,022

Total 35,357 100% 24,810 10,547

TABLE I: ISCX-IDS 2012 dataset after preprocessing.

C. Evaluation Metrics
To measure the performance of our NIDS, we use the held

out testing set to compute confusion matrices, based on which
we calculate the number of True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) inferences.
With these, we derive a number of metrics that allow us to
assess the quality of the classification results of ACID and
those produced by the benchmarks considered, namely:

Accuracy =
TP + TN

TP + FP + TN + FN
;

Precision =
TP

TP + FP
; Recall =

TP

TP + FN
;

FAR =
FP

FP + TN
; F1-score = 2 · Precision · Recall

Precision + Recall
.

In the above, FAR is the false alarm rate.

D. General Clustering Results
We first compare the clustering performance of our AC

network against that of Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [42], Spectral Clustering
[43], and k-Means [44], which are widely-used clustering
approaches. For fairness, we specifically tune the parameters of
each of the selected benchmark to optimize their performance.
As observed in Fig. 4, Spectral Clustering obtains optimal
results with the two-circles and the two-moons datasets, while
DBSCAN performs very well on three out of the five datasets,
i.e., two-circles, five-circles, and two-moons. Both approaches
partially misclassify the blobs and consistently fail to clus-
ter correctly the sine/cosine dataset. The k-Means clustering
algorithm, however, systematically fails on all these tasks.

In contrast, our AC approach flawlessly clusters the data
points in all the datasets considered, regardless of shape,
distribution, or complexity (Fig. 4, rightmost column). This
demonstrates the key advantage of using kernel networks to
identify cluster centers and augmenting the feature set with
information about these centers in view of classification.

k-Means

Sine /
Cosine

Algorithm /
Data set

2 Circles

2 Moons

Blobs

5 Circles

DBSCANSpectral
Clustering

AC
(Ours)

Ground
truth

Fig. 4: Comparison of clustering results of the proposed AC
method and three popular benchmarks on two-circles, five-
circles, two-moons, blobs, and sine/cosine datasets.

ba
ck

bu
ffe

r_
ov

er
flo

w
ftp

_w
rit

e
gu

es
s_

pa
ss

wd
im

ap
ip

sw
ee

p
la

nd
lo

ad
m

od
ul

e
m

ul
tih

op
ne

pt
un

e
nm

ap
no

rm
al

pe
rl

ph
f

po
d

po
rts

we
ep

ro
ot

ki
t

sa
ta

n
sm

ur
f

sp
y

te
ar

dr
op

wa
re

zc
lie

nt
wa

re
zm

as
te

r

Predicted

back
buffer_overflow

ftp_write
guess_passwd

imap
ipsweep

land
loadmodule

multihop
neptune

nmap
normal

perl
phf
pod

portsweep
rootkit
satan
smurf

spy
teardrop

warezclient
warezmaster

Ac
tu

al

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: Normalized confusion matrix for multi-label classifi-
cation using ACID on the KDD Cup’99 dataset.

E. Network Intrusion Detection Results

Next, we evaluate the performance of our complete NIDS.
Recall that ACID extrapolates meaningful low-dimensional
representations from header and statistical features extracted
from raw network traffic data. Using these automatically
learned features, we determine different cluster centers and
use them to extend the header and statistical attributes. With
these additional features, we expect our classifier to be more
accurate and easily distinguish even the most similar patterns.
To verify our hypothesis, we perform binary and multi-
label classification on the three real-world datasets mentioned
above, where we distinguish benign/malicious traffic flows,
and respectively identify the type of every single traffic flow.

We also experimentally compare our approach with recent
NIDS designs based on neural networks. In particular, we
perform classification using DAGMM [14], which employs
Gaussian Mixture Models (GMMs) to learn low-dimensional
embeddings of complex data structures while avoiding un-
desired local optima; N-BaIoT [15], which relies on Auto-
Encoders (AEs) to discriminate IoT traffic; Deep NNs [16],
which offer provably high performance despite using a simple
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Fig. 6: Normalized confusion matrix for multi-label classifi-
cation using ACID on the ISCX-IDS 2012 dataset.
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Fig. 7: Normalized confusion matrix for multi-label classifi-
cation using ACID on the CSE-CIC-IDS 2018 dataset.

architecture; and TR-IDS [25], which exploits payload con-
tents to enhance NID performance.

In Figs. 5, 6, and 7, we provide normalized confusion
matrices obtained with ACID, demonstrating its performance
on the KDD Cup’99, ISCX-IDS 2012, and CSE-CIC-IDS
2018 datasets, respectively. Observe that our approach pro-
duces perfect results in the multi-label classification task,
even where some network traffic flows may be very similar,
e.g., Distributed Denial-of-Service (DDoS) attacks and high
volume benign traffic. ACID correctly classifies 100% of the
the traffic flows when using both kernel and payload features.
Accuracy degrades only marginally when payload features are
not employed for classification, specifically 99.41% accuracy
is attained on the CSE-CIC-IDS 2018 dataset in this scenario.

We also compute the accuracy, precision, recall, F1-score,
and FAR for all datasets. The results confirm that ACID attains
100% accuracy, 0% FAR, and 100% F1-score, when perform-
ing both binary and multi-label classification, irrespective of
the number of classes. Multi-label classification results are
summarized in Table II. These remarkable performance can
be attributed to the manner in which our approach acts on the
data, which is akin to a two-stage classification process, where
the first stage corresponds to classifying network traffic via
clustering, and the second corrects the misclassified samples
through a further classifier. These results also confirm that our
learned features consist of transferable knowledge across all

Metric Accuracy FAR F1 Classes Samples

Dataset (%) (%) (%)

KDD CUP’99 100.0 0.00 100.0 23 43,510

ISCX-IDS 2012 100.0 0.00 100.0 5 10,547

CSE-CIC-IDS 2018 100.0 0.00 100.0 15 144,772

TABLE II: Performance summary of ACID on the KDD
CUP’99, the ISCX-IDS 2012, and the CSE-CIC-IDS2018
datasets for the multi-label classification task.

Approach Payload-based
Features Accuracy (%) FAR (%) F1 (%)

DAGMM [14] No 62.91 30.65 53.07

N-BaIoT [15] No 89.19 10.80 89.19

Deep NN [16] No 88.14 7.41 70.35

TR-IDS [25] Yes 98.88 1.12 98.87

ACID (ours) No 99.78 0.23 99.44

ACID (ours) Yes 100.0 0.00 100.0

TABLE III: Comparison of ACID with existing methods on
binary classification with ISCX-IDS 2012 dataset.

samples in the respective datasets.
We further juxtapose ACID with the benchmark NIDSs

considered, when classifying traffic in the ISCX-IDS 2012
dataset. We limit this comparison to binary classification,
which is the intended goal of most of these methods. The
obtained results are shown in Table III, which reveals that
ACID outperforms existing solutions by up to 47% in terms of
F1-score. By combining a Text-CNN and RF, TR-IDS attains
very good performance on the binary classification task, but
unlike ACID, it struggles to discriminate malicious traffic flows
of different types that are superficially similar. Specifically, in
multi-label classification, TR-IDS misclassifies ∼1% of DDoS
and ∼1% Infiltration as benign flows, while flagging more than
1% of benign flows as attacks. In practice, this would not
only lead to manual inspection of large numbers of flows, but
allow attacks with dramatic consequences (e.g., Infiltration) to
succeed, and potentially block traffic with commercial value.

F. Complexity

Having demonstrated exceptional NID performance, we
now study the complexity of our ACID approach, both from
computational and runtime perspectives. To this end, we count
the number of parameters of our neural model and the number
the floating point operations (FLOP) performed per inference.
We also measure the inference time for a single sample and
a batch of 128 samples, respectively, accounting for all the
processing undergone by packet through ACID’s complete
pipeline. The results obtained are reported in Table IV, where
we also assess the additional complexity incurred when using
payload features. Given that we use an edge device emulation
set-up (described in Section VI) and inference times can be as
low as 80ms, we conclude that it is feasible to deploy our ACID
system on constrained edge devices for intrusion detection
purposes. Further, increasing the batch size to 128 reduces
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Payload
Features

Number of
Parameters

Batch
size

Model
Complexity
(MFLOP)

Execution
Time

(seconds)

No 789,855
1 1.49 0.08 ± 0.01

128 191.68 0.10 ± 0.02

Yes 942,460
1 25.71 0.19 ± 0.04

128 3291.43 18.59 ± 0.74

TABLE IV: Computational complexity of our clustering ap-
proach to NIDS, with and without payload features. Experi-
ments on an emulated constrained device as defined in Sec. VI.
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Fig. 8: Evolution of loss function values for different kernel
sizes when training AC on the ISCX-IDS 2012 dataset.

the runtime per sample by 100×. We also note that payload
features incur ∼2× higher execution time per single flow
inference, while they can prove orders of magnitudes more
costly when working with proportionally larger batches, which
needs to be accounted for when deploying at the network edge.

G. Sensitivity Analysis

We conclude with a sensitivity analysis of our AC algorithm
wrt. (i) the dimensionality of the learned representations, and
(ii) the importance of cluster centers in the final classification.

1) Kernel Size: In the first experiment, without changing
any other parameter of our model, we vary the kernel size and
evaluate its impact on the quality of the clustering. Specifically,
we examine the loss curve during training when the kernel size
is respectively 5, 10, and 30. The results are shown in Fig. 8.

Observe that the impact of the dimension of the kernels is
relatively negligible, as our AC approach converges rapidly
to small loss values that lead to efficient separation of data
samples into different clusters. This observation is particularly
valuable when considering deploying our NIDS on constrained
devices. For this reason, working with 10 as the NIDS kernel
size, as we did in all experiments reported in this paper,
is reasonable. Also note that training our clustering method
for only 20 iterations is sufficient to obtain state-of-the-art
performance and reduce the False Alarm Rate (FAR) to zero.

2) Feature Importance: To better understand the impact of
different features on the classification results, we analyze their
degree of contribution to this process. Since we use the RF
classifier in the final stage of ACID, its implementation in the
Scikit-Learn library directly provides the importance weight
of each feature, thereby making it easy to rank all features
according to their importance score. From these aggregated
features, we select the top-15 ones according to their relative
importance to the decision process and plot them in Fig. 9.
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Fig. 9: 15 most important features in the classification process
on the ISCX-IDS 2012 dataset. 50 features extracted from the
payloads in total.

To appreciate the importance of the cluster centers relative to
all header and statistical features extracted, as well as payload
based features, we extract 50 features from the payloads, using
two modern Natural Language Processing (NLP) techniques
(word embedding and Text-CNN), as also performed in [25].
Recall that these payload features can help to detect malicious
contents, such as those seen with payload-based attacks, i.e.
SQL injection, cross-site scripting (XSS), and shell-code.
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Fig. 10: (t-distributed Stochastic Neighbor Embedding (t-
SNE)) 2-D projections of clusters obtained by our AC ap-
proach for multi-label classification of ISCX-IDS 2012.

Finally, we perform the same experiment excluding the
payload features and observe that the cluster centers extracted
from our clustering algorithm significantly outweigh all other
features during the decision process. More specifically, the
cluster centers contribute to the decision process by 5.77% to
9.03% (almost 2 to 3.6 times more than the most important
of all header and statistical features combined). Furthermore,
the clusters obtained by our AC approach to NID provide
perfectly separable representations of our data points for all
network traffic categories, which is confirmed by the t-SNE
representation [45] of the clusters shown in Fig. 10. Indeed,
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reducing the dimension of embedded representations obtained
by our model to 2 through this method reveals that the clusters
corresponding to all types of attacks and benign traffic are
clearly distinguishable to the clustering algorithm.

VIII. PRACTICAL CHALLENGES

For NIDS to be practically viable, they need to maintain
their performance over time, be compatible with different
network architectures, and handle network traffic distributions
that are different than those observed during training. In
this section, we evaluate the performance of our proposed
framework in light of two of the most challenging issues:
data corruption (modelled from random distributions) and
evolution of network traffic (categorized as concept and data
drifts). To tackle these practical challenges, we simulate both
conditions using the CIC-IDS-2017 dataset [41], [46] with
entries grouped into Benign traffic and 5 attack categories,
namely: Bot, Brute-Force, DoS/DDoS, Infiltration, and Web
Attack. For all experiments, we split the dataset into a training
and testing set using a 70/30 ratio, and make use of header
and statistical features alone to exclude performance gains
introduced by payload features. The experiments performed
highlight the advantages of using our proposed framework
compared to traditional NN architectures, where we use as
baseline a 5-layer MLP consisting of: feed-forward, ReLU
activation, batch-normalization, and dropout layers for each
block [16].

A. Robustness to Data Corruption

To verify the comprehensive performance of ACID in clas-
sifying network traffic when deployed in noisy environments,
we simulate corrupted features from different distributions. For
each distribution function we make a comparison between
our proposed architecture and that of the classical NN. As
evaluation metric, we measure the accuracy gain/loss incurred
by the noise. Formally, let ad(m) denote the classification
accuracy of a model for any given probability distribution d
and any given noise magnitude m ∈ [0..1]. The Noise-Induced
Relative Error (NIRE) in percentage is thus given by:

NIRE(m, d) =
ad(m)− ad(0)

ad(0)
× 100%,

where ad(0) is the accuracy of the models without any noise
(i.e., 0% noise magnitude). We generate corrupted network
traffic features to evaluate the NIDS architectures by applying
perturbations drawn from 5 different random distributions.
Namely:

• Uniform: generates random values with equal probability
over a given range using a probability density function
defined as:

f(x) =
1

b− a
,

where a and (b−a) are the location and scale parameters,
respectively.

• Bernoulli: generates random values consisting of one of
two possible outcomes (x = 0 and x = 1) defined by the
probability density function:

f(x) = px(1− p)1−x,

where p is the probability of having x = 1 and 1− p the
probability of having x = 0.

• Normal: produces values symmetrically centered around
a given mean (µ) with a standard deviation (σ), defined
by the following probability density function:

f(x) =
1

σ
√
2π
e−(x−µ)2/(2σ)2 .

• Log-normal: describes random variables whose loga-
rithms follow a normal distribution. For any given mean
(µ) and standard deviation (σ), its probability density
function is given by:

f(x) =
1

xσ
√
2π
e−(ln(x)−µ)2/(2σ2).

• Exponential: describing the inter-arrival times in a Pois-
son process, it is defined using a probability density
function:

f(x) = λe−λx,

for a constant average rate λ.
Each of these distributions is parametrized to produce

noises of specific magnitudes employed to perturb time-
based features of network traffic flows, such as: packet inter-
arrival time, active-idle time, and number/size of packets
transferred. In Fig. 11 we report the performance comparison
as NIRE, examining a range of noise magnitudes (0–5%, 10%,
15%, 20%, 25%, 50%, and 100%). Negative values indicate
performance degradation, while positive ones reflect potential
performance improvements.

The results obtained show negligible to no degradation
of ACID’s performance for perturbation magnitudes of up
to 25%, regardless of the nature of the perturbation (i.e.,
distribution from which the perturbation is drawn). Further, we
note that when using our proposed framework, low-magnitude
perturbations have a tendency to improve the classification per-
formance (up to 7.5% with the experiment performed). These
results confirm our intuition that, compared to traditional NN
architectures, our ACID framework inherently provides a high
degree of tolerance to random perturbations.

B. Continual Learning

Despite significant performance boosts offered by NNs
for the intrusion detection task, the ever-evolving nature of
network traffic in real-world environments presents a major
challenge. In fact, with the increasing heterogeneity and
complexity of network environments, most NIDS are faced
with high volumes of traffic continuously changing in nature,
either due to the emergence of new types of traffic or by
changes in the underlying structure of known types (e.g., the
codecs employed by media streaming services). While defense
systems usually perform well in static environments, this dy-
namicity degrades their performance over time. This is mainly
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Fig. 11: Performance comparison of ACID and traditional NN architectures in terms of robustness to random noise. Perturbations
generated for increasing magnitudes of noise and drawn from different distributions. Negative values indicate performance
degradation; positive values indicate improvements.

due to the static and fixed structure of traditional DNNs,
which limits their learning capability. Further, with new types
of traffic emerging, previously learned knowledge may be
erased by training the models on the newly encountered data
distributions, otherwise known as catastrophic forgetting [47]–
[49].

To overcome this issue DNNs traditionally incorporate
new knowledge by retraining with both the new data and
all previous training data, which requires massive amounts
of computational and memory resources as more data is
encountered. This is however impractical, especially in the
context of IoT settings where devices are characterized by
limited processing, memory, and networking capabilities [50].
As such, Continual Learning solutions have been proposed,
whereby ML models are trained only using newly acquired
data (also known as Incremental Learning), which on top
of solving this problem, also improves speed and memory
efficiency.

In what follows, we compare ACID to a traditional NN
architecture and show that ACID, with its task-oriented sub-
nets, inherently incorporates the notion of Continual Learning
in its learning process, by creating new sub-nets for each
new task encountered. This allows our proposed framework to
preserve its performance over time by learning and adapting
its structure when new training data are available, continually
expanding its knowledge of previously learned tasks without

requiring to retrain models from scratch. In order words,
the architectural design of our proposed Adaptive Clustering
networks overcomes the need of storing any previous training
datasets while maintaining the stability of the NIDS.

1) Class-Incremental Learning: We first consider the
Class-Incremental Learning (CIL) problem, where each task
consists of learning from data collected for a previously
unseen class of network traffic (e.g., type of attacks). In this
scenario, the CIC-IDS-2017 dataset is divided into a sequence
of tasks, each task associated with a separate training session
where the NIDS only has access to the data of the current
task. We aim to verify ACID’s intrinsic ability to prevent
catastrophic forgetting while (i) maintaining its performance
on all previously learned tasks and (ii) avoiding the problem of
intransigence (failure to adapt to new tasks). Our experiment
is designed to observe the performance of the NIDS at each
stage of the CIL learning process.

We undertake a performance comparison with an MLP
(representing a traditional DNN), and show that where tra-
ditional NN structures are biased towards recently-learned
tasks (task-recency bias), leading to catastrophic forgetting,
ACID maintains consistent performance across stages of the
learning process (see Fig. 12). While not guaranteed, we
note that despite the precipitous degeneration effect observed
with classical DNN architectures, they can partially recover
their performance on a previous task if the previous and the
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Fig. 13: Adaptive performance of ACID when presented with conceptual drifts. At each Class-Incremental Learning stage, the
”Unknown” category represents all classes of traffic that have yet to be learned by new sub-nets.

new tasks share some underlying attributes. Our proposed
architecture on the other hand overcomes any degeneration
effect resulting from the introduction of new tasks, since
the training and classification of any given task’s samples is
handled by a dedicated sub-net.

2) Concept Drift Adaptation: Having confirmed ACID’s
ability to learn new tasks based on newly available training sets
alone, and without degrading its performance on previously
learned tasks, we now assess the classification accuracy under
the effect of conceptual drifts, where statistical properties
(relationships between input and output data) of our NIDS
change over time. To simulate this notion, we extend the
previous experiment (presented in Sec. VIII-B1) by attempting
to classify any network traffic not yet learned by ACID as
“unknown”. This change of distribution observed for this class
of outliers, as we learn new types of traffic at each stage of
the CIL process, thereby characterizes our concept drifts. The
results depicted in Fig. 13 show that throughout the learning

process, the definition of ”unknown” traffic is continually
expended by our solution, thereby enabling the extension of
its knowledge base with a new sub-net for each new type of
traffic, while updating its knowledge of the “unknown” types.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced a novel approach to Network
Intrusion Detection (NID) based on an Adaptive Clustering
(AC) neural network that achieves exemplary performance
on three different datasets, in both binary and multi-label
traffic classification tasks. Our design hinges on multiple
kernel networks to learn optimal embeddings of data samples,
thereby acquiring the ability to easily distinguish different
types of network traffic. Through extensive experiments, we
have proved the superiority of our clustering method over
existing alternatives, and made the case for a lightweight and
effective Network Intrusion Detection System (NIDS) that can
be deployed on devices with limited computational resources,
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thereby strengthening defenses at the network edge. We have
subsequently studied the viability of our approach in practical
settings by highlighting its robustness to noise and its intrinsic
support for continual learning.

As future work, we will extend our Adaptive Clustering
framework to unsupervised classification tasks, virtually elim-
inating the need for high-quality labelled data.

REFERENCES

[1] Alec F. Diallo and Paul Patras, “Adaptive Clustering-based Malicious
Traffic Classification at the Network Edge,” IEEE Conference on Com-
puter Communications, pp. 1–10, 2021.

[2] The Economist Intelligence Unit, “The IoT Business Index: A steep
change in adoption,” Feb. 2020.

[3] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabil-
ities and a First Empirical Look on Internet-scale IoT Exploitations,”
IEEE Comms Surveys & Tutorials, vol. 21, no. 3, pp. 2702–2733, 2019.

[4] Federal Bureau of Investigation (FBI), “2019 Internet Crime Report,”
Feb. 2020.

[5] Z. Inayat, A. Gani, N. B. Anuar, M. K. Khan, and S. Anwar, “Intrusion
response systems: Foundations, design, and challenges,” Journal of
Network and Computer Applications, vol. 62, pp. 53–74, 2016.

[6] Cisco, “Snort,” https://talosintelligence.com/snort.
[7] “Zeek,” https://zeek.org/.
[8] “Suricata,” https://suricata-ids.org/.
[9] H. Liu and B. Lang, “Machine Learning and Deep Learning Methods

for Intrusion Detection Systems: A Survey,” Applied Sciences, vol. 9,
no. 20, p. 4396, 2019.

[10] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Comms
Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2015.

[11] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech
recognition using deep neural networks: A systematic review,” IEEE
Access, vol. 7, pp. 19 143–19 165, 2019.

[12] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[13] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Comms Surveys & Tutorials,
vol. 21, no. 3, pp. 2224–2287, 2019.

[14] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in ICLR, Mar. 2018.

[15] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Bre-
itenbacher, and Y. Elovici, “N-BaIoT: Network-based Detection of IoT
Botnet Attacks Using Deep Autoencoders,” IEEE Pervasive Computing,
vol. 17, no. 3, pp. 12–22, May 2018.

[16] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–41 550,
Apr. 2019.

[17] “KDD Cup’99,” http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html.

[18] “ISCX-IDS 2012,” https://www.unb.ca/cic/datasets/ids.htm.
[19] “CSE-CIC-IDS 2018,” https://registry.opendata.aws/cse-cic-ids2018.
[20] Y. Yu, J. Long, and Z. Cai, “Session-Based Network Intrusion Detection

Using a Deep Learning Architecture,” in International Conference on
Modeling Decisions for Artificial Intelligence, Sept. 2017, pp. 144–155.

[21] ——, “Network Intrusion Detection through Stacking Dilated Convolu-
tional Autoencoders,” Security and Communication Networks, pp. 1–10,
Nov. 2017.

[22] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
“Autoencoder-based feature learning for cyber security applications,”
in IEEE International joint conference on neural networks, May 2017,
pp. 3854–3861.

[23] Z. Tan, A. Jamdagni, X. He, P. Nanda, R. Liu, and J. Hu, “Detection
of Denial-of-Service Attacks Based on Computer Vision Techniques,”
IEEE Transactions on Computers, vol. 64, no. 9, pp. 2519–2533, May
2014.

[24] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
“HAST-IDS: Learning Hierarchical Spatial-Temporal Features using
Deep Neural Networks to Improve Intrusion Detection,” IEEE Access,
Dec. 2017.

[25] E. Min, J. Long, Q. Liu, J. Cui, and W. Chen, “TR-IDS: Anomaly-
Based Intrusion Detection through Text-Convolutional Neural Network
and Random Forest,” Security and Communication Networks, pp. 1–9,
July 2018.

[26] S. Nejatian, H. Parvin, and E. Faraji, “Using sub-sampling and ensemble
clustering techniques to improve performance of imbalanced classifica-
tion,” Neurocomputing, vol. 276, pp. 55–66, 2018.

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of arti-
ficial intelligence research, vol. 16, pp. 321–357, 2002.

[28] M. Jianliang, S. Haikun, and B. Ling, “The Application on Intrusion
Detection Based on K-means Cluster Algorithm,” IEEE Information
Technology and Applications, vol. 1, pp. 150–152, May 2009.

[29] Y. Guan, A. Ghorbani, and N. Belacel, “Y-means: a clustering method
for intrusion detection,” in IEEE Canadian Conference on Electrical
and Computer Engineering. Toward a Caring and Humane Technology,
vol. 2, June 2003, pp. 1083– 1086.

[30] Z. Mingqiang, H. Hui, and W. Qian, “A graph-based clustering algo-
rithm for anomaly intrusion detection,” in IEEE Computer Science &
Education, July 2012, pp. 1311–1314.

[31] Z. Li, Y. Li, and L. Xu, “Anomaly Intrusion Detection Method Based on
K-Means Clustering Algorithm with Particle Swarm Optimization,” in
IEEE Information Technology, Computer Engineering and Management
Sciences, vol. 2, Sept. 2011, pp. 157–161.

[32] F. Hachmi and M. Limam, “A two-stage technique to improve intrusion
detection systems based on data mining algorithms,” in IEEE Interna-
tional Conference on Modeling, Simulation and Applied Optimization,
Apr. 2013, pp. 1–6.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” ICLR Workshop, 2013.

[34] T. He, W. Huang, Y. Qiao, and J. Yao, “Text-attentional Convolutional
Neural Network for Scene Text Detection,” IEEE Transactions on Image
Processing, vol. 25, no. 6, pp. 2529–2541, 2016.

[35] L. Breiman, “Random Forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[36] “PyTorch,” https://pytorch.org/.
[37] “Scikit-Learn,” https://scikit-learn.org/stable/.
[38] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

2014.
[39] J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Cost-based

modeling and evaluation for data mining with application to fraud and
intrusion detection,” Results from the JAM Project by Salvatore, pp. 1–
15, 2000.

[40] A. Shiravi, H. Shiravi, M. Tavallaee, and A. Ghorbani, “Toward develop-
ing a systematic approach to generate benchmark datasets for intrusion
detection,” Computers & Security, vol. 31, no. 3, p. 357–374, May 2012.

[41] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization.” in
International Conference on Information Systems Security and Privacy
(ICISSP), 2018, pp. 108–116.

[42] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in KDD, vol. 96, no. 34, 1996, pp. 226–231.

[43] F. R. Chung and F. C. Graham, Spectral Graph Theory. American
Mathematical Soc., 1997, no. 92.

[44] J. MacQueen et al., “Some Methods for Classification and Analysis
of Multivariate Observations,” in Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, no. 14, 1967, pp. 281–297.

[45] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[46] “CSE-CIC-IDS 2017,” https://www.unb.ca/cic/datasets/ids-2017.html.
[47] S. Lewandowsky and S.-C. Li, “Catastrophic interference in neural

networks: Causes, solutions, and data,” in Interference and Inhibition
in Cognition, F. N. Dempster, C. J. Brainerd, and C. J. Brainerd, Eds.
San Diego: Elsevier, 1995, pp. 329–361.

[48] R. French, “Catastrophic forgetting in connectionist networks,” Trends
in cognitive sciences, vol. 3, pp. 128–135, 05 1999.

[49] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
p. 436, 05 2015.

[50] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang,
“Learning under concept drift: A review,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1–1, 2018. [Online]. Available:
https://doi.org/10.1109/tkde.2018.2876857

[51] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-based
neural networks,” arXiv preprint arXiv:1312.6211, 2013.



14

[52] J. von Oswald, C. Henning, J. Sacramento, and B. F. Grewe. “Continual
learning with hypernetworks,” arXiv preprint arXiv:1906.00695, 2019.

[53] T. J. Draelos, N. E. Miner, C. C. Lamb, J. A. Cox, C. M. Vineyard, K. D.
Carlson, W. M. Severa, C. D. James, and J. B. Aimone, “Neurogenesis
deep learning: extending deep networks to accommodate new classes,”
in IJCNN, 2017.

[54] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” CoRR, 2016.

[55] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, 2017.

Alec F. Diallo is currently a Ph.D. student at the Uni-
versity of Edinburgh. He received a joint Integrated
Master’s degree from Mundiapolis University and
ESIEE Paris, with a focus on Computer Science and
Electrical Engineering. His current research seeks
to bridge the gap between the ever-evolving nature
of cyber threats and the security and privacy of
users’ data on networked systems, by using Artificial
Intelligence to build automatic threat detection and
counteraction mechanisms.

Paul Patras is an Associate Professor in the School
of Informatics at the University of Edinburgh, where
he leads the Mobile Intelligence Lab – a multi-
disciplinary team that pursues research at the in-
tersection of network engineering and artificial in-
telligence, to improve the analysis, resilience, and
management of next generation mobile systems. He
is also a co-founder and CEO of Net AI, a pio-
neering university spinout specializing in AI-driven
network analytics. He has served on the organizing
committee on several conferences and workshops in

his field, and advised the ITU-T Focus Group on Machine Learning for
Future Networks including 5G. Paul holds M.Sc. and Ph.D. degrees from
Universidad Carlos III de Madrid (UC3M) and he was the recipient of a
prestigious Chancellor’s Fellowship awarded by the University of Edinburgh.


