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ABSTRACT
Data stream processing plays a pivotal role in various web-related

applications, including click fraud detection, anomaly identifica-

tion, and recommendation systems. Accurate and fast detection of

items relevant to such tasks within data streams, e.g., heavy hitters,

heavy changers, and persistent items, is however non-trivial. This

is due to growing streaming speeds, limited fast memory (L1 cache)

available in current systems, and highly skewed item distributions

encountered in practice. In effect, items of interest that are tracked

only based on their features (e.g., item frequency or persistence

value) are susceptible to replacement by non-relevant ones, leading

to modest detection accuracy, as we reveal. In this work, we intro-

duce the notion of bucket stability, which quantifies the degree of

recorded item variation, and show that this is a powerful metric

for identifying distinct item types. We propose Stable-Sketch, an

elegant and versatile sketch that exploits multidimensional infor-

mation, including item statistics and bucket stability, and adopts

a stochastic approach to drive replacement decisions. We present

a theoretical analysis of the error bounds of Stable-Sketch, and

conduct extensive experiments to demonstrate that our solution

achieves substantially higher accuracy and faster processing speeds

than state-of-the-art sketches in a range of item detection tasks,

even with tight memories. We further enhance Stable-Sketch’s

update throughput with Single Instruction Multiple Data (SIMD)

instructions and implement our solution with P4, demonstrating

real world deployment viability.
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1 INTRODUCTION
Measurements play a vital role in various web-centric areas, includ-

ing user behavior analysis [1], web personalization [2], intrusion

detection [3], web traffic analysis [4], etc. With the ever-increasing

data rates, per-item monitoring becomes impractical as it demands

extensive memory resources to track all items of interest [5]. Con-

sequently, approximate item processing has gained significant trac-

tion. In particular, probabilistic data structures called sketches, have
been adopted for a range of item processing tasks, as they guaran-

tees bounded detection errors with a limited memory footprint [6].

A sketch is usually initialized as a table with𝑚 rows, each with 𝑢

memory entries (buckets), where each bucket keeps track of items

(item identifiers) hashed to that bucket [7, 26, 29].

Recently, the research community has paid much attention to

three representative item processing tasks: heavy hitter detec-

tion [7, 8, 13], heavy changer detection [14–16], and persistent

item detection [17–20]. Heavy hitter detection focuses on finding

items with frequency greater than a predefined value [21]; heavy
changer detection is to find items whose frequencies vary dramat-

ically in two adjacent time windows [22]; while persistent item
detection aims to pick out items whose persistence (i.e., number of

windows in which they appear) is larger than a given threshold [18].

In practice, analyzing web traffic with such patterns holds signifi-

cant importance. For instance, tracking the frequency of a user’s

website visits over the course of a year can serve as an indicator of

their persistence, suggesting a strong preference for the site. This

data is highly valuable for web service providers as it allows them

to improve user engagement and satisfaction, ultimately leading to

higher platform retention and increased revenue.

1.1 Motivation
Although several sketch-based schemes have been proposed to

handle the aforementioned detection tasks, achieving both high

detection accuracy and fast update speed simultaneously remains

challenging. Our work addresses key limitations of previous sketch

designs, which mostly rely on uni-dimensional information (e.g.,

item frequency/persistence) to replace a stored item upon the arrival

of a new one, and we aim to tackle several challenges, as follows:

(i)Memory constraints: To ensure high processing speeds, it is

preferable to process items only utilizing cache memory. Contempo-

rary CPU caches employ a hierarchical structure, categorized into

L1, L2, and L3 cache levels. Among these, the L1 cache, although

the smallest, are the fastest. Despite a general increase in overall

cache size over the years, the capacity of the L1 cache remains

constrained, typically in the kilobyte (KB) range. This is particu-

larly notable in recent sketch-based studies [7, 30, 39], where the

L1 cache size in experimental setups is usually no more than 64KB.

https://doi.org/10.1145/3589334.3645581
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This constraint necessitates sketches to be compact enough to fit

within this space.

(ii) High detection accuracy: In practice, item distributions in

data streams are highly skewed [24, 42] – most items own small

frequency, while only a few are frequently encountered. There-

fore, when the memory used by sketches is tight and hash colli-

sions become frequent, the features of large/persistent items do not

have sufficient opportunities to build significance, as small/non-

persistent ones collectively appear with high frequency; as a result,

those items of interest may be mistakenly substituted by small/non-

persistent ones, which harms detection accuracy.

(iii)High update throughput: Detection schemes should be ca-

pable of processing items swiftly to keep pace with high-speed data

streams. Recent designs that utilize an external DRAM (Dynamic

Random Access Memory) based data structure to record candidate

items [6, 28] and handle hash collisions incur excessive memory

access overheads and make it impossible to match high-speed line

rates. Besides, the update operation should be further harness par-

allel acceleration techniques, such as SIMD instructions, to further

enhance processing speeds.

(iv) Ease of configuration: Sketches should be straightforward

to set up, without over-reliance on intricate parameter tuning.

Strategies such as PIE [19] demand intricate tuning and the detec-

tion accuracy is highly sensitive to variations in parameter values,

posing challenges when dealing with diverse data streams that have

varying distributions.

(v) Practical deployment: Data stream processing schemes

should be easily implementable on various hardware platforms, in-

cluding but not limited to Field-Programmable Gate Arrays (FPGA)

and programmable switches, which offer the highest processing

speed but also present the most stringent design constraints.

These challenges motivate us to harness other statistics and

devise Stable-Sketch, a new versatile sketch framework based on

multi-dimensional features, which simultaneously achieves high
detection accuracy, memory efficiency, and processing speed.
We recognize that the state of each bucket can be leveraged to iden-

tify different item types. If items stored in a bucket change frequently
(indicating the stability of the bucket is low), that bucket more likely
stores small-size items that can be discarded quickly; otherwise, it
tends to track large items. Based on this insight, our Stable-Sketch

substitutes items recorded in buckets by computing replacement

probabilities based on both item information and bucket stability.

As a result, the larger the size of an item stored in a bucket and the

higher the bucket stability, the harder it will be to replace that item

with others. This strategy also eliminates the need for complex
parameter tuning and ensures easy deployment in practical
scenarios. Notice that even though recording the status of buckets

in the sketch adds memory overhead, our results will reveal that

this can be negligible compared with the achievable improvements

in detection accuracy.

1.2 Contributions
To the best of our knowledge, Stable-Sketch is the first approach

that utilizes the bucket stability feature for diverse item detection

tasks, including heavy hitters, heavy changers, and persistent items.

This brings the following key advantages. First, Stable-Sketch has

high memory efficiency since it does not rely on additional data

structures to hold candidate items and stops redundant hash opera-

tions once an item finds an available bucket, thus saving memory

to record more items. Second, Stable-Sketch offers fast processing
speeds – during the update process, it does not depend on pointers

and reduces repetitive hash actions. During the query process, it

only needs a scan of all buckets, leading to a short time of returning

all heavy/persistent items. Third, Stable-Sketch attains high detec-
tion accuracy. We provide theoretical proofs of the error bounds

of our approach and demonstrate its superiority over state-of-the-

art solutions via extensive trace-driven experiments. We further

accelerate Stable Sketch’s update speed with Single Instruction

Multiple Data (SIMD) instructions [32]. Lastly, we prototype Stable-

Sketch with P4 [59] and quantify its overhead, making the case for

its deployment in practice. The source code of Stable-Sketch is

available at [33] (https://doi.org/10.5281/zenodo.10675430).

2 PROBLEM STATEMENT
We first formalize the definitions of data stream and the item detec-

tion tasks of interest.

Data Stream: A data stream 𝑄 consists of a sequential series of

items 𝑓1, 𝑓2, · · · , 𝑓𝑖 , · · ·. Each item 𝑓 owns a frequency and persis-

tence value denoted by 𝑉 (𝑓 ) and 𝑃 (𝑓 ), respectively.
Heavy Hitter Detection: Given a data stream 𝑄 with different

items, a heavy hitter is identified within𝑄 whenever the frequency

of that item surpasses a pre-set threshold, defined as 𝜃𝑁 , where 𝜃

is a user-defined parameter in the (0,1) range and 𝑁 represents the

total frequency of all items in 𝑄 .

Heavy Changer Detection: To detect heavy changers, we com-

pare an item 𝑓 ’s frequency in two consecutive epochs, 𝐸1 and 𝐸2.

Suppose the frequency of 𝑓 in these epochs is 𝑞1 and 𝑞2, respec-

tively. If the absolute difference between 𝑞1 and 𝑞2 exceeds the

established heavy changer threshold 𝜓𝐷 , item 𝑓 is classified as a

heavy changer, where 𝐷 is the total absolute change of all items

across two epochs.

Persistent ItemDetection:Adata stream composed ofmultiple

items can be divided into𝐺 equal and contiguous time windows. An

item 𝑓 ’s persistence is quantified by the total number of windows

in which it appears. If the persistence of an item is greater than

a set threshold 𝜙𝐺 , where 𝜙 is a parameter in (0,1], the item is

categorized as persistent.

3 STABLE-SKETCH DESIGN
In this section, we first discuss the rationale behind our Stable-

Sketch design, then delve into its data structure and basic operations.

Afterwards, we explain how to deploy Stable-Sketch for different

detection tasks, before formally analyzing its performance.

3.1 Rationale
Recall that sketches utilize summary data structures to record item

information within a fixed number of buckets. Similar to [6, 7, 29],

we initialize Stable-Sketch as a two-dimensional array with𝑚 rows,

in which each row contains 𝑢 buckets to record the values of items

hashed to these buckets. Compared with existing approaches, the

advancements Stable-Sketch brings are two-fold:

(i) Current schemes use a uni-dimensional feature for replace-

ment decisions, mostly replacing items imprudently based on their

frequency or persistence value, resulting in many heavy/persistent

https://doi.org/10.5281/zenodo.10675430


Stable-Sketch: A Versatile Sketch for Accurate, Fast, Web-Scale Data Stream Processing WWW ’24, May 13–17, 2024, Singapore, Singapore

items being erroneously evicted by non-heavy/-persistent ones. To il-

lustrate this problem, we resort to MV-Sketch [7], a state-of-the-art

scheme for heavy hitter detection, and three CAIDA datasets [52].

More details about the scheme and datasets are in Section 5. We

vary the memory size from 16KB to 256KB [39] and measure how

many times non-heavy items mistakenly expel heavy items during

the update process. As seen in Table 1, the number of wrong replace-

ment events increases dramatically as the memory size decreases.

For instance, when the memory size is tight (16KB), the number of

erroneous replacement events are 2,287× higher than when having

a larger memory (256KB), under the CAIDA 2018 dataset. This indi-

cates that MV-Sketch cannot provide enough protection for heavy

items under constrained memory budgets.

Table 1: Number of heavy items being wrongly replaced by
non-heavy ones in MV-Sketch, applied to three datasets.

Trace

Size

16KB 32KB 64KB 128KB 256KB

CAIDA 2015 392,082 161,113 33,076 4,810 909

CAIDA 2016 563,005 247,301 46,097 4,742 722

CAIDA 2018 432,362 247,879 48,393 2,379 189

To tackle this problem, we explore another powerful metric that

we introduce to provide more protection to potential heavy items

and prevent them from being effortlessly expelled from buckets.

In particular, the item distribution of real data streams is known

to be highly skewed [24], while heavy items carry more data than

non-heavy ones [25]. Therefore, it should take more effort to evict

heavy items than non-heavy ones recorded in a bucket. Based on

this observation, we harness the status of each bucket to identify the

type of items recorded. Specifically, if the items stored in a bucket

change frequently, meaning that the bucket has low stability, then

the bucket is more likely to track some non-heavy items; otherwise,

it indicates that the bucket tends to record heavy items.

To verify this feature, we use MV-Sketch to compare the stability

of each bucket under different memory sizes (16KB, 32KB) and

datasets. The computation of bucket stability is as follows: when a

new item arrives, if the item recorded in the hashed bucket does

not change, the stability of the corresponding bucket increases by

1; otherwise, the stability decreases by 1 (not less than 0). As shown

in Figure 1, we find that the buckets that track heavy items own

larger stability than those that track non-heavy ones. For instance,

for the CAIDA 2015 trace, the average bucket stability for heavy

items is 1.55× and 2.48× higher than for non-heavy ones under

16KB and 32KB memory, respectively. These results reveal that the

bucket that records heavy items tends to have stronger stability

since more attempts are required to replace them.

Therefore, our Stable-Sketch calculates a stochastic decay proba-

bility based on multi-dimensional statistics, i.e., item information
and bucket stability, to decide whether to replace tracked items. As

recorded item statistics and bucket stability increase for a bucket,

meaning that it potentially tracks a heavy item, the likelihood of

this item being successfully replaced by other items decreases, thus

improving detection accuracy.

(ii) Besides, recent sketch-basedmethods like Count-min Sketch [6]

and MV-Sketch [7] hash each item in all rows, and then increment
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Figure 1: Cumulative Distribution Function (CDF) of bucket
stability for (non-)heavy items tracked under different traces
and L1 caches, when employing MV-Sketch. Observe how
buckets storing heavy items yield higher bucket stability.
corresponding counters, which harms memory efficiency. In con-

trast, our Stable-Sketch, gives up repetitive hash operations once

a newly arrived item finds an available bucket, to release memory

for storing more items, thereby improving memory efficiency.

3.2 Data Structure
The data structure of recent sketches can be categorized into flat

[6] and hierarchical [9, 10]. Hierarchical ones often incorporate

multiple layers to enable the tracking of heavy and non-heavy

items separately. Despite potential benefits in terms of accuracy,

the hierarchical data structure challenges the update speed and

practical deployment, especially in programmable switches with

strict design constraints. Therefore, in our Stable-sketch design, we

harness the conventional flat structure.

We illustrate Stable-Sketch’s data structure in Figure 2, which

consists of𝑚 rows and 𝑢 columns. Each row is associated with a

different pairwise-independent hash function ℎ1, · · · , ℎ𝑚 . We use

𝐵 (𝑖, 𝑗) to denote the bucket at the 𝑖-th row and the 𝑗-th column,

where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑢. Each bucket contains three fields:

𝐵 (𝑖, 𝑗) .𝐾 tracks the key of the current candidate item; 𝐵 (𝑖, 𝑗) .𝑉
stores the statistic of the candidate item, e.g., item frequency or per-

sistence value; and 𝐵 (𝑖, 𝑗) .𝑆 represents the stability of this bucket.

If a new item hashed into the bucket without successfully replacing

the already recorded one, the stability of this bucket increases by 1;

otherwise, it indicates the newly arrived item occupies this bucket,

and the stability decreases by 1. Since each bucket owns a fixed

memory size, the number of buckets in each row can be altered

based on the pre-allocated memory size and the number of rows.

By default, Stable-Sketch keeps track of an item’s key to ensure

excellent invertibility. However, in certain cases, the key may be

excessively long, and memory resources may be limited. In such

scenarios, to further ameliorate the memory utilization of Stable-

Sketch, we also propose a variant named Stable-Sketch
∗
, in which

we record the item’s fingerprint instead of the key of the incumbent

item in the bucket. A detailed description of Stable-Sketch
∗
and

its performance can be found in Appendix B.3. While there are

techniques available for dynamically adjusting the counter size to

minimize memory usage [10–12], we opt against using them. This

is because they typically have a negative impact on the update and

query speeds and are usually challenging to deploy on practical

hardware platforms such as programmable switches.

3.3 Basic Operations
Stable-Sketch performs two main operations: 1) 𝑈𝑝𝑑𝑎𝑡𝑒 , which

maps an arriving item into the sketch, based on multi-dimensional
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Figure 2: Data structure of Stable-Sketch.
information in a probabilistic manner; 2) 𝑄𝑢𝑒𝑟𝑦, which returns

heavy/persistent items whose estimated relevance value is greater

than a specific threshold.

Algorithm 1: Stable-Sketch’s Update Procedure
Input: an item 𝑓 , hash functions ℎ1, ℎ2, ..., ℎ𝑚 ,𝑚𝑖𝑛← +∞

1 Initialization: The counters and item key of each bucket

are initialized to 0 and 𝑛𝑢𝑙𝑙 , respectively.

2 for 𝑖 = 1 to𝑚 do
3 if 𝐵(𝑖, ℎ𝑖 (𝑓 )) .𝐾 == 𝑛𝑢𝑙𝑙 then
4 𝐵(𝑖, ℎ𝑖 (𝑓 )).𝐾 ← 𝑓 .𝑘𝑒𝑦;

5 𝐵(𝑖, ℎ𝑖 (𝑓 )).𝑉 ← 1;

6 𝐵(𝑖, ℎ𝑖 (𝑓 )).𝑆 ← 1;

7 return;

8 else if 𝐵(𝑖, ℎ𝑖 (𝑓 )).𝐾 == 𝑓 .𝑘𝑒𝑦 then
9 𝐵(𝑖, ℎ𝑖 (𝑓 )).𝑉 ← 𝐵(𝑖, ℎ𝑖 (𝑓 )) .𝑉 + 1;

10 𝐵(𝑖, ℎ𝑖 (𝑓 )).𝑆 ← 𝐵(𝑖, ℎ𝑖 (𝑓 )).𝑆 + 1;
11 return;

12 else if 𝐵(𝑖, ℎ𝑖 (𝑓 )).𝑉 < 𝑚𝑖𝑛 then
13 𝑚𝑖𝑛 ← 𝐵(𝑖, ℎ𝑖 (𝑓 )) .𝑉 ;
14 𝑅 ← 𝑖;𝑀 ← ℎ𝑅 (𝑓 .𝑘𝑒𝑦);

15 if rand(0, 1) < 1

𝐵 (𝑅,𝑀 ) .𝑉 ×𝐵 (𝑅,𝑀 ) .𝑆+1 then
16 𝐵 (𝑅,𝑀) .𝑉 ← 𝐵(𝑅,𝑀) .𝑉 − 1;
17 if 𝐵 (𝑅,𝑀) .𝑉 == 0 then
18 𝐵 (𝑅,𝑀) .𝑘𝑒𝑦 ← 𝑓 .𝑘𝑒𝑦;

19 𝐵 (𝑅,𝑀) .𝑉 ← 1;

20 𝐵 (𝑅,𝑀) .𝑆 ← max[𝐵(𝑅,𝑀) .𝑆 − 1, 0];
21 return;

22 else
23 Evict the newly arrived item;

24 return;

3.3.1 Update. Algorithm 1 gives the pseudo-code for the update

process. First, all fields in the data structure are initialized to 0 or

𝑛𝑢𝑙𝑙 . When a new item 𝑓 arrives, Stable-Sketch utilizes the function

ℎ1 to hash 𝑓 to bucket 𝐵 (1, ℎ1 (𝑓 )). Then, one of three cases follows:
Case 1: If the bucket 𝐵 (1, ℎ1 (𝑓 )) is empty, we insert item 𝑓 into

this bucket and configure 𝐵 (1, ℎ1 (𝑓 )) .𝐾 as 𝑓 .𝑘𝑒𝑦, 𝐵 (1, ℎ1 (𝑓 )) .𝑉
and 𝐵 (1, ℎ1 (𝑓 )) .𝑆 as 1 (Lines 3-7).

Case 2: If 𝐵 (1, ℎ1 (𝑓 )) has been occupied by item 𝑓 , we increase

both the value counter 𝐵 (1, ℎ1 (𝑓 )) .𝑉 and the stability counter

𝐵 (1, ℎ1 (𝑓 )) .𝑆 by 1. Otherwise, Stable-Sketch checks the buckets in

the next row sequentially with the hash functions ℎ2, · · · , ℎ𝑚 . Once

item 𝑓 finds an available bucket in the 𝑖-th row, the hash operation

terminates (Lines 8-11).

Case 3: Suppose item 𝑓 cannot find an available bucket, indi-

cating that it encounters hash collisions in all rows. In this case,

Stable-Sketch harnesses a probability-based replacement strategy

to decide whether to save or dismiss the current item 𝑓 . Specifi-

cally, Stable-Sketch first selects the bucket with the smallest value

counter among𝑚 hashed buckets (Lines 12-14). Note that if multi-

ple buckets own the same smallest value, Stable-Sketch will choose

the first among them, denoted as 𝐵(𝑅,𝑀). Then, Stable-Sketch com-

putes a replacement probability 𝐿(𝑓 ) as 1

𝐵 (𝑅,𝑀 ) .𝑉 ×𝐵 (𝑅,𝑀 ) .𝑆+1 . This
reflects that for an item saved in a bucket, the larger 𝐵 (𝑅,𝑀) .𝑉
and 𝐵 (𝑅,𝑀) .𝑆 are, the more challenging it will be for other items

to successfully evict the stored one. If a newly arrived item fails

to trigger the replacement mechanism, Stable-Sketch will discard

this item. Otherwise, Stable-Sketch will decrease 𝐵 (𝑅,𝑀) .𝑉 by 1. If

𝐵 (𝑅,𝑀) .𝑉 reaches 0, Stable-Sketch will update the item key with

that of the newly arrived one, decrease 𝐵 (𝑅,𝑀) .𝑆 by 1, and set

𝐵 (𝑅,𝑀) .𝑉 to 1 (Lines 15-21). Compared with probability-based re-

placement [35], probability-based decay ensures that the estimation

error is strictly one-sided, i.e., potentially exhibiting only underes-

timation. An investigation of the impact of different replacement

probability expressions 𝐿(𝑓 ) on the performance of the detection

accuracy is available in Appendix B.2.3.

3.3.2 Query. For item queries, Stable-Sketch scans all buckets and

if the estimated value 𝐵 (𝑖, 𝑗) .𝑉 of an item 𝑓 is greater than a pre-

defined threshold, then 𝑓 is considered an item to be found.

3.4 Applying Stable-Sketch to Different
Detection Tasks

We deploy Stable-Sketch for three applications: finding heavy hit-

ters, heavy changers, and persistent items. Note that Stable-Sketch

can be easily applied also to other tasks, such as finding super-

spreaders [29, 47, 48], significant items [49] and bursts [50]. Due to

space limitations, we do not include results for these tasks here.

3.4.1 Heavy Hitter Detection. Given that Stable-Sketch can be di-

rectly employed for detecting heavy hitters, the update and query

processes remain consistent with what has been detailed in Section

3.3. To enhance comprehension of the update operation in Stable-

Sketch, we include several illustrative examples, summarized in

Figure 3. For these examples, we assume a sketch with three rows,

each containing two buckets.

Case 1: When item 𝑓5 arrives, it uses the hash function ℎ1 to

locate an available bucket in the first row. Given that the hashed

bucket is currently empty, we can insert 𝑓5 into the sketch and

update the structure from (𝑁𝑢𝑙𝑙, 0, 0) to (𝑓5, 1, 1). As 𝑓5 has been
successfully inserted, we terminate the hash operation to conserve

memory for storing other items and to reduce the update time.

Case 2: When item 𝑓6 arrives, it attempts to locate an available

bucket by hashing in each row sequentially. Eventually, 𝑓6 success-

fully finds a match in the third row. As a result, both the frequency

counter and stability counter are incremented by one, updating the

structure from (𝑓6, 4, 4) to (𝑓6, 5, 5).
Case 3:When item 𝑓7 arrives, it experiences hash collisions across

all rows in the sketch. Consequently, it searches for the bucket that

contains the smallest value counter (𝑓4) to initiate a decay operation

on the current item. This decision is guided by the probability
1

3×3+1 .
If the decay operation succeeds and reduces the value counter to 0,

item 𝑓7 replaces the current item in the bucket. Otherwise, item 𝑓7
is discarded.
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Figure 3: Examples of the update procedure in Stable-Sketch
for the heavy hitter detection task.

3.4.2 Heavy Changer Detection. We compare two sketches at the

end of two consecutive epochs 𝐸1 and 𝐸2 to find heavy changers. For

each epoch, we construct a Stable-Sketch to record the frequency

of each item and the insertion process is the same as in Section 3.3.

During the query process, if the frequency difference of item 𝑓 is

greater than the heavy changer threshold, item 𝑓 is viewed as a

heavy changer.

3.4.3 Persistent Item Detection. Since the persistence of an item

only increases by one at each time window, we add a flag bit

(On/Off ) in Stable-Sketch’s data structure to remove duplicates [17].

Status On is representative of an arrived item that has not yet

accessed the mapped bucket in this time window, and then Stable-

Sketch increments both counters by one and turns the flag to Off. At
the beginning of each time window, all the flags in buckets are reset

to On. During the insertion process, Stable-Sketch first finds an

available bucket for item 𝑓 . If this fails, it will find the bucket with

the smallest persistence value to conduct the replacement. If the

flag bit of the selected bucket is Off, signifying that the saved item

has arrived in this window, the newly arrived item will abandon the

replacement. Otherwise, Stable-Sketch executes the replacement

procedure as in Algorithm 1 (Lines 15-24). The query process for

reporting persistent items is consistent with Section 3.3.

4 MATHEMATICAL ANALYSIS
We verify that Stable-Sketch has one-sided error and establish the

error bound using heavy hitter detection.

4.1 No Over-estimation Error
Theorem 4.1. For any given item 𝑓 , let 𝑉𝑡 (𝑓 ) and 𝑉𝑡 (𝑓 ) denote

the actual frequency and estimated frequency at a particular time 𝑡 ,
respectively. Then 𝑉𝑡 (𝑓 ) ≤ 𝑉𝑡 (𝑓 ).

Proof. The detailed proof can be found in Appendix A.1. □

4.2 Error Bound of Stable-Sketch
To derive the error bound, we make an assumption that is generally

valid: once a heavy item enters a bucket, it remains in the bucket

until the detection task is complete. Then we get the error bound

of Stable-Sketch as

Theorem 4.2. Given a small positive number 𝛽 and a heavy item

𝑓 with frequency𝑉 (𝑓 ), the inequality Pr
{
𝑉 (𝑓 ) −𝑉 (𝑓 ) ≥ ⌈𝛽𝑁 ⌉

}
≤

[ln(𝑉 (𝑓 ) )+𝜑 ]
𝛽𝑁 ln(𝑆 ) holds, where 𝜑 denotes the Euler-Mascheroni constant,

𝑆 denotes the bucket stability that records item 𝑓 , and 𝑁 represents
the total number of entries for all items.

Proof. A comprehensive derivation of the bound is available in

Appendix A.2. □

5 EXPERIMENTAL RESULTS
To demonstrate the performance of Stable-Sketch, we conduct ex-

periments on a server equipped with an 8-core Intel(R) Xeon(R)

W-2123 CPU@3.60GHz and 32GBDRAMmemory, running Ubuntu

16.04 LTS. Each core possesses an L1 data cache with 32KB memory

and a 1024KB L2 cache. All cores share an 8448KB L3 cache.

Dataset: We use three real-world datasets for evaluation: 1)

CAIDA [52]: IP traffic traces collected at Equinix-Chicago, specifi-

cally CAIDA15, CAIDA16, and CAIDA18 from 2015, 2016, and 2018,

respectively, with 0.45M, 0.64M, and 1.29M items. 2) MAWI [53]: a

dataset by the MAWI group analyzing Japanese wide area networks.

We select a 15-minute 2022 trace with approximately 19.58M items.

3) Campus [54]: gathered from a campus DNS network with over

4000 users during peak hours for 10 days in April-May 2016. We

randomly choose a trace from April with 0.87M distinct items.

Benchmarks: For detecting heavy hitters and heavy changers,
we conduct a comparative evaluation of Stable-Sketch against nine

existing approaches: (1) probability-based methods including Co-

coSketch [30], USS [31], RAP [35], and PRECISION [36]; (2) non-
probability-based methods including MV-Sketch [7], Elastic [40],

CMHeap [6], CountHeap [37], and Space-Saving [34]. For RAP and

PRECISION, the number of arrays is configured as 2 [36]. For MV-

Sketch, we set the number of rows to 4 [7, 56]. The parameters for

the rest of the schemes are aligned with [30]. More details about

these benchmarks are discussed in Section 6. We configure the

default threshold 𝜃 as 0.0005, meaning that if the item frequency

is over 𝜃𝑁 , it will be identified as a heavy hitter. The threshold

of heavy changer detection is consistent with finding heavy hit-

ters [22]. For persistent item lookup, we pick three baselines: Small-

Space (SS) [18], WavingSketch [22], and On-Off Sketch [17]. Since

PIE [19] only works under large memory allocations, we omit a

comparison here. The number of key-value pairs in On-Off Sketch

and the number of cells in WavingSketch are both set as 16 [22].

We divide each dataset into 1,600 time windows [17] and set the

threshold 𝜙 to 0.5, indicating that if an item appears over 800 win-

dows, it will be recognized as persistent. Notice that we also alter
the threshold for different detection tasks to verify Stable-Sketch’s

robustness, as detailed in Appendix B.1.

Implementation:We implement Stable-Sketch and other ap-

proaches in C++ and use the source-destination address pairs as

item keys (64 bits). For all the traffic, we concentrate on the IPv4

items only and adopt MurmurHash [57] to hash these items into

the sketch. We fix the number of rows𝑚 = 4 [7, 56] and adjust 𝑢

according to the pre-allocated memory size.

Metrics: 1) Precision: the ratio of correctly reported items to

all reported ones; 2) Recall: the ratio of correctly reported items to

all correct items; 3) F1 score:
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ; 4) Average Rela-

tive Error (ARE):
1

|Ω |
∑
𝑓 ∈Ω

��𝑆 (𝑓 )−𝑆 (𝑓 ) ��
𝑆 (𝑓 ) , where Ω is the set of true

heavy/persistent items reported; 5) Update Throughput: the update

speed of the scheme expressed in million operations (insertions)

per second (Mops). We conduct each experiment five times and

choose median values as in [30].

5.1 Detection Accuracy on Different Tasks
5.1.1 Heavy Hitter Detection . Figures 4–5 compare the detec-

tion performance of Stable-Sketch with that of the benchmarks
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Figure 4: Heavy hitter detection F1 score with different approaches, as a function of memory size.
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Figure 5: Heavy hitter detection ARE with different approaches, as a function of memory size.

considered, across three authentic datasets: CAIDA, MAWI, and

Campus.

As illustrated in Figure 4, Stable-Sketch consistently achieves the

highest F1 score across all settings, demonstrating an average im-

provement over existing algorithms ranging from 9.45% to 139.81%

on the CAIDA 2015, 18.29% to 188.23% on the CAIDA 2016, 12.75%

to 542.19% on the CAIDA 2018, 5.19% to 664.62% on the MAWI

dataset, and 11.45% to 180.19% on the Campus dataset.

The remarkable F1 score performance of Stable-Sketch can be at-
tributed to its exceptional precision and commendable recall rates.
Due to space constraints, we have omitted the results and analysis of
recall and precision. In summary, Stable-Sketch consistently main-

tains a precision score close to 1 across various memory budgets,

outperforming existing approaches. This high precision is achieved

through the use of multidimensional features (item and bucket

statistics) and the probabilistic eviction of items stored in buckets.

Stable-Sketch effectively prevents heavy hitters from being easily

replaced by other items, even with limited available memory (16KB).

Furthermore, we observe that for USS and SpaceSaving, precision

decreases as memory size increases from 16KB to 128KB. This is

due to their aggressive eviction of items stored in buckets, lead-

ing to more non-heavy items being incorrectly identified as heavy

hitters with larger memory, resulting in reduced precision. RAP

and PRECISION make replacement decisions based on probabilities

computed from item frequency, which does not offer adequate pro-

tection for heavy items in highly skewed data streams, especially

with tight L1 memory constraints, resulting in lower precision com-

pared to Stable-Sketch. We also find that Stable-Sketch maintains a

commendable recall rate across different traces when compared to

the baseline methods.

Additionally, Stable-Sketch demonstrates exceptionally low es-

timation error, with values close to zero in all memory settings

(Figure 5). For example, when compared with RAP, Stable-Sketch

reduces the ARE by 1837.63% in CAIDA 2015, 1103.7% in CAIDA

2016, 147.21% in CAIDA 2018, 1001.16% in the MAWI, and 25636.04%

in the Campus traces on average.

5.1.2 Heavy Changer Detection. To illustrate the performance

of heavy changer detection, we utilize the CAIDA 2018 trace as

an example. In Figure 6(a), we observe that Stable-Sketch achieves

significantly higher F1 scores compared to RAP and Elastic, with

improvements of 24.83% and 80.57%, respectively. In terms of esti-

mation error, Stable-Sketch outperforms other schemes, as evident

from the lowest ARE values shown in Figure 6(b).
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Figure 6: Heavy changer detection performance with differ-
ent approaches (legend as in Figure 4).

5.1.3 Persistent Item Detection. Figure 7 provides insights into
the F1 score and the ARE of persistent item lookup on the MAWI

trace. It is evident that Stable-Sketch consistently maintains its op-

timality across different memory sizes. In comparison to the recent

WavingSketch/On-Off Sketch approaches, Stable-Sketch achieves a

remarkable increase in detection accuracy, with average improve-

ments of 5428.75%/2852.76% on the MAWI trace. It is worth noting

that the performance of baselines considered is notably weaker

on the MAWI dataset. This is primarily due to the heavier-tailed

distribution in the MAWI dataset, which results in a smaller number

of persistent items and increases the detection difficulty. Despite

these challenges, Stable-Sketch consistently achieves the highest
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accuracy, thereby affirming its effectiveness in handling persistent

item lookup tasks.
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Figure 7: Persistent item detection performance with differ-
ent approaches, as a function of memory size.

5.2 Performance in Multiple Cases
5.2.1 Accuracy under different thresholds. To assess the robustness
of Stable-Sketch, we vary threshold values for heavy item detec-

tion (0.0001 to 0.0021) and persistent item lookup (0.4 to 0.8). These

experiments, conductedwith CAIDA 2019 and new traces with vary-

ing skewness (0.2 and 0.8), consistently demonstrate our scheme’s

superior performance. A detailed detection accuracy analysis for

various threshold settings is available in Appendix B.1.

5.2.2 Ablation Study. In our evaluation, we examine the effective-

ness of each component of Stable-Sketch, including the replacement

mechanism based on multi-dimensional features and the avoidance

of redundant hash operations when an incoming item finds an

available bucket. Additionally, we assess the impact of different

eviction probability formulations on detection accuracy. For a com-

prehensive analysis of these components and details, please refer

to Appendix B.2.

5.2.3 Stable-Sketch with Fingerprint. To assess the performance of

Stable-Sketch with fingerprint, a detailed analysis is provided in

Appendix B.3.

5.3 Processing Speed
5.3.1 Update Speed. We now evaluate the update speed of Stable-

Sketch, taking heavy hitter and persistent item detection as ex-

amples. Figure 8 shows the update speed for different algorithms

under the CAIDA 2018 trace. Results on other datasets exhibit simi-

lar trends. Observe in Figure 8(a) that Stable-Sketch’s throughput

surpasses that of all existing schemes for heavy hitter detection,

with an improvement of 16.01% on average over MV-Sketch. Since

counter-based approaches, such as RAP and SpaceSaving, usually

depend on pointers for finding the minimum item to replace, re-

sulting in a lower update speed. As reported in Figure 8(b), the

average update throughput of Stable-Sketch is 25.57% higher than

that of the state-of-the-art method On-Off Sketch. This stems from

two aspects: 1) Stable-Sketch leverages a compact data structure

that does not lean on supplementary heaps or Bloom filters [23],

which reduces the number of memory accesses; 2) Stable-Sketch

abandons hash operations once an item finds an available bucket,

mitigating the number of hash operations and guaranteeing a fast

update speed.
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in Figure 4).
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Figure 8: Update speed with different approaches.

5.3.2 Query Time. We also compare the query time of several ad-

vanced schemes returning all heavy items across different datasets.

As shown in Figure 9, since Stable-Sketch is invertible and does

not require excessive hash operations during the query process,

its query time is smaller than that of existing schemes. In contrast,

MV-Sketch requires additional hash operations for query, leading

to a longer query time. Stable-Sketch also maintains its good per-

formance when returning persistent items (results omitted due to

the space limitation).
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Figure 9: Query time for heavy items (memory size: 32KB).

5.4 Accelerating the Update Speed with SIMD
Instructions

We further accelerate the update speed of Stable-Sketch with SIMD

instructions [32], allowing us to process sequential operations

in parallel. When a new item arrives, we utilize the primitive

MurmurHash3_x64_128 to calculate the hash value based on the

item key and divide the hash value into𝑚 parts. Afterward, unlike

the vanilla Stable-Sketch inspecting each row individually to find an

available bucket, we use the SIMD primitive_mm256_cmpeq_epi64
to compare in parallel the newly arrived item’s key with items

recorded in𝑚 rows. In this manner, Stable-Sketch with SIMD in-

structions only requires 1 step to find an available bucket for a

newly arrived item, mitigating redundant comparison operations.

Moreover, each item is still tracked in the first available bucket.

We compare the update speed with the CAIDA 2016 trace. Ob-

serve in Figure 10, where we find that with the aid of SIMD, Stable-

Sketch significantly improves the update throughput on average by

78.84% and 46.55% over vanilla Stable-Sketch for the heavy hitter

and persistent item detection, respectively, confirming the effective-

ness of SIMD instructions. Additionally, it is important to note that

as the memory budget expands, it eventually exceeds the capac-

ity of the fastest cache level (L1), necessitating data retrieval from

slower caches or main memory. This shift in memory access results

in increased latency, reducing the data processing throughput.



WWW ’24, May 13–17, 2024, Singapore, Singapore Weihe Li and Paul Patras

1 6 3 2 6 4 1 2 8 2 5 60
5

1 0
1 5
2 0
2 5
3 0

Th
rou

gh
pu

t (M
op

s)

M e m o r y  S i z e  ( K B )

 w i t h  S I M D
 w i t h o u t  S I M D

(a) Heavy Hitter Detection.

1 6 3 2 6 4 1 2 8 2 5 60
5

1 0
1 5
2 0
2 5
3 0

Th
rou

gh
pu

t (M
op

s)
M e m o r y  S i z e  ( K B )

 w i t h  S I M D
 w i t h o u t  S I M D

(b) Persistent item Detection.

Figure 10: Update speed comparisonw/wo SIMD instructions.

5.5 Stable-Sketch Deployment in Practice
Here, we investigate the practical feasibility of deploying Stable-

Sketch on a programmable switch with minimal overhead. Our

assessment of resource utilization reveals that Stable-Sketch con-

serves sufficient resources for other applications, affirming its via-

bility for deployment on commercial hardware. For detailed imple-

mentation and evaluation results, please refer to Appendix B.4.

6 RELATEDWORK
We briefly introduce existing schemes for different detection tasks

and highlight their drawbacks, which inspired our design.

Heavy Item Detection: Existing approaches can be catego-

rized into counter- and sketch- based [5]. Counter-based schemes

aim to reduce memory usage by replacing the smallest recorded

counter item with the newly arrived one. Space-Saving [34] em-

ploys multiple counters, updating the corresponding counter when

a new item matches an existing one, or evicting the item with

the smallest counter value. However, limited memory and hash

collisions can lead to incorrect replacements. Unbiased Space Sav-

ing (USS) [31] builds upon Space-Saving by minimizing variance

to achieve unbiased estimation, but it still struggles with lookup

accuracy under memory constraints. Random Admission Policy

(RAP) [35] enhances detection accuracy by probabilistically replac-

ing counters with the smallest value. PRECISION [36] employs

partial recirculation, either probabilistic or deterministic, for a frac-

tion of packets from unmonitored streams. These schemes are non-

invertible, necessitating a full item key space scan to recover heavy

items, resulting in high memory access overhead. Additionally,

most counter-based methods use pointers for finding the minimal

element during updates, leading to low update throughputs.

Unlike counter-based methods, sketch-based approaches hash

items into memory entries, summarizing cumulative information

for efficient updates and low memory utilization at the expense of

bounded errors. Count-min Sketch [6] hashes items into buckets,

estimating size based on the minimum bucket value, while Count

Sketch [37] uses the average bucket value for estimation. Count

Sketch Heap extends Count Sketch with a heap to track heavy can-

didates and their estimated values. However, under small memory

sizes, hash collisions can lead to overestimating non-heavy items,

reducing lookup precision. These methods are also non-invertible,

resulting in slower query speeds. MV-Sketch [7] employs major-

ity voting for invertible heavy item tracking. A-Sketch [10] intro-

duces dynamic pre-filtering to identify and aggregate heavy items.

Heavykeeper [8] balances space and accuracy using count-with-

exponential-decay, actively evicting small items while preserving

large ones. Cold Filter [42] distinguishes cold and hot items, using

a separate structure for hot item frequencies. Loglog Filter [43]

utilizes register arrays to filter cold items, approximating their sum

of frequencies. HeavyGuardian [21] isolates hot items, maintaining

large counters for them and small counters for cold items. Elastic

Sketch [40] consists of heavy and light parts to manage heavy and

non-heavy items separately. CocoSketch [30] leverages “power-of-

𝑑 choices” [45, 46] and probabilistically replaces items stored in

buckets. However, when making replacement decisions only based

on item information, heavy items are easily replaced by non-heavy

ones with a limited memory.

Persistent Item Detection: Recent schemes can be divided into

three categories: sample-, coding-, and sketch-based. Sample-based

approaches, like Small-Space (SS) [18], configure a hash filter to

record the occurrence of items based on a sampling rate. However,

the sampling rate needs to be low to support small memory usage,

amplifying detection errors. Even if sample-based methods try to

track only potentially persistent items, they may still record many

non-persistent ones, which take up a large portion of the available

memory. Coding-based schemes, such as the Persistent items Iden-

tification schemE (PIE) [19], utilize a compact hash-based structure

and Raptor codes to improve memory usage. However, PIE requires

encoding and storing all items, regardless of potential persistence.

For enhanced detection accuracy and memory efficiency, On-Off

sketch [17] employs a compact data structure with a state field for

each counter, periodically increasing an item’s persistence. Never-

theless, this approach may misclassify many non-persistent items

as persistent due to its coarse isolation method. WavingSketch [22]

aims for unbiased estimation and uses a Bloom filter [23] for persis-

tent item detection but suffers from severe false positives in cases

of limited memory, leading to reduced lookup accuracy.

7 CONCLUSIONS
In this paper, we introduced Stable-Sketch, a versatile and effective

sketch for item lookup, which maintains a fast processing speed and

reaches high detection accuracy even with tight memory budgets

(L1 cache). Specifically, Stable-Sketch utilizes a probability-based

approach to discard items stored in buckets, considering both item

and bucket statistics. We conducted extensive experiments on di-

verse datasets to evaluate the performance of Stable-Sketch with

different detection tasks. The experimental results demonstrate that

Stable-Sketch outperforms competing schemes, exhibiting supe-

rior processing speed and significantly improving the detection

accuracy across various detection tasks. Moreover, we illustrated

how to speed up our solution with SIMD instructions. Lastly, we

demonstrated that it is feasible to deploy our solution in practice.
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A MATHEMATICAL ANALYSIS
A.1 No Over-estimation Error

Theorem A.1. For any given item 𝑓 , let 𝑉𝑡 (𝑓 ) and 𝑉𝑡 (𝑓 ) denote
the actual frequency and estimated frequency at a particular time 𝑡 ,
respectively. Then 𝑉𝑡 (𝑓 ) ≤ 𝑉𝑡 (𝑓 ).
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Proof. At the start of the detection task (𝑡 = 0), both 𝑉𝑡 (𝑓 ) and
𝑉𝑡 (𝑓 ) are zero, so the theorem holds. Assume that at time 𝑡 − 1,

𝑉𝑡−1 (𝑓 ) ≤ 𝑉𝑡−1 (𝑓 ). At time 𝑡 , two scenarios are possible: (i) if the

incoming item is 𝑓 again, then 𝑉𝑡 (𝑓 ) = 𝑉𝑡−1 (𝑓 ) + 1 and 𝑉𝑡 (𝑓 ) =
𝑉𝑡−1 (𝑓 ) + 1. Hence, 𝑉𝑡 (𝑓 ) ≤ 𝑉𝑡 (𝑓 ) is true; (ii) if an item other than

𝑓 arrives, the estimated frequency of item 𝑓 either decreases by

1 or stays the same, i.e., 𝑉𝑡 (𝑓 ) = 𝑉𝑡−1 (𝑓 ) − 1 or 𝑉𝑡 (𝑓 ) = 𝑉𝑡−1 (𝑓 ).
Given that 𝑉𝑡 (𝑓 ) = 𝑉𝑡−1 (𝑓 ), it follows that 𝑉𝑡 (𝑓 ) ≤ 𝑉𝑡 (𝑓 ). Since
the claim holds for all scenarios, Theorem A.2 is proven. □

A.2 Error Bound of Stable-Sketch
To derive the error bound, we make an assumption that is generally

valid: once a heavy item enters a bucket, it remains in the bucket

until the detection task is complete. Then we get the error bound

of Stable-Sketch as

Theorem A.2. Given a small positive number 𝛽 and a heavy item

𝑓 with frequency𝑉 (𝑓 ), the inequality Pr
{
𝑉 (𝑓 ) −𝑉 (𝑓 ) ≥ ⌈𝛽𝑁 ⌉

}
≤

[ln(𝑉 (𝑓 ) )+𝜑 ]
𝛽𝑁 ln(𝑆 ) holds, where 𝜑 denotes the Euler-Mascheroni constant,

𝑆 denotes the bucket stability that records item 𝑓 , and 𝑁 represents
the total number of entries for all items.

Proof. When an item distinct from 𝑓 arrives and maps to the

same bucket 𝐵(𝑖, 𝑗) as 𝑓 , the value counter of this bucket undergoes
either a decrement of 1 or remains unaltered. We use𝐺𝑖 . 𝑗 to denote

the times in which items distinct from 𝑓 hash into the same bucket.

Consequently, we infer that 𝑉 (𝑓 ) − 𝐺𝑖, 𝑗 ≤ 𝑉 (𝑓 ) ≤ 𝑉 (𝑓 ), where
𝑉 (𝑓 ) is equivalent to 𝐵(𝑖, 𝑗) .𝑉 . We employ a random variable 𝐷𝑖, 𝑗,𝑥
to represent the event where the value counter of bucket 𝐵(𝑖, 𝑗)
decreases by 1 upon the arrival of the 𝑥-th item, where 1 ≤ 𝑥 ≤
𝐺𝑖, 𝑗 . Hence, 𝑉 (𝑓 ) = 𝑉 (𝑓 ) −

∑𝐺𝑖,𝑗

𝑥=1
𝐷𝑖, 𝑗,𝑥 . By applying the Markov

inequality in conjunction with a small positive value 𝛽 , we deduce:

Pr

{
𝑉 (𝑓 ) ≤ 𝑉 (𝑓 ) − 𝛽𝑁

}
= Pr

𝑉 (𝑓 ) −
𝐺𝑖,𝑗∑︁
𝑥=1

𝐷𝑖, 𝑗,𝑥 ≤ 𝑉 (𝑓 ) − 𝛽𝑁


= Pr


𝐺𝑖,𝑗∑︁
𝑥=1

𝐷𝑖, 𝑗,𝑥 ≥ 𝛽𝑁
 ≤
E

[
𝐺𝑖,𝑗∑
𝑥=1

𝐷𝑖, 𝑗,𝑥

]
𝛽𝑁

.

Assuming that the distribution of packets from all items is uni-

form, we can derive the following:

E


𝐺𝑖,𝑗∑︁
𝑥=1

𝐷𝑖, 𝑗,𝑥

 = E
[
𝐷𝑖, 𝑗,𝑥𝐺𝑖, 𝑗

]
=

𝑉 (𝑓 )∑︁
𝐺𝑖,𝑗

𝑝 (𝐺𝑖, 𝑗 )
[
𝐺𝑖, 𝑗E(𝐷𝑖, 𝑗,𝑥 |𝐺𝑖, 𝑗 )

]
.

Let𝜔 denote the final value of the counter in bucket 𝐵(𝑖, 𝑗) when
the detection task is complete. Under the assumption that the arrival

probability of an item is constant, ranging from 1 to 𝜔 , we obtain

E(𝐷𝑖, 𝑗,𝑥 |𝜔) =
𝜔∑︁
𝑉=1

1

𝜔

1

(𝑉 × 𝑆) + 1 <

𝜔∑︁
𝑉=1

1

𝜔

1

𝑉 × 𝑆 ,

where 𝑉 and 𝑆 represent the value counter and bucket stability

counter of bucket 𝐵(𝑖, 𝑗), respectively.

Let 𝑝 (𝜔) denote the probability that 𝜔 is any of the values in the

[𝑉 (𝑓 ) −𝐺𝑖, 𝑗 ,𝑉 (𝑓 )] range, then

E(𝐷𝑖, 𝑗,𝑥 |𝐺𝑖, 𝑗 ) <
𝑉 (𝑓 )−1∑︁

𝜓=𝑉 (𝑓 )−𝐺𝑖,𝑗

𝑝 (𝜔)
𝜔∑︁
𝑉=1

1

𝜔

1

𝑉 × 𝑆

≤
𝑉 (𝑓 )−1∑︁

𝜓=𝑉 (𝑓 )−𝐺𝑖,𝑗

𝑝 (𝜔)
𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 (𝑓 ) −𝐺𝑖, 𝑗
1

𝑉 × 𝑆 =
1

𝑉 (𝑓 ) −𝐺𝑖, 𝑗

𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆 .

Then we get

E


𝐺𝑖,𝑗∑︁
𝑥=1

𝐷𝑖, 𝑗,𝑥

 = E
[
𝐷𝑖, 𝑗,𝑥𝐺𝑖, 𝑗

]
=

𝑉 (𝑓 )∑︁
𝐺𝑖,𝑗

𝑝 (𝐺𝑖, 𝑗 )
[
𝐺𝑖, 𝑗E(𝐷𝑖, 𝑗,𝑥 |𝐺𝑖, 𝑗 )

]
≤
𝑉 (𝑓 )−1∑︁
𝐺𝑖,𝑗=1

𝑝 (𝐺𝑖, 𝑗 ) ©­«
𝐺𝑖, 𝑗

𝑉 (𝑓 ) −𝐺𝑖, 𝑗

𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆
ª®¬ .

Since item 𝑓 is a heavy item with a large value, the distribution

of 𝐺𝑖, 𝑗 can be approximated as a Poisson distribution with a mean

of
𝑁
ℎ
𝑝 (𝐺𝑖, 𝑗 ) = 𝑁

ℎ
𝑒−

𝑁
ℎ
𝐺𝑖,𝑗

, where ℎ denotes the number of buckets

in each row. Consequently, we can derive the following:

E


𝐺𝑖,𝑗∑︁
𝑥=1

𝐷𝑖, 𝑗,𝑥

 ≤
𝑉 (𝑓 )−1∑︁
𝐺𝑖,𝑗=1

𝑁

ℎ
𝑒−

𝑁
ℎ
𝐺𝑖,𝑗 ©­«

𝐺𝑖, 𝑗

𝑉 (𝑓 ) −𝐺𝑖, 𝑗

𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆
ª®¬

=

𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆


𝑉 (𝑓 )

2∑︁
𝐺𝑖,𝑗=1

𝑁

ℎ
𝑒−

𝑁
ℎ
𝐺𝑖,𝑗

(
𝐺𝑖, 𝑗

𝑉 (𝑓 ) −𝐺𝑖, 𝑗

)

+
𝑉 (𝑓 )−1∑︁

𝐺𝑖,𝑗=
𝑉 (𝑓 )

2
+1

𝑁

ℎ
𝑒−

𝑁
ℎ
𝐺𝑖,𝑗

(
𝐺𝑖, 𝑗

𝑉 (𝑓 ) −𝐺𝑖, 𝑗

)
≤
𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆


𝑉 (𝑓 )

2∑︁
𝐺𝑖,𝑗=1

𝑁

ℎ
𝑒−

𝑁
ℎ
𝐺𝑖,𝑗 +

𝑉 (𝑓 )−1∑︁
𝐺𝑖,𝑗=

𝑉 (𝑓 )
2
+1

𝑁

ℎ
𝑒−

𝑁
ℎ

𝑉 (𝑓 )
2

𝐺𝑖, 𝑗

𝑉 (𝑓 ) −𝐺𝑖, 𝑗


≤
𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆

1 +
𝑉 (𝑓 )−1∑︁

𝐺𝑖,𝑗=
𝑉 (𝑓 )

2
+1

𝑁

ℎ
𝑒−

𝑁
ℎ

𝑉 (𝑓 )
2

𝐺𝑖, 𝑗

𝑉 (𝑓 ) −𝐺𝑖, 𝑗


≤
𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆

1 +
𝑉 (𝑓 )−1∑︁

𝐺𝑖,𝑗=
𝑉 (𝑓 )

2
+1

𝑁

ℎ
𝑒−

𝑁
ℎ

𝑉 (𝑓 )
2 𝑉 (𝑓 )


≤
𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆

[
1 +𝑉 (𝑓 )𝑁

ℎ

𝑉 (𝑓 )
2

𝑒−
𝑁
ℎ

𝑉 (𝑓 )
2

]
.

Since 𝑉 (𝑓 ) is a large value, the term 𝑁
ℎ

𝑉 (𝑓 )
2
𝑒−

𝑁
ℎ

𝑉 (𝑓 )
2 tends to

0, and

∑𝑉 (𝑓 )
𝑉=1

1

𝑉
can be approximated as ln(𝑉 (𝑓 )) + 𝜑 , where 𝜑

represents the Euler-Mascheroni constant, approximately 0.577.

Hence, we can derive the following:

E


𝐺𝑖,𝑗∑︁
𝑥=1

𝐷𝑖, 𝑗,𝑥

 ≤
𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉 × 𝑆 <
1

ln(𝑆)

𝑉 (𝑓 )∑︁
𝑉=1

1

𝑉
≈ 1

𝑙𝑛(𝑆) [ln(𝑉 (𝑓 )) + 𝜑] .
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Finally, we get the estimation error bound as

Pr

{
𝑉 (𝑓 ) −𝑉 (𝑓 ) ≥ ⌈𝛽𝑁 ⌉

}
≤ Pr

{
𝑉 (𝑓 ) ≤ 𝑉 (𝑓 ) − 𝛽𝑁

}
≤
E

[
𝐺𝑖,𝑗∑
𝑥=1

𝐷𝑖, 𝑗,𝑥

]
𝛽𝑁

≤ [ln(𝑉 (𝑓 )) + 𝜑]
𝛽𝑁 ln(𝑆) .

□

B EVALUATION
B.1 Detection with Different Thresholds
To assess the robustness of Stable-Sketch, we set the memory size

to 32KB and vary the threshold from 0.0001 to 0.0021 for heavy

item detection using a larger public trace (CAIDA 2019) and traces

with different levels of skewness (0.2 and 0.8). The CAIDA 2019

trace comprises 1.52M items, while the traces with skewness 0.2

and 0.8 consist of 7.53M and 7.34M items, respectively.

As illustrated in Figures 11(a)-(c), Stable-Sketch consistently

outperforms competitive approaches, MV-Sketch and CocoSketch,

across various threshold settings. This validates the effectiveness

and robustness of Stable-Sketch. In addition, we examine the ef-

fects of varying the threshold for persistent item detection (from

0.4 to 0.8). The results presented in Figure 11(d) demonstrate that

Stable-Sketch maintains its superiority over the most competitive

approach, On-Off Sketch. Furthermore, we observe a decreasing

trend in the accuracy of On-Off Sketch as the threshold value in-

creases. This can be attributed to the fact that, as the threshold

increases, the number of persistent items decreases. Under tight

memory allocation and excessive hash collisions, the naive replace-

ment strategy employed by On-Off Sketch results in numerous

persistent items being erroneously replaced by non-persistent ones,

thus leading to a decline in its detection performance.
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Figure 11: Detection performance under different thresholds.

B.2 Deep Diving into Stable-Sketch’s Operation
Stable-Sketch builds on three core design insights: replacing stored

items using multi-dimensional information, stopping hash oper-

ations on time and evicting items tracked in buckets based on a
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Figure 12: Estimation accuracy and update speed comparison
w/wo considering bucket stability (C stands for CAIDA).
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Figure 13: Accuracy and update speed comparison with dif-
ferent hash methods (C stands for CAIDA).

probability 𝐿(𝑓 ). Here, we take persistent item lookup as an exam-

ple and utilize the CAIDA traces to investigate the contribution of

each principle to Stable-Sketch’s performance.

B.2.1 Multi-dimensional Information. We set the memory size to

16KB. Figure 12(a) validates the importance of considering bucket

stability. Compared with a Stable-Sketch version focusing on single-

dimensional information only (persistence value), Stable-Sketch

with stability can deliver more protection to persistent items from

being expelled by non-persistent ones under reduced memory sizes,

with a reduction of estimation error by 72.82% on average. Though

recording bucket stability increases the storage overhead, as shown

in Figure 12(b), the update throughput only experiences a slight

decrease, meaning that its advantage of guarding persistent items

out weights the overhead.

B.2.2 Abandoning Redundant Hash Operations. Compared with

sketches that map each item to all rows, abandoning hash opera-

tions on time can save memory space and thus allows storing more

items. As shown in Figure 13, this leads to a 7.35% increase in de-

tection accuracy. Moreover, eliminating redundant hash operations

reduces update time, leading to a 17.62% improvement in update

throughput.

B.2.3 Different Replacement Probabilities. Stable-Sketch leverages

a default decay probability of
1

𝐵 (𝑅,𝑀 ) .𝑉 ×𝐵 (𝑅,𝑀 ) .𝑆+1 to evict exist-

ing items recorded in buckets. Here, we evaluate the impact of

different replacement methods on Stable-Sketch’s detection per-

formance using the CAIDA 2015 and 2016 traces. Specifically, we

examine three forms: 1) Additive denominator (Add) replacement,

which replaces the recorded item directly with a probability of

1

𝐵 (𝑅,𝑀 ) .𝑉+𝐵 (𝑅,𝑀 ) .𝑆+1 ; 2) Expo_Multi, which decays the value counter
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Figure 14: F1 score with different replacement strategies.
is decreased based on the probability 𝜅𝐵 (𝑅,𝑀 ) .𝑉 ×𝐵 (𝑅,𝑀 ) .𝑆 (where

𝜅 is a constant set to 1.08 [8]); when the value counter reaches 0,

the new incoming item replaces the incumbent item tracked in the

bucket; and 3) Expo_Add, which decays the value counter with a

probability of 𝜅𝐵 (𝑅,𝑀 ) .𝑉+𝐵 (𝑅,𝑀 ) .𝑆 . As listed in Figure 14, we find

that using our default replacement probability provides the highest

F1 score for Stable-Sketch compared to the other three replacement

methods. On average, this default approach exhibits an improve-

ment of 19.92%, 27.5% and 34.31% in terms of F1 score over the Add,

Expo_Multi and Expo_Add methods over the CAIDA 2015 trace,

respectively.

B.3 Stable-Sketch with Fingerprint
Stable-Sketch tracks an item’s key in each bucket, but a longer key

(such as 5-tuples instead of source-destination pairs in network

task scenarios) can consume valuable memory resources. To opti-

mize memory usage, we propose a variant called Stable-Sketch
∗
,

which only tracks the item’s fingerprint instead of the entire key.

Fingerprint ℎ𝑔 (𝑓 ) of an item 𝑓 is a hash value produced by a spe-

cific hash function ℎ𝑔 . Although it is possible for hash collisions

to occur among items, the likelihood of such events is relatively

low and can be neglected. If the fingerprint size is set to 32 bits

and there are 340 buckets in each row, for a dataset with 1,000,000

items, the probability of fingerprint collisions is 6.85 × 10−7, which
is considerably low [21].

Figure 15 demonstrates the detection accuracy and update speed

for heavy item lookup using the CAIDA 2015 trace. The results in

Figure 15(a) indicate that using fingerprints improves the recall by

4.83% under tight memory settings (16KB). This is due to the more

efficient usage of memory resources, which allows Stable-Sketch

to track more items. Precision is not shown since it remains high

regardless of whether fingerprints are used or not. Overall, the F1

score is improved by 2.8% with a 16KB memory allocation. How-

ever, using fingerprints slows down the update throughput due to

the additional hash operation required to obtain the fingerprint

value of each item. As shown in Figure 15(b), compared to vanilla

Stable-Sketch, Stable-Sketch
∗
sees an average update throughput

drop of 3.77%. The query time also increases, since it needs extra

hash operations to retrieve items. This fingerprint-based Stable-

Sketch
∗
variant provides users with an alternative option, if detec-

tion accuracy is to be prioritized. Otherwise, opting for the default

Stable-Sketch enables striking a good balance between detection

accuracy and update throughput.

B.4 Stable-Sketch Deployment in Practice
In this subsection, we demonstrate that it is feasible to deploy

Stable-Sketch in practice with limited overhead. Specifically, we im-

plement Stable-Sketch into a programmable switch with P4 [59], a
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(a) Recall and F1 score.
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Figure 15: Detection accuracy and update speed comparison
with/without fingerprint, as a function of memory size.

Table 2: Resource usage of Stable-Sketch.

Resource Usage Percentage

Match Crossbars 96 6.81%

Hash Bits 156 3.41%

SRAM (KiB) 27 3.07%

ALUs 9 20.46%

Gateways 23 13.06%

VLIW Instructions 25 7.1%

high-level language for programming protocol-independent packet

processors, and compile it with P4 Studio [60]. Compared to other

hardware such as Field Programmable Gate Arrays (FPGAs) [61],

programmable switches are renowned for their high processing

speeds and strict design constraints. We construct each row as an

array of registers. For each row, we use different hash functions

to map items, like crc_16, crc_16_dect, and crc_16_dds_110. For an
item that fails to find an available bucket, we resubmit this item

once using the recirculation primitive, as the register can only be

accessed once during each update process [30, 56]. Then, we test

whether this newly arrived item can replace the recorded item

based on the value counter and bucket stability. Considering the

memory access limitation of the programmable switch, we track

the item key and the value of counters into temporary metadata

when a hash collision occurs. Then we can find the bucket with the

smallest frequency value by comparing these values individually.

If the replacement is successful, the key field in the corresponding

register will be rewritten with the key of the newly arrived item;

otherwise, the switch will discard the new arrival item directly.

Table 2 lists the switch resource usage of Stable-Sketch for heavy

hitter detection. The operation of Stable-Sketch is achieved by

the match-action pipeline, which requires the crossbar to extract

match keys and action inputs from the item header vector and

thus consumes 6.81% of match crossbar resources. Due to the hash

operation for each item, Stable-Sketch accounts for 3.41% of the hash

bits. Each pipeline stage owns SRAM that can be used to maintain

state, like counter arrays [58]. Stable-Sketch occupies 3.07% of the

total SRAM resources. In addition, the ALU (arithmetic logic unit)

can be employed for counter update operations such as counter

increment. Stable-Sketch uses 9 ALUs, which takes up 20.46% of the

total ALUs. For other types of resources, the maximum demand of

Stable-Sketch is nomore than 14% of the entire budget. These results

confirm that Stable-Sketch leaves adequate resources to be used

for other applications, indicating that it is feasible to deploy our

solution on commercial hardware, such as programmable switches.
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