
• Why did you choose this course?

• Why did you choose the clothes you!re wearing?

• Why are you sitting where you are?

• Why are you reading this?

• Who or what made the decision??? 

Decision Making

Readings: Gold and Shadlen, the neural 
basis of decision making, 2007

• decision making can be thought of as a form of statistical inference.

• decide = select among competing hypotheses h1, h2 (and may be 

more)

• elements of this decision process:

Theoretical framework: statistical inference

! priors P(h1)=  Probability that h1 is correct before collecting any 

evidence =  a bias (or prejudice)

! evidence (e) = information we can collect in factor of h1. Only 

useful when we know how likely it is to be true if the hypothesis is 

true i.e. if we have conditional probabilities such as P(e| h1) = the 

likelihood

! value(v) = subjective costs and benefits for each outcome.

•  Bayes! theorem is a result in probability theory 

that relates conditional probabilities P(A|B) and 

P(B|A)

• Given the likelihood and the prior, we can 

compute the posterior.

Bayes’ Theorem

P (h1|e) =
P (e|h1)P (h1)

P (e)
Reverend Thomas 
Bayes, 1702- 1761



To decide, compare probabilities of each hypothesis

>

P (h1|e) =
P (e|h1)P (h1)

P (e)

P (h2|e) =
P (e|h2)P (h2)

P (e)

•  Choose h1 if:

Likelihood ratio test

P (e|h1)
P (e|h2)

>
P (h2)
P (h1)

•   Just re-organizing the terms of this inequality: - choose  h1 if:

• This is known as the likelihood ratio test = optimal decision rule.   

• If the prior probabilities are equal (0.5), choose  h1 if

LR =
P (e|h1)
P (e|h2)

> 1

Values (1)

with

•     benefit of choosing h1 = 

value of choosing h1 if h1 is true (V11) 

+ value of choosing h1 if h1 is wrong 

(V12) given the evidence.

• benefit of choosing h2 = 

value of choosing h2 if h2 is true (V22)

 + value of choosing h2 if h2 is wrong 

(V21) given the evidence.

• So we now want to compare: 

V11P (h1|e) + V12P (h2|e) V22P (h2|e) + V21P (h1|e)

run or not?

• It might be that the costs and benefits associated with the various 

outcomes are very different. 

Values (2)

•   rewriting this gives the general (optimal) rule: choose h1 if :

P (e|h1)
P (e|h2)

>
(V22 − V12)P (h2)
(V11 − V12)P (h1)

•   which has also the form of comparing the LR with a threshold.

•  Signal detection theory:  LR (or any monotonic function of it - e.g. 

LOG)  provides an optimal "decision variable!. 



• This framework can be extended to the situation where we have 

multiple pieces of evidence e1, e2, ..en observed over time.

• Here we allow the decision variable to "accumulate the evidence! in 

time:

Sequential Analysis
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allowed psychologists to infer from behavior
properties of the underlying sensory repre-
sentation (Green & Swets 1966). Later, pi-
oneering work in retinal and somatosensory
physiology established SDT as a valuable tool
to relate the measured responses of sensory
neurons to the limits of detection and discrim-
ination (for reviews see Parker & Newsome
1998, Rieke et al. 1997). More recently, it has
begun to shed light on decision mechanisms.

According to SDT, the decision maker ob-
tains an observation of evidence, e. In per-
ceptual psychophysics, e is derived from the
senses and might be the spike count from
a neuron or pool of neurons, or a derived
quantity such as the difference between spike
rates of two pools of neurons. It is caused
by a stimulus (or state) controlled by the ex-
perimenter; e.g., h1 (stimulus present) or h2

(stimulus absent). If e is informative, then its
magnitude differs under these states. How-
ever, e is also corrupted by noise. Thus e is
a random variable described by a distribution
whose parameters (e.g., the mean) are set by h1

or h2. These conditionalized distributions de-
scribe the likelihoods P (e | h1) and P (e | h2).
Unlike standard statistical methods, the ob-
ject of SDT is not to determine whether the
parameters describing these distributions are
different but instead to decide which of the
states gave rise to the observation e.

The decision requires the construction of
a DV from e. For binary decisions, the DV is
typically related to the ratio of the likelihoods
of h1 and h2 given e: l12(e) ≡ P (e | h1)/P (e | h2).
A simple decision rule is to apply a criterion to
the DV; e.g., choose h1 if and only if l12(e) ≥ β,
where β is a constant. A strength of SDT is
that a variety of goals can be reached by simply
using different values for the criterion. If the
goal is accuracy and the two alternatives are
equally likely, then β = 1. If the goal is accu-
racy and the prior probability favors one of the
hypotheses, then β = P (h2)/P (h1). If the goal
is to maximize value (where vij is the value as-
sociated with choice Hj when hypothesis hi is
true), then β = (v22 + v21)P (h2)

(v11 + v12)P (h1) . For more details,
the reader should refer to the first chapter of

LR: likelihood ratio

logLR: logarithm of
the likelihood ratio

Green & Swets (1966), where these expres-
sions are derived.

SDT thus provides a flexible framework
to form decisions that incorporate priors,
evidence, and value to achieve a variety of
goals. Unfortunately, this flexibility also poses
a challenge to neurobiologists. The above ex-
pressions were obtained assuming that the DV
is the likelihood ratio (LR), l12 (e). However,
equivalent expressions (that is, those that will
achieve the same goals) can be obtained (by
scaling β) using any quantity that is monoton-
ically related to the LR. In other words, these
equations do not constrain the priors, e, value,
the DV, or β to take on any particular form,
only that they interact in a certain way. Thus
it is difficult to assign a quantity measured in
the brain to any one of these elements with-
out knowing how the others are represented.
One powerful approach to unraveling this co-
nundrum is to exploit differences in the time
scales of these elements in decision formation.

Sequential analysis. SA is a natural exten-
sion to SDT that accommodates multiple
pieces of evidence observed over time. SA
assumes that the decision has two parts: the
usual one between h1 and h2, and another
about whether it is time to stop the process
and commit (Figure 2). In its most general
form, SA allows the procedure for construct-
ing the DV and the decision rule to be adjusted
with each new sample of evidence. However,
many decisions can be understood by assum-
ing fixed definitions for these elements. A sim-
ple DV constructed from multiple, indepen-
dent pieces of evidence, e1, e2, . . . , en, is the
logarithm of the LR (logLR, or “weight of ev-
idence”), which is just the sum of the logLRs
associated with each piece of evidence:

log LR12 ≡ log
P (e1, e2, . . . , en|h1)
P (e1, e2, . . . , en|h2)

=
n∑

i=1
log

P (ei | h1)
P (ei | h2)

. 1.

A simple stopping rule is to update this DV
with new pieces of evidence until reaching a
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•   When the DV reaches a threshold (which possibly reflects priors and 

values), a decision is made.

• This is known as the sequential probability ratio test (optimal rule).
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Figure 2
Sequential analysis. (a) General framework. The decision is based on a sequence of observations. After
each acquisition, a DV is calculated from the evidence obtained up to that point; then more evidence can
be obtained or the process can be terminated with a commitment to H1 or H2. In principle, both the
fi (· · ·)s, which convert the evidence to a DV, and the criteria can be dynamic (e.g., to incorporate the cost
of elapsed time). e0 can be interpreted as the evidence bearing on the prior probability of the hypotheses.
(b) In random walk models, the DV is a cumulative sum of the evidence. The bounds represent the
stopping rule. If e is a logLR, then this process is the SPRT (see The Sequential Probability Ratio Test).
When the evidence is sampled from a Gaussian distribution in infinitesimal time steps, the process is
termed diffusion with drift µ, or bounded diffusion. (c) In the race model, two or more decision processes
represent the accumulated evidence for each alternative. When there are two alternatives and the
accumulations are inversely correlated, the race model is nearly identical to a symmetric random walk.
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Random Walk model (1)

• Related to this framework are the random walk and race models of decision 

making developed by psychologists to explain behavioral data.

• The Decision Variable is the cumulated sum of the evidence. The bounds 

represent the stopping rule.

• If e is log LR, then this model = sequential prob ratio test.
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Figure 2
Sequential analysis. (a) General framework. The decision is based on a sequence of observations. After
each acquisition, a DV is calculated from the evidence obtained up to that point; then more evidence can
be obtained or the process can be terminated with a commitment to H1 or H2. In principle, both the
fi (· · ·)s, which convert the evidence to a DV, and the criteria can be dynamic (e.g., to incorporate the cost
of elapsed time). e0 can be interpreted as the evidence bearing on the prior probability of the hypotheses.
(b) In random walk models, the DV is a cumulative sum of the evidence. The bounds represent the
stopping rule. If e is a logLR, then this process is the SPRT (see The Sequential Probability Ratio Test).
When the evidence is sampled from a Gaussian distribution in infinitesimal time steps, the process is
termed diffusion with drift µ, or bounded diffusion. (c) In the race model, two or more decision processes
represent the accumulated evidence for each alternative. When there are two alternatives and the
accumulations are inversely correlated, the race model is nearly identical to a symmetric random walk.
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Random Walk model (2)

•  stochastic differential equation of the form (Wiener process)

•  or  (Ornstein Uhlenbeck process) - similar but assume a decay or leakage 

in the accumulation process.

τ
d

dt
v(t) = −v + e(t) + η(t)

τ
d

dt
v(t) = e(t) + η(t)

Random Walk model (3)

• Well-studied mathematically (diffusion processes)

• many variants (discrete time, continuous time, leaky integration)

• These models have been compared systematically and shown to 

successfully account for [Smith & Ratcliff, 2004]:

- Distribution of Reaction Times

- Speed-accuracy tradeoff:  decreasing the boundary has the effect of 

increasing speed and decreasing accuracy.

- Error response RTs (sometimes error responses can be very quick..).



• Another variant is the race model

•Two or more decision processes represent the accumulated evidence 

for each alternative.

Race Model
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Figure 2
Sequential analysis. (a) General framework. The decision is based on a sequence of observations. After
each acquisition, a DV is calculated from the evidence obtained up to that point; then more evidence can
be obtained or the process can be terminated with a commitment to H1 or H2. In principle, both the
fi (· · ·)s, which convert the evidence to a DV, and the criteria can be dynamic (e.g., to incorporate the cost
of elapsed time). e0 can be interpreted as the evidence bearing on the prior probability of the hypotheses.
(b) In random walk models, the DV is a cumulative sum of the evidence. The bounds represent the
stopping rule. If e is a logLR, then this process is the SPRT (see The Sequential Probability Ratio Test).
When the evidence is sampled from a Gaussian distribution in infinitesimal time steps, the process is
termed diffusion with drift µ, or bounded diffusion. (c) In the race model, two or more decision processes
represent the accumulated evidence for each alternative. When there are two alternatives and the
accumulations are inversely correlated, the race model is nearly identical to a symmetric random walk.
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•  Different properties

• Anything like that in the brain? 

• yes

Mike Shadlen, Paul Glimcher

(and others)

• study decision on 

perceptual tasks

Random Dots Motion Direction Task

• monkey decides between 2 possible opposite directions, and saccade 

to signal his choice whenever he is ready.

• task difficulty is controlled by varying coherence level

• decision = problem of movement selection

ANRV314-NE30-21 ARI 21 May 2007 13:44

Aligning the responses to saccade initia-
tion (Figure 5c, right) reveals a correlate of
commitment: a threshold rate of firing be-
fore Tin choices. When separated by motion
strength, the curves overlap considerably just
prior to the saccade and thus make it im-
possible to identify a single point of conver-
gence because each motion strength leads to
a broad distribution of RTs. When these same
responses are grouped by RT instead of mo-

tion strength, they achieve a common level
of activity ∼70 ms before saccade initiation
(arrow in Figure 5d ). Thus the decision
process appears to terminate when the neu-
rons associated with the chosen target reach
a critical firing rate. When the monkey
chooses Tout, another set of neurons—the
ones with the chosen target in their RFs—
determines the termination of the decision
process.
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[Shadlen and Newsome 2001]



neural basis of the perceptual decision ?

• a sensory stage where the evidence is collected.  MT seems to fulfill the 

role. 

• a decision stage "reading-out! the sensory stage. 

• These neurons must accumulate the information over time to explain 

performance accuracy

• A sustained activity is needed to compare alternatives presented 

successively in time.

• neurons in parietal and frontal "association! cortex

• possibly the neurons that are linked to the specific behavioral response 

(= the preparation of the saccade)

Accumulation of Evidence in LIP (1)

• LIP receives inputs from MT and MST, outputs 

in FEF and SC (generation of saccades)

• LIP is implicated in selection of saccade targets, 

working memory, intention etc..

• Record neurons which have one of the choice 

targets in the response field and the other outside.

developed during the past 40 years in mathematical
psychology. Two broad classes of model have been
developed that apply to different kinds of decisions. One
class, of sequential-sampling models, applies to speeded
decisions in perceptual and memory tasks [1,21]. These
decisions are typically made within a second or so. A
second class, based on economic concepts of expected
utility, applies to complex decisions among differently
valued alternatives [2]. Both have been linked to recent
neurobiological findings but only the former is discussed
here. The link between neurobiology and utility-based
decision theories is discussed in Refs [7,22].

Figure 2 summarizes the main sequential-sampling
models and shows two successful models of this kind. The
models both assume that decisions are based on accumu-
lated noisy information about the stimulus but they differ
in how the accumulation is assumed to occur. In random-
walk models, the information is accumulated as a single
total: information in favor of one response is evidence
against the other [23,24]. In accumulator models and
counter models, information favoring the two responses is
accumulated separately [25–29]. The Wiener diffusion

and Ornstein–Uhlenbeck diffusion models on the left of
Figure 2a are continuous time counterparts of random
walks [30–32].

The Wiener diffusion model, shown in Figure 2b, has
successfully accounted for RT and accuracy data from a
variety of behavioral paradigms [33–39]. It assumes that a
decision is the result of continuously accumulating noisy
stimulus information until one of two response criteria is
reached. Because of moment-by-moment fluctuations in
noise in the decision process (the irregular sample paths in
the figure) and trial-to-trial variability in the quality of
information about the stimulus, the process sometimes
terminates at the wrong criterion, resulting in an error. If
the information quality is low, the rate of accumulation is
slower and errors and are more likely than if the
information quality is high. RT distributions are predicted
to be right-skewed because of the geometry of diffusion
process paths: equal size differences in accumulation rate
between pairs of sample paths are projected as unequal
size differences on the decision boundary (Figure 2b). The
Ornstein–Uhlenbeckmodel is similar to theWienermodel
but assumes decay or ‘leakage’ in the accumulation

Figure 1. Neural and behavioral correlates of eye movement disorders. (a) Some neural sites from which decision-related activity has been recorded. Patterns of neural fir-
ing that predict the time-course of behavioral decisions have been recorded in the frontal eye field (FEF), lateral interparietal area (LIP), middle temporal area (MT) and
superior colliculus (SC). (b–d) Some tasks used to study perceptual decisions. (b) Oddball task. Eight colored stimulus patches are illuminated in a circle around the fixation
point: the monkey makes a saccade (red arrow) to the odd-colored patch. Task difficulty is manipulated by varying the similarity of the colors of the odd element and the
distractors. (c) Coherent-motion detection task. An array of moving dots, some moving in random directions and some moving to the left or to the right, is presented cen-
trally: the monkey makes a saccade to a left or right target to indicate the direction of motion. Task difficulty is manipulated by varying the proportion of coherently moving
dots. (d) Dot separation task. One of a set of stimulus lights arranged vertically above a fixation light is illuminated. The monkey makes a saccade to the left or right to indi-
cate a large or small distance between the stimulus light and fixation. Task difficulty is manipulated by varying the position of the stimulus light relative to the middle of the
set of stimulus lights. (e) Neural activity associated with stimulus selection has been recorded in LIP, from sensory neurons in FEF, and from prelude or buildup neurons in
SC. Early stimulus-linked activity does not discriminate between decision alternatives. Later, cells associated with the selected stimulus or the preferred direction of motion
show an increased or maintained level of firing. Cells associated with the nonselected stimulus or the nonpreferred direction show a decreased level of firing. The growth
of discriminative information represented by the difference in firing rates occurs more rapidly for easily discriminated stimuli (strong) than for less easily discriminated
stimuli (weak). (f) Response time (RT) is predicted by the time at which activity in LIP or in FEF motor neurons reaches a threshold. Rapid activity growth is associated with
fast responses; slow activity growth is associated with slow responses. The distribution of RT (g) is a reflection of variability in the time taken for the activity to reach
threshold.
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•  After ~ 220 ms, response reflects decision - faster rise for easier 

choices, decrease for opposite direction.

• Aligning responses to saccade initiation reveals correlate of 

commitment: a threshold rate at which the decision is made, ~ 70 

msec before saccade initiation.

Accumulation of Evidence in LIP (2)
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Aligning the responses to saccade initia-
tion (Figure 5c, right) reveals a correlate of
commitment: a threshold rate of firing be-
fore Tin choices. When separated by motion
strength, the curves overlap considerably just
prior to the saccade and thus make it im-
possible to identify a single point of conver-
gence because each motion strength leads to
a broad distribution of RTs. When these same
responses are grouped by RT instead of mo-

tion strength, they achieve a common level
of activity ∼70 ms before saccade initiation
(arrow in Figure 5d ). Thus the decision
process appears to terminate when the neu-
rons associated with the chosen target reach
a critical firing rate. When the monkey
chooses Tout, another set of neurons—the
ones with the chosen target in their RFs—
determines the termination of the decision
process.
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• Responses grouped by RT

• Responses achieve a common level of 

activity ~ 70 msec before saccade 

initiation

• When the monkey chooses other 

direction, another set of neurons (with 

chosen target in their RFs)  behave 

similarly

• as if the fact that they reach a 

threshold value "determines the 

termination of the decision process!

ANRV314-NE30-21 ARI 21 May 2007 13:44

Aligning the responses to saccade initia-
tion (Figure 5c, right) reveals a correlate of
commitment: a threshold rate of firing be-
fore Tin choices. When separated by motion
strength, the curves overlap considerably just
prior to the saccade and thus make it im-
possible to identify a single point of conver-
gence because each motion strength leads to
a broad distribution of RTs. When these same
responses are grouped by RT instead of mo-

tion strength, they achieve a common level
of activity ∼70 ms before saccade initiation
(arrow in Figure 5d ). Thus the decision
process appears to terminate when the neu-
rons associated with the chosen target reach
a critical firing rate. When the monkey
chooses Tout, another set of neurons—the
ones with the chosen target in their RFs—
determines the termination of the decision
process.
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Accumulation of Evidence in LIP (3)

[Gold and Shadlen 2007]



•  pattern of LIP activity matches prediction of diffusion/race models.

• rise of activity appears to reflect accumulation of evidence 

• evidence could come from a difference in activity of pools of MT 

neurons with opposite direction preferences, which was suggested to 

approximate the LogLR (Gold & Shadlen, 2001)

Accumulation of Evidence in LIP (4)

•  suggests that LIP neurons represent the decision variable ?

• implements a logLR test?

• How is the criterion / threshold set and what happens when it is 

reached?

Platt & Glimcher 1999 (1)

• monkeys cued by a color of a fixation stimulus to saccade on 1 of 2 

targets

• change the reward associated with each target (value) 

• vary the probability that a saccade to a target will be required (prior)

• offset of the responses of LIP neurons before and during presentation of 

the saccade target

• suggests that behavioral outcome and priors are also encoded.

Platt & Glimcher 1999 (2)

together, the results of these studies indicate that brain
areas implicated in the conversion of sensory judgements
into behavioral reports also encode the behavioral outcome
that can be expected from each available option on the
basis of prior experience. This makes sense because even
purely sensory discriminations require prior knowledge of
the goal of behavior in any context. Thus, expectations,
goals, and prior experience must, by necessity, be included
in any adaptive decision process. From the viewpoint 
of optimal design [37,38], it seems reasonable that 
neurons involved in the decision process would 
adjudicate current sensory inputs in the context of past
experience. Indeed, Gold and Shadlen [39••] recently 
proposed that neurons in parietal and prefrontal cortex
compute a decision variable that combines current sensory
evidence with estimates of behavioral value. The resultant
value represents the logarithm of the likelihood ratio of
one response over another, which is then compared to a 
criterion in order to decide upon a single behavioral
response [40]. 

These studies also indicate that motivational systems of
the brain are deployed when individuals make even simple
choices. Indeed, adaptive decision-making requires encod-
ing the outcome, either good or bad, of prior action. Signals
correlated with the reward outcome of events have been
found in the basal ganglia, including the activation of
dopaminergic neurons of the substantia nigra pars com-
pacta [41], and modulations in activity in the caudate

nucleus [42] and nucleus accumbens [43••,44•]. Such 
signals have also been uncovered in largely midline cortical
areas such as the orbitofrontal cortex [45,46•,47••], cingulate
cortex [48], and the supplementary eye fields [49••].
These areas presumably contribute to the extraction and
maintenance of representations of behavioral value upon
which future decisions may be informed (Figure 2).

Arbitration without a judge: conversion of analog
decision signals into a categorical response
Recent studies suggest that decisions are made by 
combining gradually accumulating sensory evidence, favoring
one alternative over others, with prior knowledge about
the likely consequences of each action. This process leaves
a signature in the activity of neurons at various stages in
sensory–motor pathways. But where does the decision
actually occur? Which regions of the brain convert neuronal
activity favoring competing alternatives into a single
behavioral response? A recent study by Gold and Shadlen
[50••] directly tested this question by applying microstim-
ulation to the FEF, while monkeys performed the random
dot motion discrimination task. As previously observed
[51], stimulation in the FEF during passive fixation
evoked a saccade of fixed direction and amplitude
(Figure 5a). Microstimulation applied while monkeys
judged motion direction in the random dot stimulus, 
however, evoked saccades that deviated systematically in the
direction reported by the monkey when no stimulation was
delivered (Figure 5a). More importantly, the magnitude of
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Figure 4

Neural correlates of behavioral value.
(a) Average firing rate of a single LIP neuron
plotted as a function of time, on trials in which a
saccade in the preferred direction (RF) of the
neuron was cued. Neuronal activity was greater
when a large reward was associated with the
cued saccade (red curve) than when a small
reward was associated with the same movement
(blue curve). Arrows indicate, successively, mean
times of instruction cue onset, central fixation
stimulus offset, and saccade onset in high (red)
and low (blue) reward blocks. (b) Neuronal
activity for a second LIP neuron was greater
when the cued movement was more probable
(red curve) than when the same movement was
less probable (blue curve). Conventions as in (a).
(c) When free to choose, monkeys shift gaze to
the target associated with the larger reward.
Relative reward size reflects the volume of juice
available for a saccade in the neuron’s preferred
direction, divided by the total volume of juice
available from both possible saccades, within a
block of trials. Data are from a single experiment.
(d) Average activity (± standard error) of a single
LIP neuron measured after target onset and
plotted as a function of relative reward size, for
trials in which the monkey shifted gaze in the
neuron’s preferred direction. Data are from the
same experiment as in (c). Adapted with
permission from [60]. RF, response field.
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together, the results of these studies indicate that brain
areas implicated in the conversion of sensory judgements
into behavioral reports also encode the behavioral outcome
that can be expected from each available option on the
basis of prior experience. This makes sense because even
purely sensory discriminations require prior knowledge of
the goal of behavior in any context. Thus, expectations,
goals, and prior experience must, by necessity, be included
in any adaptive decision process. From the viewpoint 
of optimal design [37,38], it seems reasonable that 
neurons involved in the decision process would 
adjudicate current sensory inputs in the context of past
experience. Indeed, Gold and Shadlen [39••] recently 
proposed that neurons in parietal and prefrontal cortex
compute a decision variable that combines current sensory
evidence with estimates of behavioral value. The resultant
value represents the logarithm of the likelihood ratio of
one response over another, which is then compared to a 
criterion in order to decide upon a single behavioral
response [40]. 

These studies also indicate that motivational systems of
the brain are deployed when individuals make even simple
choices. Indeed, adaptive decision-making requires encod-
ing the outcome, either good or bad, of prior action. Signals
correlated with the reward outcome of events have been
found in the basal ganglia, including the activation of
dopaminergic neurons of the substantia nigra pars com-
pacta [41], and modulations in activity in the caudate

nucleus [42] and nucleus accumbens [43••,44•]. Such 
signals have also been uncovered in largely midline cortical
areas such as the orbitofrontal cortex [45,46•,47••], cingulate
cortex [48], and the supplementary eye fields [49••].
These areas presumably contribute to the extraction and
maintenance of representations of behavioral value upon
which future decisions may be informed (Figure 2).

Arbitration without a judge: conversion of analog
decision signals into a categorical response
Recent studies suggest that decisions are made by 
combining gradually accumulating sensory evidence, favoring
one alternative over others, with prior knowledge about
the likely consequences of each action. This process leaves
a signature in the activity of neurons at various stages in
sensory–motor pathways. But where does the decision
actually occur? Which regions of the brain convert neuronal
activity favoring competing alternatives into a single
behavioral response? A recent study by Gold and Shadlen
[50••] directly tested this question by applying microstim-
ulation to the FEF, while monkeys performed the random
dot motion discrimination task. As previously observed
[51], stimulation in the FEF during passive fixation
evoked a saccade of fixed direction and amplitude
(Figure 5a). Microstimulation applied while monkeys
judged motion direction in the random dot stimulus, 
however, evoked saccades that deviated systematically in the
direction reported by the monkey when no stimulation was
delivered (Figure 5a). More importantly, the magnitude of
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Neural correlates of behavioral value.
(a) Average firing rate of a single LIP neuron
plotted as a function of time, on trials in which a
saccade in the preferred direction (RF) of the
neuron was cued. Neuronal activity was greater
when a large reward was associated with the
cued saccade (red curve) than when a small
reward was associated with the same movement
(blue curve). Arrows indicate, successively, mean
times of instruction cue onset, central fixation
stimulus offset, and saccade onset in high (red)
and low (blue) reward blocks. (b) Neuronal
activity for a second LIP neuron was greater
when the cued movement was more probable
(red curve) than when the same movement was
less probable (blue curve). Conventions as in (a).
(c) When free to choose, monkeys shift gaze to
the target associated with the larger reward.
Relative reward size reflects the volume of juice
available for a saccade in the neuron’s preferred
direction, divided by the total volume of juice
available from both possible saccades, within a
block of trials. Data are from a single experiment.
(d) Average activity (± standard error) of a single
LIP neuron measured after target onset and
plotted as a function of relative reward size, for
trials in which the monkey shifted gaze in the
neuron’s preferred direction. Data are from the
same experiment as in (c). Adapted with
permission from [60]. RF, response field.
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effect of reward

effect of prior

“understand the processes 
that connect sensation and 
action by revealing the 
neurobiological mechanisms 
by which decisions are made”

...
"an emerging transdisciplinary 
field that uses neuroscientific 
measurement techniques to 
identify the neural substrates 
associated with economic 
decisions”



Neuroeconomics

• Add neural data to the Study of Economic 

Decisions. For e.g., what do you prefer: 45 pesos or 

a gamble with a 50% chance of 100 pesos and 50% 

chance of nothing? 

• Utility Theory: subjective desirability

• Games Theory:  John von Neumann and Oscar 

Morgenstern (1944) 

mathematically capture behavior in strategic 

situations, in which an individual's success in 

making choices depends on the choices of others.

E.g. Prisoner!s Dilemna.

of that amount, as shown by the black line in
Fig. 1. A decision-maker for whom the
subjective value, or utility, of money grew
in this fashion would then determine the
desirability, or expected utility, of the St.
Petersburg lottery by multiplying the proba-
bility of a win on each flip by the utility of
the amount won on that flip, and thus he
might well be willing to pay less than /40 to
play this game.

From the point of view of a psychologist
attempting to understand and explain this
same phenomenon, it is the nature of risk
aversion and the psychological mechanisms
that this set of preferences reveals that
become the subject of explanatory study.
The psychological mechanism that accounts
for risk aversion in human subjects, for
example, has been shown to be more
sensitive to monetary losses than to mone-
tary gains. Further, psychologists have sug-
gested that subjective utilities are computed
with regard to somewhat arbitrary and
idiosyncratic monetary reference points, or
frames, set by yet other psychological pro-
cesses (3). Psychologists use observations
like these to argue that human choosers are
endowed with a particularly strong fear of
losses and that they weigh the merits of all
possible gains and losses relative to a
psychological benchmark: The psychological
approach seeks empirically to describe min-
imally complex behavioral tendencies, mod-
ules, or heuristics that can account for the
actions of human choosers.

A traditional neurobiological perspective
uses yet another approach: A hungry bird is
shown a tray that contains five millet seeds
and repeatedly permitted to fly to the tray
and eat the seeds. At a neurobiological level,
the study of this behavior begins with the
assumption that the visual stimulus of the
five seeds must somehow propagate through
the sensory system of the animal to trigger
activation in orienting circuits that move the
bird to the seeds. Next, the same bird is
permitted to fly to a second tray covered by a
piece of paper. When the bird displaces the
cover, half of the time it reveals 12 seeds and
half of the time it reveals nothing. Mecha-
nistically, the visual stimulus must again
trigger an orienting response, and presum-
ably in this case the strength with which
visual signals connect synaptically to the
orienting circuits reflects both the number of
seeds that the bird earns and the likelihood
that seeds will be found under the paper.
Lastly, both trays are presented, and the bird
is observed to fly toward the tray that may
contain 12 millet seeds. A standard neurobi-
ological explanation (4, 5) presumes that
under these circumstances the two different
behavioral circuits compete. In this case the
synapses that elicit an orienting response to
the covered tray are stronger and thus control

behavior. The neurobiological explanation
specifies the minimal neural circuitry re-
quired to account for the observed behavior
of the bird.

What is striking about explanations of
choice behavior by economists, psycholo-
gists, and neurobiologists is the different
levels at which they operate. The economic
approach attempts to describe globally all
choice behavior with a single logically con-
sistent formalism. The psychological ap-
proach examines the ways in which
subjective and objective estimates of value
differ and posits psychological modules that
can account for these observed behavioral
preferences. The neurobiological explanation
starts with the simplest possible neural

circuitry that can account for the simplest
measurable elements of behavior. It seems
obvious that these different levels of expla-
nation should be linked, but how can such a
linkage be accomplished? We argue that a
unified explanation of decision-making is
not only possible but has recently begun and
that, when the linkage between these three
levels of explanation has matured, a new,
more powerful decision science rooted in a
neuroeconomic approach will have been
developed.

A second claim we will make is that once
this reconstruction of decision science is
completed, many of the most puzzling
aspects of human behavior, aspects that
economic theory, psychological analysis, or
neurobiological deconstruction have failed to

explain, will become formally and mecha-
nistically explicable. The claim is, in essence,
that a decision science that simultaneously
engaged all three approaches would be more
heavily constrained and at the same time
would have much greater explanatory power
than do any of these three approaches
operating alone. We will see examples of
how this synthetic approach would operate in
principle and early attempts at synthetic
solutions below.

This reconstruction of the study of de-
cision is also going to be the appropriate
basis for a more ambitious theory that ex-
plains not just how we make decisions but
why. That such an explanation is necessary
and possible is indicated by the fact that
fundamental features of decision making are
common to many species. For example, risk
aversion as shown by the St. Petersburg
paradox has been described in many species.
Studies of birds making choices in risky
environments produce a behavior best de-
scribed by a utility function (Fig. 1) (6, 7).
We know that humans and birds deviated
from a common reptilian ancestor at least
200 million years ago, but this basic function
for choice has remained essentially un-
changed. Such commonalities make a clear
suggestion: A utility function of this type
probably is an efficient and evolved feature
of vertebrate choice. For example, Robson
(8) provides a justification of why a utility
function might be an evolutionary optimal
response to changing environments. Just as
information theory was used by Barlow (9)
to explain why animals as diverse as horse-
shoe crabs and cats use similar encoding
schemes in their visual systems, an econom-
ic theory that relates utility to Darwinian fit-
ness must serve as an overarching tool for
understanding vertebrate choice behavior.

Linking the Decision Sciences
Subjective desirability. The central concept
in modern economic theory is the notion of
subjective utility: Preferences must be de-
scribed as subjective properties of the
chooser. Surprisingly, the notion that prefer-
ences are represented in the nervous system,
that these preferences are subjective, and
that they guide the production of action has
only recently entered the neurobiological
mainstream. We believe that this has been a
critical flaw in neurobiological studies, be-
cause it is essential that economics, psy-
chology, and neuroscience acknowledge a
common phenomenological base to achieve
a reductive unification of the decision sci-
ences. The concepts that guide the behav-
ioral study of decision-making must also
guide the mechanistic study of that process.

In part, this preference-free approach
may have arisen from neurobiology’s roots
in the stimulus-response physiology of the

Value of a Gain
dollar, calories, milliliters
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Fig. 1. Bernoulli’s notion of subjective value or
utility. The black line plots the typical relation-
ship between objective and subjective valua-
tions of an action. As the objective value of a
gain increases, the subjective desirability, or
utility, grows more slowly. Bernoulli demon-
strated that this relationship could account for
the observation that humans are typically risk-
averse. The solid gray line plots a condition in
which subjective value grows more quickly than
objective value, a preference structure that
would yield risk-seeking behavior.
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Games Theory: The prisoner’s dilemma

• 2 suspects are arrested. Police have insufficient evidence for conviction, 
and visit each of them separately to offer the same deal. 

• If one testifies (defects) against the other and the other remains silent 
(cooperates), betrayer goes free and the silent accomplice receives the full 
10-year sentence. 

•If both remain silent, both prisoners are sentenced to only 6 months in jail.

•If each betrays the other, each receives a 5-year sentence. 

• What would you do?

•   a decision = process that weights priors, evidence, and value to 

generate a commitment

• Signal detection theory and sequential analysis provide a theoretical 

framework for understanding how decisions are formed

• Studies that combine behavior and neurophysiology have begun to 

uncover how the elements of decision formation are implemented in the 

brain

• Perceptual tasks are used to distinguish evidence and decision 

variable.

•  comparing a decision variable to a given threshold seems to be the 

basic mechanism of decision making

• Many open questions though ...

Summary 


