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ABSTRACT The role of intrinsic cortical connections in
processing sensory input and in generating behavioral
output is poorly understood. We have examined this issue in
the context of the tuning of neuronal responses in cortex to
the orientation of a visual stimulus. We analytically study a
simple network model that incorporates both orientation-
selective input from the lateral geniculate nucleus and
orientation-specific cortical interactions. Depending on the
model parameters, the network exhibits orientation selec-
tivity that originates from within the cortex, by a symmetry-
breaking mechanism. In this case, the width of the orien-
tation tuning can be sharp even if the lateral geniculate
nucleus inputs are only weakly anisotropic. By using our
model, several experimental consequences of this cortical
mechanism of orientation tuning are derived. The tuning
width is relatively independent of the contrast and angular
anisotropy of the visual stimulus. The transient population
response to changing of the stimulus orientation exhibits a
slow “virtual rotation.” Neuronal cross-correlations exhibit
long time tails, the sign of which depends on the preferred
orientations of the cells and the stimulus orientation.

Neurons in the primary visual cortex respond preferentially to
edges with a particular orientation. The input to the cortex is
provided by neurons in the lateral geniculate nucleus (LGN),
which respond independently of the stimulus orientation. The
mechanism for the generation of orientation selectivity in the
cortex is not fully known (1-8). According to the classical
model of Hubel and Wiesel (1), the preferred orientation (PO)
of a cortical cell originates from the geometrical alignment of
the circular receptive fields of the LGN neurons that are
afferent to it. The experimental evidence of this model is
ambiguous. The alignment of the receptive fields of the LGN
inputs to a cortical cell apparently parallels the cell’s PO (2).
However, suppression of cortical inhibition tends to consid-
erably degrade orientation tuning (3, 4), suggesting that cor-
tical circuitry plays an important role in shaping the relatively
sharp orientation tuning in the cortex. Furthermore, estimates
based on intracellular measurements indicate that most of the
orientation-selective excitatory input to cortical cells comes
from cortical feedback (6). Several models implicating cortical
inhibition have been proposed (for reviews, see refs. 7 and 8).
Their analysis, however, is hindered by the need to resort to
massive numerical simulations of the different models. Com-
putational complexity also precluded a detailed study of the
role of the cortical excitatory connections. An important
constraint on modeling orientation selectivity, which has not
yet been fully addressed, is the experimental finding that the
tuning width is relatively insensitive to the contrast of the
stimulus (9). Most experimental and theoretical studies of
orientation selectivity focus on the response properties of
single neurons. However, valuable insight into the cooperat-

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked “advertisement” in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

3844

ivity among cortical neurons can be gained from measure-
ments of the correlations between the responses of different
neurons (10). Theoretical predictions regarding the magnitude
and form of correlation functions in neuronal networks have
been lacking.

Here we study mechanisms for orientation selectivity by
using a simple neural network model that captures the gross
architecture of primary visual cortex. By assuming simplified
neuronal stochastic dynamics, the network properties have
been solved analytically, thereby providing a useful framework
for the study of the roles of the input and the intrinsic
connections in the formation of orientation tuning in the
cortex. Furthermore, by using a recently developed theory of
neuronal correlation functions in large stochastic networks, we
have calculated the cross-correlations (CCs) between the
neurons in the network. We show that different models of
orientation selectivity may give rise to qualitatively different
spatiotemporal patterns of neuronal correlations. These pre-
dictions can be tested experimentally.

Model

We consider a network model with an architecture of a cortical
hypercolumn. It consists of Ng excitatory neurons and N
inhibitory neurons that respond selectively to a small oriented
visual stimulus in a common receptive field. The neurons are
parameterized by an angle 6, ranging from — /2 to + /2, that
denotes their POs. The interaction between a presynaptic
excitatory neuron 6’ and a postsynaptic excitatory or inhibitory
neuron 6 is equal to Ng'E(8 — 6'). Similarly, the interaction
between a presynaptic inhibitory neuron and a postsynaptic
neuron is Ny (6 — ). The functions E(8 — 6') and I(0 — 6')
represent the fact that the strength of the interactions between
two orientation columns depends on the difference between
their POs. The synaptic input from the LGN to a neuron 6 is
denoted as A°*(6 — 6y), where 6 is the orientation of the
external stimulus. Neurons switch stochastically between a
quiescent state [denoted as S(6) = 0], representing a state with
background firing rate (=5 spikes per sec), and an active state
[S(6) = 1], representing a state with saturated firing rate (=500
spikes per sec). The transition rates between these states are
governed by a sigmoidal gain function, g[k(6, t)], where h(6, t)
is the total synaptic input to the neuron 6 at time 7. By assuming
that the number of neurons is large and that they cover
uniformly all the angles, the activity profile in the network at
time ¢ can be represented by a continuous function m(6, t), 0
= m = 1. This function denotes the mean activity level, relative
to the saturation activity level, of the neurons with POs in the
neighborhood of 6, at time . Note that since the synaptic inputs
to the excitatory and the inhibitory neurons in our model are
the same, m(0, t) describes the mean activity levels of both
types of neurons.

In the limit of a large network, m(6, t) obeys the following
deterministic mean-field equations:

Abbreviations: LGN, lateral geniculate nucleus; PO, preferred orien-
tation; CC, cross-correlation.
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d
o7 m(0,t) = —m(6,t) + g[h(6,1)], 1]

where ) is a microscopic characteristic time (a few millisec-
onds), and the total synaptic input A(86, ¢) is

+ /2
h(6,1t) = f d?el(o - 0)m(0',6) + h*™(6 — 0). [2]
—m/2

Here J(6 — 6') represents the net interaction between neurons
6 and 6, ie.,J(6 — 0') = E(6 — 6') + I(6 — 6'). We choose
E(6) = Ey + Excos(26) and I(0) = —Ip — I,cos(26) with Eq =
E; = 0,1y = I, = 0. This choice implies that both the excitatory
interactions and the inhibitory interactions are maximal for
orientation columns with similar POs. This is in accord with
the observation that the excitatory and inhibitory postsynaptic
potentials to a cell have similar tuning (11, 12). The net
interaction is

J(6) = —Jo + Jocos(26), [31

withJo = Iy — Eg andJ; = E; — I, both assumed to be positive.
The constant Jy represents a uniform all-to-all inhibition; J,
measures the amplitude of the orientation-specific part of the
interaction. Neurons with similar POs are more strongly
coupled excitatorily than neurons with dissimilar ones. The
external input is taken as

h™(0) =c[1 — &+ & cos(20)], [4]

with 0 < ¢ = 1/2. The parameter ¢ denotes the magnitude of
the angular anisotropy of the input. The case € = 0 denotes the
limit where the input to the cortex is fully isotropic. The
coefficient c measures the average amplitude of the input and
will be referred to as the stimulus contrast. Finally, we use a
semilinear gain function, i.e., g(k) = 0 for h =< T, g(h) = B(h
— T)forh =T,andg(h) = 1for A = T + B~!. The parameter
T is the threshold, which will be taken as 1, and B is the gain
factor. This reflects the experimental finding that neuronal
responses exhibit a sharp threshold contrast below which they
vanish. Above threshold the mean firing rate of the neuron
increases roughly linearly with the contrast. The slope of this
rise is represented in our model by the constant 8. Finally, the
response saturates at high contrasts (13). The particular func-
tional forms of the interactions, the LGN input and the gain
function were chosen for the sake of simplicity. More general
forms yield a behavior that is qualitatively similar to the
present model.

Mechanisms for Orientation Selectivity

Mean-Field Solution. In the steady state, m(6) is of the form
m(6) = M(6 — 6,), where M(6) peaks at 6 = 0. It represents
the activity profile of the network relative to the orientation of
the stimulus. Thus, M(0) also represents the tuning curve of a
neuron, centered at its PO. This function is given by the
solution of the mean-field equation M(6) = g[H(6)] with H(6)
being the local field, Eq. 2, centered at 6. Its value is H() =
(ec + Jom2)cos(26) + c(1 — &) — Jomo, where mg and m, are
the zeroth and the second Fourier coefficients of M(6). The
order parameter mo measures the neuronal activity averaged
over the whole network, whereas m, measures the variation of
this activity across the different columns. Self-consistent equa-
tions for mo and m, are derived by evaluating the Fourier
transform of M(6). The resultant form of M(6) is M(8) = B(ec
+ Jom3)[cos(20) — cos(26¢)] for 161 < ¢ and zero otherwise
(see examples in Fig. 2). The cutoff angle 6c, which is
determined by the condition H(*6c) = 1, is half of the full
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width of the tuning curve and will be denoted as the tuning
width. The above solution holds for suprathreshold contrast, ¢
> 1. Otherwise, M(6) is zero. In the following, we study the
orientation tuning properties of the steady-state solution. In
particular, we examine the dependence of the tuning width on
the stimulus contrast, ¢, and anisotropy, &, for different ranges
of values of the connectivity parameters.

Hubel and Wiesel Scenario. The simplest scenario for
orientation tuning is based on the Hubel-Wiesel mechanism.
In the context of our model, this scenario corresponds to the
case where the only synaptic input is coming from the LGN and
this input is strongly anisotropic. Hence, the cortical local
interaction J(6) is zero and ¢ is substantially bigger than zero.
The dependence of the tuning width 6c on c in this case is
shown in Fig. 14 for different values of . Near threshold (i.e.,
for ¢ — 1), 6c vanishes, signaling the sharpening of the tuning
width, relative to the input, by the thresholding operation of
the cortical neurons. This, however, results in a strong depen-
dence of the width on the contrast. As c increases, 6¢c grows and
beyond a certain value saturates at its maximum value /2,
which corresponds to the situation where all the neurons are
activated by all stimuli.

Uniform Inhibition. A simple cortical mechanism for sharp-
ening the orientation tuning is based on isotropic cortical
inhibition. This scenario corresponds in our model to Jo > 0
and J> = 0. In this case, the external input of each neuron has
to overcome an effective enhanced threshold that increases
with ¢ because of the increase of the inhibitory feedback. Thus,
even for ¢ >> 1, the inhibition may provide a sufficiently potent
threshold to sharpen the tuning width. This is clearly seen in
Fig. 1B (dashed line). Nevertheless, there is a strong depen-
dence of the width on the contrast c. In addition, the width
depends strongly on the anisotropy of the input, &. In partic-
ular, when ¢ is small, 6c = /2 for large c¢. This is shown in Fig.
1C (dashed line).

Marginal Phase. In the cases studied above, the anisotropy
of the input to the cortex is the only source of orientation
specificity. Can orientation specificity be generated by cortical
interactions alone—even in the absence of significant aniso-
tropy in the external input? To answer this question, we have
studied the case of ¢ = 0 with Jy and J, > 0. The assumed
rotational symmetry of the cortex implies that when & = 0,
there is always a homogeneous solution, M(6) = mo, which
agrees with the naive expectation that the orientation tuning
disappears when the external stimulus is isotropic. However,
the equations yield also an inhomogeneous solution, provided
that the angular modulation of the cortical interactions, J5, is
big enough, J, > 2/B. This solution represents a spontaneous
generation of orientation tuning. It can be written as m(6) =
M(6 — &), where the angle ¢, which determines the location
of the peak in m(6), is arbitrary. This means that there is a
continuum of stable states: they all have identical orientation
tuned activity profiles, but they differ in the location of their
peaks. The overall magnitude of m(6) is determined by ¢ but
the shape of the activity profile is determined only by the
cortical interactions. In particular, the width of m(6) is inde-
pendent of ¢ but strongly depends on the magnitude of J,. The
bigger J,, the smaller the width. We denote this solution a
marginal phase because there are no barriers between the
different attractors. This implies that the motion from one
attractor to another is easier than motions in other directions
of phase space. When the marginal solution exists, the naive
homogeneous solution is unstable.

In reality, the location of the peak of the activity is not
arbitrary but is determined by the orientation of the external
input. Therefore, in a realistic implementation of the last
scenario € should be assumed to be small but nonzero. Since
¢ is small, the main effect of the anisotropy of the input is to
select among the continuum of possible states that state in
which the location of the peak in the activity matches the
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Fic. 1. Dependence of the orientation tuning with 6c on the

stimulus contrast and input anisotropy, for different mechanisms of
tuning. The angle 6¢ is the half-width of the tuning curve: neurons with
POs of >6c away from the stimulus orientation are not activated. (4)
The Hubel-Wiesel model, where the cortical interaction parametersJo
and J; are zero. The tuning width is plotted against the contrast of the
visual stimulus, ¢, for different values of the input anisotropy param-
eter, e: ¢ = 0.1, 0.3, and 0.5 (dot-dashed, dashed, and solid lines,
respectively). For € < 0.5, there is a critical value of ¢ above which 8¢
= /2, meaning that all neurons are activated by all stimuli. In the
range where Oc is small, it strongly depends on the level of contrast.
Note that & = 0.5 is the maximal value of anisotropy in our model. Here
and in Figs. 2 and 3, B = 0.1. (B) Effect of cortical interactions on the
tuning width. Dashed curve is for uniform cortical inhibition, with &
= 0.5,Jo = 155, and J> = 0. The solid line is for parameters close to
the marginal phase, where the tuning is dominated by the cortical
interactions. In this case, Oc saturates quickly to ~30°, while the level
of maximal activity is still far from saturation (data not shown).
Parameters are € = 0.01, Jo = 86, and J> = 112. They were chosen so
that the value of O¢c agrees with the average value of the half-width for
simple cells in the cat visual cortex (5). (C) The tuning width as a
function of the input anisotropy in the limit ¢ >> 1. The solid line is
for the marginal phase; the dashed curve is for the Hubel-Wiesel
mechanism with uniform cortical inhibition. Parameters are as in B.

orientation of the stimulus, but it will not affect the shape of
the tuning curve very much. This is indeed borne out by a
solution of the mean-field equations with a small nonzero &
and large Jo and J>. There is a unique stable state, m(6) = M(6
— 6p), where M(6) is approximately the same as for € = 0.
Whereas when £ = 0, 6c was independent of ¢, and when ¢ is
nonzero, O¢c vanishes as ¢ — 1. However, this decrease in 6c
occurs in a very narrow range of ¢ near threshold,c — 1 = O(e),
as shown in Fig. 1B (solid line). The value of c for larger c is
independent of c. It is also insensitive to changes in the value
of &, as shown in Fig. 1C (solid line).
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Virtual Rotation

An interesting difference between the scenarios described
above appears in the time-dependent response of the system to
a change in the orientation of the external stimulus. Consider
the case where the orientation of the external stimulus is
changed at time 0 from 6y = 6; to 6, = 6,. We assume that
initially the stimulus was present long enough so that the
system reached a steady-state m(6) with a peak at 6 = 6,. How
will the population activity respond to the change in orienta-
tion? In the case of isotropic cortical interactions (J> = 0), the
initial activity profile that peaked at 6; decays in magnitude
while another profile peaked at 6, grows, as shown in Fig. 24.
In the marginal phase, the response is drastically different. The
population activity is m(6, £) ~ M[0 — ¢(¢)], where M(6) is the
activity profile at steady state. We denote this solution as
virtual rotation. The activity at time ¢ is similar to that that
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FiG.2. Evolution of neuronal activity in response to a change in the
stimulus orientation from an initial value 6; = 0° to 6 = 60°. The
change occurs at ¢t = 0. (4) Hubel-Wiesel model with uniform
inhibition. The activity profile centered at 0° decays while a new one,
centered around 60°, grows. Neurons in intermediate columns (e.g.,
with 6 = 30°) stay in the quiescent state during the whole process. The
time constant of the decay and growth is 7. Times are 0, 0.5, 1, 2, and
6 7o (lines 1-5, respectively). Parameters are as in Fig. 1B (dashed line)
and ¢ = 5. For this value of contrast, the maximal activity level relative
to saturation is 0.1, which corresponds to a rate of ~50 spikes per sec.
(B) Virtual rotation in the marginal phase. The activity profile moves
toward 6, activating successively the intermediate columns, and
undergoing only very small changes during the process. ¢ = 1.678;
other parameters are as in Fig. 1B (solid line). Times are (left to right)
0, 90, 210, and 600 7o. (C) Virtual rotation accompanied by deforma-
tions in the activity profile. The magnitude of the deformations
depends on the magnitude of &. Here ¢ = 0.1, Jo = 73, J2 = 110, and
¢ = 1.45. Times are (left to right) 0, 2, 10, 20, and 60 7. By assuming
70 =~ 5 msec, the predicted rotation velocity is 200 to 400°/sec.
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would occur if there was an external stimulus with an orien-
tation 6p = ¢(t). Substituting this form for m(, ¢) in the
dynamic equations (Eqs. 1 and 2), we find that the variable ¢(f)
obeys ¢(f) =~ — wesin[2¢(t) — 26;], with ¢(t = 0) = 6. The
angular frequency wy is given by

w7y = &c/(2J,my), [51

where m, is the second Fourier coefficient of M(6). Note that
in the marginal phase m, remains finite even for small . Thus,
wy, the angular velocity of the activity profile, is determined by
the ratio of the modulation amplitudes of the external input
and of the cortical synaptic input. This result is valid provided
woto = O(g) << 1. An example is shown in Fig. 2B, which
corresponds to a marginal phase with € = 0.01. The activity
profile moves with an (initial) angular velocity 0.2°/ 7, without
significant change in its shape. Fig. 2C shows the case of € =
0.1. Here, the angular velocity is faster by an order of magni-
tude, as predicted by Eq. 5. In this case, the propagation of the
activity is accompanied by significant transient changes in the
amplitude of the activity profile.

CCs

The CC function C(6,60';7) measures the correlation between
the temporal fluctuations in the rate of activity of a neuron 6
at time ¢ and that of another neuron, 6’, at ¢ + . In our model,
these fluctuations arise from the underlying stochasticity of the
neuronal dynamics. The deterministic mean-field equations,
Eq. 1, neglect these small fluctuations. To study the CCs
induced by these fluctuations, we have applied a recently
developed theory of correlations in stochastic neural networks
(14) and calculated analytically the CCs in our model for
various parameter regimes. We consider here the CCs between
excitatory neurons in the case of uniform inhibition and in the
marginal phase. In the uniform inhibition case, the CCs are
independent of 0, €', and 6y, as long as the two neurons are
activated by the stimulus, and the CCs decay on a fast time
scale, of the order of the microscopic time constant 7. This is
shown in Fig. 34. The results for the marginal phase are
drastically different. Here, in addition to fast-decaying com-
ponents, the CCs possess also a slow component that has the
following unique dependence on 6, 6’, and 6,

1
C(6,0',7) ;sin(20 — 26p)sin(20’ — 26y)exp(— &|7/70),

T>> 70, [6]

Thus, the longest decay time of the CCs is 1/¢, where ¢ is the
amplitude of the angular modulation of the input, which is
assumed to be small in this phase. The magnitude of the slow
component is big, on the order of £~!. This slow component
results from the fact that in the marginal phase, the noise
induces random slow wandering of the system between neigh-
boring attractors, thus generating small random virtual rota-
tions.

The result (Eq. 6) implies that not only the magnitude but
also the sign of the CC between a pair of neurons may depend
on the stimulus orientation. If the stimulus orientation is larger
or smaller than both 6 and 6’, the CC is positive. On the other
hand, if 6y is intermediate between the two POs, the CC is
negative, despite the fact that the direct interaction between
the two neurons is positive. These results are shown in Fig. 3
B-D, where we present the full CCs in the marginal phase.
Comparing these results with Eq. 6, it is seen that the prop-
erties of the CCs at short 7 are affected by the contributions
from the fast-decaying noncritical modes of fluctuations, which
generate a narrow positive peak near the center. The long-time
component is dominated by the critical mode.
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FiG. 3. Time-dependent CC between the fluctuations in the ac-
tivity of two excitatory neurons, = —10° and 6’ = 10°, responding to
a common oriented stimulus. (4) Uniform inhibition. The CC decay
has a time constant on the order of 7o. The CCs are independent of the
stimulus orientation 6 (data not shown), as long as both neurons are
activated by it. Parameters are as in Fig. 24. The vertical scale displays
the CCs multiplied by the number of excitatory neurons in the
network, Ng. (B-D) CCs in the marginal phase for different stimulus
orientations. Parameters are as in Fig. 2B. The CCs exhibit a slow-
decaying component, with a time constant, 7o/, and a magnitude that
scales as £71. (B) 6p = 0°, i.e., between 6 and 6’, which results in a
negative slow component, as predicted by Eq. 6. (C) 6o = 10°, for which
the slow component vanishes. (D) 6p = 16°, for which the slow
component becomes positive.

Discussion

By using a simple neural network model, we have studied
theoretically the consequences of different mechanisms for
orientation selectivity in visual cortex. The network architec-
ture is consistent with the known anatomy and physiology of
visual cortex: In particular, the assumed angular modulation of
the intracortical interactions, Eq. 3, is supported by the spatial
distributions of the dendritic and axonal arborizations in
primary visual cortex (8). We find that if the amplitude of the
cortical angular modulation, J>, is sufficiently strong, the
network can be in a state where the orientation tuning is
dominated by the cortical circuitry. This state has several
characteristic properties that can be verified experimentally.
First, the tuning width is largely independent of stimulus
properties such as its contrast and its degree of anisotropy.
Indeed, invariance of the tuning width to contrast has been
well documented (9). Measuring the effect of decreasing the
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angular anisotropy of a stimulus on the orientation selectivity
would be an additional important test.

The second characteristic, the virtual rotation, can be ver-
ified by measuring the transient response of primary visual
cortex to an abrupt change in the orientation of a visual
stimulus. Our model may suggest a neural mechanism for the
psychophysical mental rotation that has been observed in
object recognition (15). The initial velocities displayed in Fig.
2 B and C, assuming that 7y is in the range of 5-10 msec, are
consistent with the observed angular velocity of mental rota-
tion in psychophysical experiments, ranging between 60°/sec
(15) and 400°/sec (16). Of course, other neuronal mechanisms
for mental rotation are possible.

We have shown here that neuronal CCs are potentially
important indicators of neuronal cooperativity. In our case, we
predict that if cortical circuitry plays a dominant role in the
orientation-selective response, CCs should exhibit a slow com-
ponent, the sign of which depends on the orientation of the
stimulus relative to the POs of the correlated neurons. If one
averages over all stimuli, then the resultant average CCs should
exhibit slow components that are positive for pairs of neurons
with similar POs, and negative for largely dissimilar ones. Long
time tails in CCs, which extend to several hundred millisec-
onds, are frequently observed in cortical areas, including
primary visual cortex. Testing our theory requires systematic
measurements of the slow components of CCs of pairs of
neurons in different orientation columns that are coactivated
by the same stimulus. Negative CCs, although relatively rare,
have been observed in several cortical areas (17-20). Some of
these correlations may be due to cooperative effects similar to
those predicted here.

We have focused in this work on visual cortex. However, our
approach can be applied also to the study of the role of local
cortical interactions in other areas, primarily in motor areas,
although the nature of the synaptic inputs to these areas is less
clear. This is supported by the virtual rotation exhibited by the
activity profiles of populations of neurons that are tuned to the
direction of limb movement (17). Indeed, a network model that
is similar to ours in some aspects was recently proposed for that
system (21). It should be noted that the virtual rotation
exhibited by our model is a direct outcome of the marginality
of the network state and does not involve an active modulation
of synapses, as in ref. 21. Also, the study of the neuronal
correlations requires a more complex dynamics than the
smooth deterministic model of ref. 21. As shown by our work,
the correlations between a pair of neurons are not directly
related to the value of the interactions between them. Instead,
they are a consequence of the cooperative dynamical fluctu-
ations in the network to which they belong.
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Finally, we note that the marginal phase in the present
theory is a result of the underlying angular symmetry of our
model. It is thus similar to marginal phases that appear in
physical systems at thermal equilibrium whenever a continuous
symmetry is spontaneously broken. In particular, these systems
exhibit “critical transverse correlations” that are similar to the
slowly decaying CCs predicted here (22).
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