
Encoding:  Summary 

!  Spikes are the important signals in the brain.

!  What is still debated is the code: number of spikes, exact spike timing, 

temporal relationship between neurons’ activities?

! Experimentalists have characterized the activity of neurons all over the 

brain and in particular in sensory cortex, motor cortex etc .., mainly in 

terms of tuning curves and response curves. A variety of well-

specialized areas. Detailed wiring and mechanisms at the origins of 

these responses are largely unknown. 

! Other techniques to predict activity (when stimulus is changing) : STA, 

reverse correlation.

! The large variability (in ISI, number of spikes) is often well described by a 

Poisson or Gaussian model.

Single cell tuning curves vs population response

Single cell tuning curve: change stimulus, record spike count for every stimulus

Population response: keep stimulus fixed, record spike count of every neuron in 
the population
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Overview of the visual cortex

Two streams: 

• Ventral ‘What’: V1,V2, V4, IT, form recognition and object representation

• Dorsal ‘Where’: V1,V2, MT, MST, LIP, VIP, 7a: motion, location, control of eyes and 

arms

4

Overview of the visual cortex



5

Ventral pathway

6

Dorsal pathway

• MT: MOTION. stimulus of choice: random dot patterns
http://monkeybiz.stanford.edu/movies/30coh_circle.qt

• MST: linear, radial, circular motion.

• LIP: spatial position in head-centered coordinates. spatial attention, spatial 
representation. saliency map -- used by oculomotor system (saccade). spatial 
memory trace and anticipation of response before saccade.

• VIP: spatial position in head-centered coordinates, multisensory responses. 
speed, motion.

• 7a: large receptive fields, encode both visual input and eye position. 

2. Decoding

readings: Decoding D&A ch.3

Further readings: 
Lebedev and NicolelisBrain-machine 
interfaces: past, present and future, 

TINS, 2006
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In response to a stimulus with unknown orientation s, we observe a pattern of 

activity r (e.g. in V1). What can we say about s given r?
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Decoding populations of neurons

An estimation problem (detecting signal in noise).

" Tools : estimation theory, bayesian inference, machine learning 

When does the problem occur?:

1 - Point of view of the experimentalist or Neuro-Engineering. Seeking the most 
effective method (e.g. prosthetics) to read out the code.

 
! Statistical optimality
! considering the constraints  (e.g. real time?)

2 - Model of the brain’s decoding strategy
e.g. mapping from sensory signals to motor response and understanding the 

relationship between physiology and psychophysics

! statistical optimality ? 
! optimality within a class ?  
! or simplicity/ arbitrary choice? (what are the biological constraints ?)  

Decoding: for Neuro-Prosthetics 
(a.k.a. Brain-machine interfaces)

Making the prosthetic feel like the subject’s own limb
using microstimulation of cortical sensory areas
Peripheral tactile and proprioceptive signals contribute to
the normal operation of one’s limbs and the perception that
they are part of the body [142,143]. For a neuroprosthesis
to behave and feel as a natural appendage of the subject’s
body, it will have to be instrumented with various sensors
that can provide multiple channels of ‘sensory’ information
back to the subject’s brain. In most current BMI designs,
animal subjects receive sensory information from the
actuator through visual feedback [55–58]. Predictions of
motor parameters are less stable in the absence of visual
feedback [70] than when it is present [55–58].

Curiously, the use of tactile and proprioceptive-like
feedback in BMI research remains largely unexplored.
Recently, in collaboration with John Chapin, we have
started to explore the intriguing possibility of delivering
such sensory feedback information, generated in the actua-
tor, to the brain through the use of multi-channel micro-
stimulation of somatosensory cortical areas (Figure 2).
Previous studies have shown that monkeys sense micro-
stimulation patterns and can use them to guide their
behavioral responses [150,151]. In a recent long-term
study, owl monkeys could learn to guide their reaching
movements by decoding vibratory stimuli applied to their
arms [152]. Next, instead of vibratory stimulation, match-
ing patterns of microstimulation were applied through the
electrodes implanted in the primary somatosensory cortex
[153]. Monkeys were still able to interpret correctly the

instructions provided by cortical microstimulation, and
their behavioral performance eventually surpassed the
level of performance observed when the vibratory stimulus
was applied to their skin. These results suggest that
cortical microstimulation might become a useful way to
deliver long-term feedback from prosthetic limbs con-
trolled by a BMI, and might contribute to the development
of a completely new generation of neuroprosthetic devices
for restoring various motor behaviors in severely impaired
patients.

Concluding remarks
Our vision of neuroprosthetic developments that might
emerge in the next 10–20 years includes a fully implan-
table recording system that wirelessly transmits multiple
streams of electrical signals, derived from thousands of
neurons, to a BMI capable of decoding spatial and temporal
characteristics of movements and intermittent periods of
immobility, in addition to cognitive characteristics of the
intended actions (Figure 3). This BMI would utilize a
combination of high-order motor commands, derived from
cortical and subcortical neuronal activity, and peripheral
low-level control signals, derived from artificial ‘reflex-like’
control loops. Such a shared-control mode of BMI operation
would either command an actuator with multiple degrees
of freedom or directly stimulate multiple peripheral nerves
and muscles through implantable stimulators. Highly
instrumented artificial actuators, containing arrays of
touch and position sensors, would generate multiple
streams of sensory feedback signals that could be directly
delivered to cortical and/or subcortical somatosensory
areas of the subject’s brain, through spatiotemporal pat-
terns of multi-channel microstimulation. Such closed-loop,
hybrid BMIs would get one step closer to the dream of
restoring a large repertoire of motor functions to a multi-
tude of patients who currently have very few options for
regaining their mobility.
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Figure 3. How a fully-implantable BMI could restore limb mobility in paralyzed
subjects or amputees. Although the details of this system have to be worked out
through future research, it is clear that the BMI for human clinical applications
should be encased in the patient’s body as much as possible. Wireless telemetry
offers a viable solution for this purpose. The prosthesis not only should have the
functionality of the human arm in terms of power and accuracy of the actuators,
but also should be equipped with the sensors of touch and position from which
signals can be transmitted back to the subject’s brain.
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humans [142,143]. Accordingly, a recent neuroimaging
study [144] described specific activations of the right
ventral premotor cortex during manipulation of a myo-
electric prosthetic hand. Altogether, these results suggest
that long-term usage of an artificial actuator directly
controlled by brain activity might lead to substantial
cortical and subcortical remapping. As such, this process
might elicit the vivid perceptual experience that the arti-
ficial actuator becomes an extension of the subject’s body
rather than a mere tool. This suggestion is supported by
the report of primary sensorimotor cortex activation dur-
ing perceived voluntary movements of phantom limbs in
amputees [145].

Perhaps themost stunning demonstration of tool assim-
ilation by animals was observed when both rats and pri-
mates learned to operate an actuator through a BMI,
without the need to move their own limbs [1,56–58]. In
these experiments, decoding algorithms were initially
trained to predict limb movements of animals from the
activity of neuronal populations. Remarkably, after these
animals started to control the actuator directly using their
neuronal activity, their limbs eventually stopped moving,
while the animals continued to control the actuator by
generating proper modulations of their cortical neurons.
Interestingly, during these episodes neuronal tuning to
movements of the subject’s own limbs decreased while the
animals continued to control the artificial actuator by their
brain activity [58]. The most parsimonious interpretation
of this finding is that the brain was capable of undergoing a
gradual assimilation of the actuator within the samemaps
that represented the body [57,58]. Neuronal mechanisms
mediating such plasticity are far from being understood.

However, it is fair to state that there is a growing
consensus in the literature that continuous BMI
operations in primates lead to physiological changes in
neuronal tuning, which include changes in preferred
direction and direction tuning strength of neurons
[56–58]. In addition, broad changes in pair-wise neuronal
correlation can be detected after BMIs are switched to
operate fully under brain-control mode [57,58].

Along with these physiological adaptations of
neuronal firing patterns, behavioral performance
improves as animals learn to operate BMIs effectively
[56–58]. Initial training to operate a BMI is character-
ized by an increase in neuronal firing rate variance,
which cannot be simply explained by changes in limb
or actuator movements [146]. As the quality of BMI
control improves, initial elevation of neuronal firing
variability subsides. Plastic changes in neuronal firing
patterns during BMI control, leading to the physiological
incorporation of the artificial actuator properties into
neuronal space, could account for these changes in firing
rate variance. This interpretation is in accord with the
theory of optimal feedback control [147–149]. According
to this theory, a motor system acts as a stochastic feed-
back controller that optimizes only those motor para-
meters that are necessary to achieve the goals of a
particular task. During the brain-control mode of opera-
tion of a BMI, the goals of a motor task are achieved only
by direct brain control of an artificial actuator. Thus, in
terms of optimal feedback control theory, neuronal
ensembles should adapt their physiological tuning prop-
erties to represent better the goal-related variables of
the task performed by the BMI.

Figure 2. A BMI with multiple feedback loops being developed at the Duke University Center for Neuroengineering. A rhesus macaque is operating an artificial robotic
manipulator that reaches and grasps different objects. The manipulator is equipped with touch, proximity and position sensors. Signals from the sensors are delivered to
the control computer (right), which processes them and converts to microstimulation pulses delivered to the sensory areas in the brain of the monkey, to provide it with
feedback information (red loop). A series of microstimulation pulses is illustrated in the inset on the left. Neuronal activity is recorded in multiple brain areas and translated
to commands to the actuator, via the control computer and multiple decoding algorithms (blue loop). Arm position is monitored using an optical tracking system that tracks
the position of several markers mounted on the arm (green loop). We hypothesize that continuous operation of this interface would lead to incorporation of the external
actuator into the representation of the body in the brain. Figure designed by Nathan Fitzsimmons.
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Lebedev & Nicolelis, TINS, 2005

Decoding: to understand the link between 
physiology and psychophysics

• Detection Task: e.g. can you see the target ? 

Measure Detection threshold. 

 

• Estimation Task: e.g. What is the angle of the bar ? The contrast of the 

grating?

Measure Estimation errors (bias -- illusions).

• Discrimination Task: e.g. What is the minimal difference you can see?

Mapping between visual responses, eg in V1, and response of subject?
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!  optimality criterion? 

MSE(s) =< (ŝ− s)2 >

1. Optimal Decoding
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!  Maximum Likelihood:  

if we know P[r|s], 

choose the stimulus s that has maximal probability of having 

generated the observed response, r.
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ŝ = argmaxsP (r|s)

!  Maximum Likelihood:  

if we know P[r|s], 

choose the stimulus s that has maximal probability of having 

generated the observed response, r.
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!  Maximum Likelihood:  

if we know P[r|s], 

choose the stimulus s that has maximal probability of having 

generated the observed response, r.
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!  Maximum a Posteriori:  

if we know P[r|s] and have a prior on s, P[s], 

choose the stimulus s that is most likely, given r.

ŝ = argmaxsP (s|r) = argmaxsP [r|s]P [s]

1. Optimal Decoding
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Decoders

Is the brain able to do ML or MAP estimation ?

- Unknown

- It is argued that realistic architectures could perform ML 

[Deneve, Latham, Pouget al 2001,  Ma, Pouget et al 2006, Jazayeri and 

Movshon 2006]
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2. Simpler Decoding Strategies

 Winner Take All : 

If we know the preferred orientation of all neurons,
choose the preferred orientation of the neuron that responds most.

 

preferred orientation
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2. Simpler Decoding Strategies 3. Optimal Decoders within a class 

Optimal decoders often requires much too much data  (full model P[r|s]), seem too 

complex:

The question then is the cost of using non-optimal decoders.

- Linear Decoders, eg. OLE, [Salinas and Abbott 1994] 

- Decoders that ignore the correlations (decode with the “wrong model” which 

assumes independence) [Nirenberg  & Latham 2000, Wu et al 2001, Series et al 

2004]

ŝ =
∑
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