
Models of networks

Readings: D&A, chapter 7.

• Neurons are organized in large networks. A typical neuron is cortex 

receives thousands of inputs.

• Aim of modeling networks: explore the computational potential of such 

connectivity. 

- What computations? (e.g. gain modulation, integration, selective 

amplification of some signal, memory etc..) 

- What dynamics ? (e.g. spontaneous acticity, variability, oscillations)

•Tools: 

- models of neurons and synapses : spiking neurons (IAF) or firing rate 

 - analytical solutions, numerical integration

Networks of neurons
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Figure 1.1: Diagrams of three neurons. A) A cortical pyramidal cell. These are
the primary excitatory neurons of the cerebral cortex. Pyramidal cell axons branch
locally, sending axon collaterals to synapse with nearby neurons, and also project
more distally to conduct signals to other parts of the brain and nervous system.
B) A Purkinje cell of the cerebellum. Purkinje cell axons transmit the output of
the cerebellar cortex. C) A stellate cell of the cerebral cortex. Stellate cells are
one of a large class of cells that provide inhibitory input to the neurons of the
cerebral cortex. To give an idea of scale, these figures are magnified about 150 fold.
(Drawings from Cajal, 1911; figure from Dowling, 1992.)

neuron generates an action potential. An action potential is a roughly 100 action potential
mV fluctuation in the electrical potential across the cell membrane that
lasts for about 1ms (figure 1.2A). Action potential generation also depends
on the recent history of cell firing. For a few milliseconds just after an
action potential has been fired, it may be virtually impossible to initiate
another spike. This is called the absolute refractory period. For a longer
interval known as the relative refractory period, lasting up to tens of mil- refractory period
liseconds after a spike, it is more difficult to evoke an action potential.
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• In cortex, ~80% excitatory cells (pyramidal neurons), ~20% inhibitory 

neurons (smooth stellate + large variety of other types)/ a.k.a interneurons.

What’s a network ?
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•  Laminar Organization. 

Cortex is divided into 6 layers. 

Models usually pool all layers together.

What’s a network ?



• Columnar Organization. 

Neurons in small (30-100 micrometers) columns perpendicular to the layers 

(across all layers) respond to similar stimulus features.

What’s a network ?
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Connectivity

•  3 types of connections: feed-forward, recurrent (lateral), feedback.
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LGN

V1

• Excitatory

• precise 
topographically

• debated how strong 8

FEEDBACK

LGN

V1

• Excitatory 

• Modulatory influence

• Convey information from large 
area of visual field 

• V2, MT

• role unclear
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LGN

Local
Projections

V1

• Excitatory + Inhibitory : lots !!
• < 1 mm
• connectivity depend on distance, 
not preference.

10

LGN

Long-range Horizontal
Projections

V1

• Excitatory - Modulatory
• 6-8 mm  (cat, monkey) - Non overlapping RF 
• specific/ preferences

Network modeling strategies (1) 

•  method 1: spiking neurons, e.g. integrate and fire neurons 

• up to 10,000 neurons.

• advantage: comparison with electrophysiology, a system where all 

neurons can be !recorded" at all times.

• difficulties: lots of parameters/assumptions, long simulations, 

analysis difficult.
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Fig. 3. Simulation of a network of 1000 randomly coupled spiking neurons.
Top: spike raster shows episodes of alpha and gamma band rhythms (vertical
lines). Bottom: typical spiking activity of an excitatory neuron. All spikes were
equalized at 30 mV by resetting first to 30 mV and then to .

tonic firing as in Fig. 2TC, left voltage trace. However, if a neg-

ative current step is delivered so that the membrane potential is

hyperpolarized ( is around 90 mV), the neurons fire a rebound

burst of action potentials, as in Fig. 2TC, right voltage trace.

The model can exhibit other interesting types of dynamics.

• RZ (resonator) neurons have damped or sustained subthreshold

oscillations, as in Fig. 2RZ. They resonate to rhythmic inputs

having appropriate frequency (as the resonate-and-fire model

[9]). This behavior corresponds to and .

Notice that there is a bistability of resting and repetitive spiking

states: The neuron can be switched between the states by an

appropriately timed brief stimuli.

Dynamics of other neuronal types, including those in brainstem, hip-

pocampus, basal ganglia, and olfactory bulb, can also be described by

our model.

Our “one-fits-all” choice of the function in (1) is

justified when large-scale networks of spiking neurons are simulated,

as we discuss below. However, if one is interested in the behavior of

a single neuron, then other choices of the function are available, and

sometimes more preferable. For example, the function

with is a better choice for the RS neuron, since it leads to

the saddle-node on invariant circle bifurcation and Class 1 excitability

[10].

IV. PULSE-COUPLED IMPLEMENTATION

We have used this model to simulate a sparse network of 10 000

spiking cortical neurons with 1 000 000 synaptic connections in real

time (resolution 1 ms) using a 1 GHz desktop PC and C++ program-

ming language. The following MATLAB program (also available on

author’s webpage) simulates a network of randomly connected 1000

neurons in real time.Motivated by the anatomy of a mammalian cortex,

we choose the ratio of excitatory to inhibitory neurons to be 4 to 1, and

wemake inhibitory synaptic connections stronger. Besides the synaptic

input, each neuron receives a noisy thalamic input.

In principle, one can use RS cells to model all excitatory neurons

and FS cells to model all inhibitory neurons. The best way to achieve

heterogeneity (so that different neurons have different dynamics), is

to assign each excitatory cell and

, where is a random variable uniformly dis-

tributed on the interval [0,1], and is the neuron index. Thus,

corresponds to regular spiking (RS) cell, and corresponds to

the chattering (CH) cell. We use to bias the distribution toward RS

cells. Similarly, each inhibitory cell has

and .

The model belongs to the class of pulse-coupled neural networks

(PCNN): The synaptic connection weights between the neurons are

given by the matrix , so that firing of the th neuron in-

stantaneously changes variable by .

% Created by Eugene M. Izhikevich, February 25, 2003

% Excitatory neurons Inhibitory neurons

Ne=800; Ni=200;

re=rand(Ne,1); ri=rand(Ni,1);

a=[0.02*ones(Ne,1); 0.02+0.08*ri];

b=[0.2*ones(Ne,1); 0.25-0.05*ri];

c=[-65+15*re.^2; -65*ones(Ni,1)];

d=[8-6*re.^2; 2*ones(Ni,1)];

S=[0.5*rand(Ne+Ni,Ne), -rand(Ne+Ni,Ni)];

v=-65*ones(Ne+Ni,1); % Initial values of v

u=b.*v; % Initial values of u

firings=[]; % spike timings

for t=1:1000 % simulation of 1000 ms

I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input

fired=find(v>=30); % indices of spikes

firings=[firings; t+0*fired,fired];

v(fired)=c(fired);

u(fired)=u(fired)+d(fired);

I=I+sum(S(:,fired),2);

v=v+0.5*(0.04*v.^2+5*v+140-u+I); % step 0.5 ms

v=v+0.5*(0.04*v.^2+5*v+140-u+I); % for numerical

u=u+a.*(b.*v-u); % stability

end;

plot(firings(:,1),firings(:,2),’.’);

One can see in Fig. 3 that the network exhibits cortical-like asyn-

chronous dynamics; that is, neurons fire Poisson spike trains with mean

firing rates around 8 Hz. Dark vertical lines indicate that there are oc-

casional episodes of synchronized firings in the alpha and gamma fre-

quency range (10 and 40 Hz, respectively). Although the network is

connected randomly and there is no synaptic plasticity, the neurons

self-organize into assemblies and they exhibit collective rhythmic be-

havior in the frequency range corresponding to that of the mammalian

cortex in the awake state. Changing the relative strength of synaptic

connections and the strength of the thalamic drive can produce other

types of collective behavior, including spindle waves and sleep oscilla-

tions. We can easily observe and study these cortical states because our

simple spiking model describes accurately dynamics of known types

of cortical neurons. Thus, there is no longer a contradiction between

biological plausibility and computational efficiency of model neural

networks.

spike raster

neuron trace

[Izhikevitch, 2003]

Network modeling strategies (2) 



•  method 2:  reduce the description to describe only rate of spiking r(t), 

instead of Vm(t). 

Network modeling strategies (3) 

•  Interpretation: average over time, average over equivalent neurons

τr
dri(t)

dt
= −ri(t) + input(t)

• each neuron is described at time t by a firing rate v(t).

Firing rate model (1)

• In absence of input, the firing rate relaxes to 0 with a time constant tr - which  

also determines how quickly the neuron responds to input.

• The input from a presynaptic neuron is proportional to its firing rate u

• The weight wij determines the strength of connection of neuron j to neuron i

• The total input current is the sum of the input from all external sources.

τr
dvi(t)

dt
= −vi(t) + F (

j=N∑

j=1

wijuj)

• each neuron is described at time t by a firing rate v(t).

Firing rate model (2)

τr
dvi(t)

dt
= −vi(t) + F (

j=N∑

j=1

wijuj) = −vi(t) + F (w.u)
dot-product

• F determines the steady state r as a function of input

• F is called the activation function

• F can be taken as a saturating function, e.g. sigmoid

• F is often chosen to be threshold linear

F (I) = G[I − I0]+

F (I) =
rmax

1 + exp(g(I1/2 − I)

Network Architectures

• A: Feedforward

τr
dvi(t)

dt
= −vi(t) + F (

N∑

j=1

Wijuj(t) +
N∑

k=1

Mikvk(t))

τr
dvi(t)

dt
= −vi(t) + F (

N∑

j=1

Wijuj(t))

• B: Recurrent



Excitatory - Inhibitory Network

• Some models have a single population of neurons and the weights are 

allowed to be positive and negative.

• Other models represent the excitatory and inhibitory population separately. 

(more !biological" + richer dynamics).

• 4 weight matrices, MEE, MIE, MII, MEI

7.2 Firing-Rate Models 11

output v

input u
W

BA M

Figure 7.3: Feedforward and recurrent networks. A) A feedforward network with
input rates u, output rates v, and a feedforward synaptic weight matrix W. B)

A recurrent network with input rates u, output rates v, a feedforward synaptic

weight matrix W, and a recurrent synaptic weight matrix M. Although we have

drawn the connections between the output neurons as bidirectional, this does not

necessarily imply connections of equal strength in both directions.

determined by the equation

τr
dv

dt
= −v+ F(h+M · v) . (7.11)

Neurons are typically classified as either excitatory or inhibitory, meaning
that they have either excitatory or inhibitory effects on all of their postsy-
naptic targets. This property is formalized in Dale’s law, which states that Dale’s law
a neuron cannot excite some of its postsynaptic targets and inhibit others.
In terms of the elements ofM, this means that for each presynaptic neuron
a′, Maa′ must have the same sign for all postsynaptic neurons a. To im-
pose this restriction, it is convenient to describe excitatory and inhibitory
neurons separately. The firing-rate vectors vE and vI for the excitatory and
inhibitory neurons are then described by a coupled set of equations iden-
tical in form to equation 7.11, excitatory-

inhibitory
networkτE

dvE
dt

= −vE + FE (hE +MEE · vE +MEI · vI) (7.12)

and

τI
dvI
dt

= −vI + FI (hI +MIE · vE +MII · vI) . (7.13)

There are now four synaptic weight matrices describing the four possible
types of neuronal interactions. The elements ofMEE andMIE are greater
than or equal to zero, and those of MEI and MII are less than or equal to
zero. These equations allow the excitatory and inhibitory neurons to have
different time constants, activation functions, and feedforward inputs.

In this chapter, we consider several recurrent network models described
by equation 7.11 with a symmetric weight matrix, Maa′ = Ma′a for all a and
a′. RequiringM to be symmetric simplifies the mathematical analysis, but symmetric coupling
it violates Dale’s law. Suppose, for example, that neuron a, which is exci-
tatory, and neuron a′, which is inhibitory, are mutually connected. Then,
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Example: 

Orientation selectivity as a model problem: 
spiking networks and ring model 

Sclar and Freeman, 1982

LGN neurons are not selective to orientation, V1’s are: 

Origin of Orientation selectivity ?

V1

Text

• Example of a computation, emergence of a new property. 

Model of Hubel and Wiesel (1962)

Text

Ferster and Miller — July 30, 2000 4

Figure 1:

A. A map of the receptive field of a simple cell in the cat visual cortex. A light flashed in the ON
subregion (x) or turned off in an OFF region (triangles) excites the cell, while a light flashed in an
OFF region or turned off in the ON region inhibit the cell. Other arrangements of the subregions
are possible, such as a central OFF region and flanking ON regions, or one ON and one OFF
region. B. Hubel and Weisel’s model for how the receptive field of the simple cell can be built
from excitatory input from geniculate relay cells. The simple cell (below right) receives input from
relay cells (above right) whose receptive field centers are superimposed on the simple cell’s central
ON region. Not shown are OFF relay cells whose receptive field centers would superimpose on the
simple cell’s OFF regions.

THE FEEDFORWARD MODEL

When Hubel and Wiesel (1962) first described orientation selectivity in the neurons of the

cat visual cortex, they proposed an elegantly direct model that remains at the center of

the debate. Their model represents the feedforward model in its simplest form, explaining

orientation selectivity solely from the organization of the thalamic input to a simple cell in

cortical layer 4.

Simple cells in the cat are defined by the elongated ON and OFF subfields into which their

receptive fields can be divided. These subfields are arranged side-by-side, with their long axes

parallel to the axis of the preferred orientation of the cell. They are strongly reminiscent,

in their width and sensitivity to light, of the ON and OFF centers of the receptive fields

of geniculate relay cells. Hubel and Wiesel proposed that they were derived directly from

thalamic input. According to their scheme, a cortical ON region arises from the excitatory

input from several ON-center relay cells whose receptive field centers lie along the axis of the

subfield (Figure 1). Similarly, an OFF region would be derived from the input from several

OFF-center neurons.

Orientation selectivity emerges automatically from this simple arrangement. A bar of

light at the orientation of an ON subfield that is moved or flashed within the subfield will

simultaneously activate all of the presynaptic geniculate ON-center cells. The resulting

barrage of synaptic excitation will depolarize the cortical cell and cause it to fire spikes. In

•  Hubel and Wiesel (1962) proposed that the oriented fields of V1 neurons could 

be generated by summing the input from appropriately selected LGN neurons.

• The model accounts for selectivity in V1 on the basis of a purely feedforward 

architecture.
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feedforward inhibition
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OFF

~ 1250 conductance 
based IAF neurons 

Poisson spike trains

~ 100, 000 synapses 

`Feedforward’ model 
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LGN
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• Explore physiological and anatomical plausibility: 
- cortical connectivity scheme, 

- thalamocortical connectivity, 

- properties of inhibition in Cx (inactivation) 
…
(Sompolinsky and Shapley, 1997; Ferster and Miller, 2000). 

• Coding efficiency 
(are these models making different predictions in terms of 
information transmission?)


