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Readings:

C.Constandinis and XJ Wang, , “a neural circuit basis for 

spatial working memory”, Neuroscientist, 2004

Sustained activity in PFC

334 FUNAHASHI, BRUCE, AND GOLDMAN-RAKIC 

during the delay period was calculated for each trial, and then 
overall mean discharge rates and standard deviations for each cue 
location were computed. We tested for significant delay period 
activity by comparing the mean discharge rate during the delay 
period for all trials having a given cue direction versus the mean 
discharge rate during the intertrial interval over all trials, using a 
two-tailed unpaired Student’s t statistic and an alpha level of 0.05. 
Differences in delay period activity across different cue locations 
were evaluated using an analysis of variance (ANOVA). 
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Histological analysis 

After 2-8 mo of nearly daily recording sessions the monkeys 
were killed with an overdose of pentobarbital sodium and per- 
fused with saline followed by buffered Formalin. The brains were 
photographed. Frozen coronal sections were taken and stained 
with thionin. 

Individual recording sites that had been marked with electro- 
lytic lesions (20 PA, lo- 15 s, tip negative) were identified. How- 
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FIG. 3. Directional delay period activity of a principal sulcus neuron during the oculomotor delayed-response task. This 

neuron (52 1 1, left hemisphere) had strongly directional delay period activity (fi’ = 48.35; df = 7, 68; P < 0.00 l), responding 

only when the cue had been presented at the bottom (270”) location. It was suppressed during the delay when the cue was 

presented in the upper visual field, and in all 3 cases delay period activity was significantly below the IT1 rate (45”, l = 2.350, 

df = 84, P < 0.025; 90”, t = 3.45 1, df = 85, P < 0.001; 135”, t = 2.607, df = 84, I-’ < 0.025). Visual cues were randomly 
presented at 1 of the 8 locations indicated in the center diagram. All cue eccentricities were 13” and all delay periods were 3 s. 

[Funahashi et al, 1989]

• Long-term memory : molecular or structural changes

• Short-term memory: dynamic process that has not yielded to molecular 

characterization. Sustained Activity.

Place cells in hippocampus

 Place cells are principal neurons in 

the hippocampus that fire strongly 

whenever an animal is in a specific 

location in an environment 

corresponding to the cell's "place 

field".

• often direction-selective

• suggests that the primary function 

of the rat hippocampus is to form a 

cognitive map of the rat's 

environment

• visual cues seem to be the primary 

determinant of place cell firing, but 

firing persists in the dark, suggesting 

that proprioception or other senses 

contribute as well.

Head-direction cells

Neurons that are active only when the animal's head 

points in a specific direction within an environment.

These cells are found in many different structure of 

the limbic system.

Also continue to fire in darkness. 
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Neural integrator in the Oculomotor System

• in a premotor area that is responsible for holding the eyes still during fixation, 

persistent neural firing encodes the angular position of the eyes in a 

characteristic fashion: below a threshold position the neural is silent, and above 

it, the firing rate is linearly related to position.

[Aksay,Gamkrelidze, Seung, Baker and Tank, Nat Neuro, 2001]

Brain calculus : integration and differentiation

• while integration 

(persistent activity)seems 

to be mainly due to network 

interactions, differentiation 

(adaptation) seems mainly 

cellular and synaptic 

depression

Working Memory and Sustained Activity

• A theory of working memory should answer: 

- how it is initiated?

- why does it persist ?

- what makes it specific? 

- how does it ends?

- reason for capacity limit?

- relationship with attention, long term memory?

• Mechanism : reverberations through connections (which?), or cellular?

• Lots of experimental  and theoretical work to answer these questions, in 

PFC, HD, Oculomotor system

withdrawn. The firing rate is eventually stabilized by
negative feedback (Fig. 2c). As a result, a stable
attractor of persistent activity with an elevated firing
rate is realized, that coexists with the stable
spontaneous state (Fig. 2c). Biophysical mechanisms
that control the firing rates in a working memory
network remain to be identified. Among possible
contributors are outward ion currents in the cell,
feedback inhibition, short-term synaptic depression,
and saturation of the synaptic drive at high
frequencies24.

These simulations of biologically based models
clearly show that quantitative differences in
intrinsic connections between cortical networks 
(e.g. association areas versus primary sensory areas)
can lead to qualitatively different behaviors (with 
or without persistent activity). A prediction 
from attractor models is that persistent activity
depends on the strength of recurrent excitation 
in an abrupt manner, so that mnemonic activity
could disappear suddenly when excitatory synaptic
transmission is gradually reduced by
pharmacological means.

Spatial working memory and bump attractors
Another major issue concerns the circuit architecture
that gives rise to stimulus selectivity of persistent
neural activity. Structured excitatory connectivity
could arise from a columnar organization7,28 or
through Hebbian long-term plasticity21. For spatial
working memory, such as in the delayed oculomotor
experiment of Funahashi et al.29 (Box 1), the network
encodes a cue location and stores its memory in the
form of a ‘bump attractor’, which is a spatially
localized persistent activity pattern. Such ‘bump
attractors’naturally arise from a network
connectivity where the strength of synaptic coupling
between two pyramidal neurons decreases with the
difference in their preferred cues14,18,30–34. Figure 3a
illustrates a bump attractor network model of spiking
neurons for spatial working memory25. In the model,
the persistent bump state is sustained by recurrent
synaptic excitation within a local group of pyramidal
cells. The spatial tuning is sculptured by synaptic
inhibition from interneurons, in agreement with
physiological data35. Stable bump attractors typically
require that lateral inhibition is spatially more
widespread than excitation, with interneurons
showing a broader tuning curve compared with
pyramidal cells (Fig. 3b) and/or projecting widely to
their targets.

In a spatial working memory model, a localized
persistent activity pattern tends to drift randomly as
a diffusion process during the delay period14,25. This is
because there is a continuous family of ‘bump
attractors’ (each encoding a potential location), and
noise induces drifts between them. Interestingly,
psychophysical studies have shown that the accuracy
of the memory-guided saccade decreases with the
delay duration in a way similar to diffusion36,37. It
would be interesting to see whether random drifts do
occur in PFC neurons during working memory, and
whether they correlate with quantitative errors in the
memory-guided saccades, and thus short-term
memory decay in behaving animals.

Bump attractors are of general interest to diverse
neural systems (Box 1). Interestingly, persistent
activity in head-direction cells is crucially dependent
on subcortical structures, where excitatory collaterals
seem to be scarce38. The circuit mechanisms
underlying persistent activity of head-direction cells
remain to be elucidated in future experiments and
model studies33,39.

Parametric working memory and line attractors
Persistent activity with monotonic stimulus tuning
(Box 1) requires a different type of network
architecture, which is still not understood. At a
phenomenological level, there is certain similarity
between prefrontal delay activity with monotonic
tuning40 and ‘neural integrators’ that store the short-
term memory of eye position. During eye fixation,
oculomotor neurons display persistent activity, with
the firing rate varying in proportion to the current eye
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Fig. 1. Various scenarios for the anatomical substrate of excitatory reverberation in the cortex. (a) A
closed thalamo–cortical loop and/or cortico–striato–thalamic–cortical circuit. In the latter case, cortical
excitation of the caudate nucleus leads to an inhibition of the output from the cells of the basal ganglia
and thus a disinhibition of thalamic neurons, which in turn send increased excitation back to the
cortex. Abbreviations: GPi, internal segment of the globus pallidus; SNr, substantia nigra pars
reticulata. (b) Reciprocal interactions between two cortical areas, prefrontal and posterior cortices
(respectively prefrontal and inferotemporal cortices) for spatial (resp. object) visual memory.
(c) Excitatory recurrent collaterals within a local circuit. (d) Intrinsic regenerative dynamics of single
neurons. Positive feedback between membrane depolarization/spike discharges and active inward
currents (voltage-gated ICa/Ca2+-gated ICan) can produce persistent activity that outlasts a transient
input current pulse (J. Tegnér and X-J. Wang, unpublished).

Attractor paradigm for persistent activity

• Since the 1970s it has been proposed that delay activity patterns 

can be theoretically described by !dynamical attractors"



Hopfield Networks

• A Hopfield net is a form of recurrent artificial 

neural network invented by John Hopfield (1982).

• Hopfield nets typically have binary (1/-1 or 1/0) 

threshold units:

• Hopfield nets have a scalar value associated with each state of the network 

referred to as the "energy", E, of the network, where:

si

where sj state of unit j, and        is the threshold

The weights have to follow: wii=0 , wij=wji

θi

Hopfield Networks

• Running: at each step, pick a node at random and update  

(asynchronous update)

The energy is guaranteed to go down and the network to settle in local 

minima of the energy function.

• Learning: the weights are learnt, so as to !shape" those local minima.

The network will learnt to converge to learnt state even if it is given only 

part of the state

wij =
1
N

k=N∑

k=1

ξk
i ξk

j

Associative memories

• The Hopfield network is an associative/content addressable memory. It can be used to 

recover from a distorted input the trained state that is most similar to that input.  E.g., if 

we train a Hopfield net with 5 units so that the state (1, 0, 1, 0, 1) is an energy minimum, 

and we give the network the state (1, 0, 0, 0, 1) it will converge to (1, 0, 1, 0, 1). 

Attractor paradigm for persistent activity

• Since the 1970s it has been proposed that delay activity patterns 

can be theoretically described by !dynamical attractors"

• Recently, a great effort to build biophysically plausible model of 

sustained activity / attractor dynamics for memory.



• Anatomical organization of PFC resembles a recurrent network

• Biophysical realistic computational modeling has shown that such 

recurrent networks can give rise to location-specific, persistent 

discharges (Compte et al 2000, Gutkin et al 2000, Tegner et al 2002, 

Renart et al 2003a, Wang et al 2004)
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etal) memory fields, unlike the primary visual cortex, in
which the entire visual space is represented topographi-
cally across the cortical surface. Despite the apparent
lack of an overall retinotopic map across the surface of
the prefrontal cortex, there is strong evidence for a sys-
tematic organization of spatial information at a local
level. Localized prefrontal lesions produce behavioral
deficits in the execution of mnemonic tasks involving
only a restricted area of visual space, typically in the
contralateral hemisphere, an effect known as a
“mnemonic scotoma” (Funahashi, Bruce, and others
1993). Similarly, chemical inactivation of prefrontal
sites produces the inability of monkeys to correctly
recall targets appearing at certain spatial locations
(Sawaguchi and Goldman-Rakic 1991, 1994), which
again is an argument for an organized representation of
visual space in the cortex. More recently, simultaneous
recordings from closely spaced electrodes have con-
firmed that neurons in the proximity of each other (lat-
erally separated by less than 0.3 mm) most often repre-
sent adjacent spatial locations (Constantinidis and others
2001a). A possible organizational scheme that could
account for these results would be for the entire visual
hemifield to be represented in repeating, topographical-
ly organized cortical modules, perhaps corresponding to
the anatomical stripe-like zones of axonal terminations
(Levitt and others 1993; Kritzer and Goldman-Rakic
1995; Pucak and others 1996).

Cellular Mechanisms of
Spatial Working Memory

The maintenance of neuronal discharge representing
remembered information can last for several seconds,
much longer than the time constants of single-neuron
biophysical processes, and it is therefore thought to be
foremost a network function. Single neurons may also be
bistable due to intrinsic membrane properties that con-
tribute to network behavior (Camperi and Wang 1998;
Wang 2001). Indeed, a recent study of in vitro slice
recordings reports that individual neurons in the entorhi-
nal cortex are capable of producing graded persistent
discharges (Egorov and others 2002). How a network
can give rise to sustained activation in the absence of a
direct sensory stimulation can be illustrated as follows:
A visual stimulus produces activation of primary visual
cortical areas, which is ultimately propagated to the pre-
frontal cortex, where it excites a population of pyramidal
neurons tuned to its location in space. These neurons are
linked through reciprocal, excitatory synaptic connec-
tions so that even when the original stimulus is no longer
present, discharges continue to reverberate in the net-
work (Wang 2001). The anatomical organization of the
prefrontal cortex in many ways resembles a recurrent
neural network (Fig. 4). Axonal projections of pyramidal
neurons originating from within the prefrontal cortex
(intrinsic projections) as well as from other cortical areas
(associational projections) terminate in a precise stripe-
like fashion, creating a regular pattern of interdigitated
columns, approximately 0.5 mm wide and 2 to 8 mm

long (Levitt and others 1993; Kritzer and Goldman-
Rakic 1995; Pucak and others 1996). Reciprocal con-
nections between neurons in such stripes create the
anatomical substrate of a recurrent network.

Biophysically realistic computational modeling has
shown that such recurrent networks can give rise to loca-
tion-specific, persistent discharges, as illustrated in
Figure 5 (Camperi and Wang 1998; Compte and others
2000; Gutkin and others 2001; Tegner and others 2002;
Renart and others 2003a, Wang, Tegner, and others
2004). The central conceptual idea that emerges from
these studies is that a spatial working memory network
should be bistable between a spontaneous resting state
and a continuous family of spatially localized persistent
firing patterns (each encoding and storing a spatial loca-
tion as an analog quantity). The appearance of the tran-
sient cue stimulus switches the network from the resting
state to a memory state representing a spatial location,
and the feedback signal or reward that indicates the end
of the trial erases the memory trace and switches the net-
work back to its resting state. It was realized that the
instantiation of a continuum of persistent states requires
the cortical network to be functionally homogeneous,
that is, to be characterized by identical cellular and
synaptic properties between its neurons. Such homo-
geneity is unrealistic for real-neuron networks but could
be effectively achieved by biological mechanisms such
as homeostatic regulations that could scale the synaptic
inputs of neurons with different rates of activity (Renart
and others 2003a). It is also worth noting that the con-
tinuous nature of spatial working memory has not been
scrutinized in experimental studies, in which only a lim-
ited number (typically eight) of spatial cues are used. It
would be desirable in future psychophysical and electro-
physiological studies to rigorously test the analog char-
acter of spatial working memory by using an arbitrary
set of cues.

Understanding the dynamical behavior of strongly
recurrent cortical microcircuits, including those presum-
ably required for persistent activity, presents experimen-
tal and theoretical challenges. In biophysically realistic
models, such a neural network is prone to dynamical
destabilization leading to either uncontrolled spike dis-
charges at very high rates, if excitatory reverberation is

Fig. 4. Schematic diagram illustrating the pattern of connec-
tions between prefrontal neurons in the superficial layers. The
figure summarizes results of anatomical tracer injection experi-
ments and retrograde labeling. From Kritzer and Goldman-
Rakic (1995), with permission.

Network Mechanisms & Biophysical Models

• Modeling studies show that stability is an issue in such network. 

• Strong recurrent inhibition is needed to prevent runaway excitation and 

maintain specificity

• Models are also challenged by accounting for spontaneous activity in addition 

to memory state

• Oscillations can destabilize the memory activity.

• Working memory is found to be particularly stable when excitatory 

reverberation are characterized by a fairly slow time course, e.g. when synaptic 

transmission is mediated by NMDA receptors (prediction)

Network Mechanisms & Biophysical Models

faster than the GABAA receptor-mediated IPSCs
(Refs 47,48). Synaptic depression has a decay time
constant of 200–500 ms or longer49,50. A system with
fast-positive and slow-negative feedback is
dynamically unstable. Persistent activity is often
disrupted in the middle of a delay period, and thereby
the memory is lost24,25. Such instability does not occur,
if excitation is sufficiently slow compared with
negative feedbacks, that is, when recurrent synapses
are primarily mediated by NMDA receptors24,25. In
this case, persistent activity is stable even in the
presence of network oscillations, typically in the
gamma frequency range24,25.

Second, the slow decay time of INMDA could be
required for robust behavior of a memory network
with continuous attractors. In the case of line
attractor model for the oculomotor integrators,

Seung43 pointed out that if the strength of feedback
excitation w is mistuned from the desired value w* by
a small amount, !w = (w –w*)/w*, then mnemonic
activity can no longer persist indefinitely. Instead, it
will decay with a time constant of " # "syn/!w, where
"syn is the decay time constant of the recurrent
synaptic current. For example, if memory storage
requires " # 5 s, then with AMPA synapses ("syn < 5 ms)
wwould need to be extremely precisely tuned
(!w $0.001 = 0.1%), whereas with NMDA synapses
("syn # 100 ms) the tolerance is increased to
!w = 0.02 = 2%.

Third, the voltage-dependent gating of NMDAR-
mediated currents INMDA could contribute to trigger
mnemonic activity selectively in a subgroup of
neurons for a particular memory item23. The idea is
that, during stimulus presentation, those cells
activated by the stimulus are more depolarized than
the rest of the network. Therefore the magnesium
block of NMDA receptor channels are differentially
removed in these cells, resulting in an enhanced
synaptic reverberation and persistent activity within
this group of neurons.

Fourth, the slow NMDAR unbinding to glutamate
could lead to a saturation of the steady-state INMDA
with repetitive stimulation at high frequencies. This
saturation curtails the explosive positive feedback
between neural firing and synaptic drive in a
recurrent network. Therefore it can help to control the
firing rate in a persistent activity state24. 
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Fig. 3. Bump attractors for spatial working memory, as shown in a
cortical network model of the Funahashi experiment29. (a) Spatio-
temporal raster of the pyramidal cell population in a delayed saccade
simulation. Abscissa: time, ordinate: neurons (labeled by their
preferred cues). C: cue period, D: delay period, R: response period. 
The elevated and localized neural activity is triggered by the cue
stimulus at 180°, and persists during the delay period. On the right is
shown the spatial profile, where the average firing rate during the 
delay period is plotted versus the  preferred cue of the neuron. In
another trial, a different cue would elicit another bump attractor of the
same spatial shape, peaked at a different location (see movie at
http://www.wanglab.brandeis.edu/movie/spatial_wm.html). (b) Tuning
curves of delay period activity for a pyramidal neuron (i) and an
interneuron (ii), as a function of the cue location. Adapted, with
permission, from Ref. 25.

[Compte, Brunel, Goldman-Rakic and Wang, 2000]
Network of ~2500 integrate and fire neurons, mexican hat connectivity, 
NMDA excitation. 

Network Mechanisms & Biophysical Models
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es together may therefore be misleading and does not argue
against a rate code.

The question of temporal coding in the spiking pat-
terns of prefrontal cortical neurons was recently
addressed by a temporal-statistics analysis (Compte and
others 2003). The results revealed that most single units
of monkey prefrontal cortex during the mnemonic delay
can be well approximated by a purely random, Poisson
process that contains no systematic temporal patterns of
firing. A smaller proportion of prefrontal neurons exhib-
it burst discharges. The coefficient of variation of pre-
frontal interspike intervals is typically near or larger than

1, indicating a high degree of irregularity of delay peri-
od neural discharges, consistent with a network mecha-
nism for persistent activity sustained by stochastic
synaptic bombardments. Rhythmicity is rarely visible in
spike trains of single prefrontal cells during working
memory (Compte and others 2003). It is possible that the
network might display coherent oscillations detectable
only in the population level, for example, reflected in
local field potential measurements summing responses
from large numbers of neurons, whereas single cells are
highly stochastic (Pesaran and others 2002; Brunel and
Wang 2003). Regardless of whether oscillations are

Fig. 6. Stability of persistent
activity as a function of the
AMPA:NMDA ratio at the recur-
rent excitatory synapses. A–D,
Temporal course of the average
firing rate across a subpopula-
tion of cells selective to the pre-
sentated transient input, for dif-
ferent levels of the AMPA:NMDA
ratio. As the ratio is increased,
oscillations of a progressively
larger amplitude develop during
the delay period, which eventu-
ally destabilize the persistent
activity state. E, Snapshot of the
activity of the network in (C)
between 3 and 3.5 seconds.
Top, Average network activity.
Bottom, Intracellular voltage
trace of a single neuron. Inset,
Power spectrum of the average
activity of the network, showing
a peak in the γ (40 Hz) frequency
range. Persistent activity is sta-
ble even in the presence of syn-
chronous oscillations. Adapted
with permission from Renart,
Brunel, and others (2003).

[Renart, Brunel, Wang , 2003]

Network Mechanisms & Biophysical Models



Concluding remarks
Excitatory reverberation is a leading candidate
mechanism for mnemonic persistent activity. Recent
work on the biophysics of reverberatory networks has
led to two significant advances. First, attractor models
were constructed with realistic neurons and synapses.
Thus, it is possible for the first time to directly
compare a model with cellular neurophysiology. These
models have led to specific predictions and questions
(Box 2) which, albeit difficult, seem to be within the
reach of available experimental techniques. Second,
the attractor paradigm has now been extended to
memory networks that encode an analog stimulus, in
the form of ‘bump attractors’ or ‘line attractors’.

It was recognized that reverberatory networks tend
to be dynamically unstable, but stability can be
achieved if recurrent excitation is primarily mediated
by the slow NMDA receptors. This hypothesis remains
to be tested experimentally. The idea should also be
challenged theoretically, by exploring alternative
biological mechanisms (such as heterogeneity) that
could stabilize a memory circuit without NMDA
receptors. A related issue is the robustness of memory
networks with a continuous family of attractors, which
in existing models typically require fine-tuning of
parameters with unrealistic precision. Ultimately, the
problem of robustness needs to be solved by adaptive
biological mechanisms71.
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Recent theoretical models have raised several neurophysiological
questions that can be investigated experimentally. Answers to these
questions will help to elucidate the mechanisms of neural persistent
activity.
• What is the minimum anatomical substrate of a reverberatory circuit

capable of persistent neural activity?
• Is persistent activity primarily sustained by synaptic reverberation, or by

bistable dynamics of single neurons?
• What is the NMDA:AMPA ratio at recurrent synapses of association

cortices, especially in the prefrontal cortex?
• How does this ratio depend on the frequency of repetitive stimulation

and on neuromodulation?
• What are the negative feedback mechanisms responsible for the rate

control in a working memory network?
• Is delay period activity asynchronous between neurons, or does it display

partial network synchrony and coherent oscillations?
• Is delay period activity more sensitive to NMDAR antagonists compared

with AMPAR antagonists?
• Does persistent activity disappear in an abrupt fashion, with a graded

block of NMDAR and AMPAR channels, as predicted by the attractor
model?

• How significant are drifts of persistent activity during working memory?
Are drifts random or systematic over trials?

• What are the biological mechanisms underlying the robustness of a
memory network with a continuum of persistent activity patterns?

Box 2. Outstanding questions
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Network Mechanisms & Biophysical Models But cellular mechanisms should not be forgotten ... 

[Egorov et al, Nature, 2002]

• Layer 5 of EC in vitro, intracellular depolarization + bath application of the ACh-

receptor agonist leads to a Ca2+ -dependent plateau potential.

• This leads to sustained firing at a constant rate > 13 min

• independent of synaptic transmission.

• Level of activity can be increased or decreased using repeated inputs.

Could attractors be suited for remembering learned stimuli while such a system 

could  help maintaining new stimuli?

Lots of interesting questions

• How are these attractors learnt?

• What is the relation with Attention?

• What is the relation with Long-term Memory ? (Is sustained activity 

helpful for storage of memory?)
Treue (2004). There, monkeys were trained to fixate a central spot during
a brief presentation of a peripheral random-dot pattern in coherent mo-
tion, which was the stimulus to be attended. Subsequently, an additional
random-dot pattern in coherent motion was added in the receptive field
of the neuron (test stimulus), which was behaviorally irrelevant but could
share or not the direction of motion of the attended stimulus. The mon-
key had to report a direction or speed change in the attended stimulus
and ignore changes in the test stimulus. The experiment revealed atten-
tional modulation on the neuronal responses to the unattended test stim-
ulus that depends on the attended direction of motion (feature-based
attention). Here, motion stimulus presentation to the network was mod-
eled through selective transient current injection to MT cells (see below,
Task-related extrinsic inputs). We included a delay period or D-period
(see D in Figs. 2 A, 4 A), between the presentation of an attended feature
(cue period or C-period) (see C in Figs. 2 A, 4 A) and the presentation of
the test stimulus (test period or T-period) (see T in Figs. 2 A, 4 A). During
the D-period, the visual stimulus was absent. By including this period, we
were able to evaluate the effect of an attentional bias on the MT network
baseline activity (see Fig. 4C).

Task-related extrinsic inputs. Cells in area MT received external inputs
from primary visual area V1, which were selective to the direction of
motion of the visually presented stimulus (Born and Bradley, 2005). We
thus modeled motion stimuli presentation by injecting external currents
to MT neurons that mimicked outputs from V1 to MT. We tried with
Poisson-triggered synaptic inputs and our conclusions remained unaf-
fected. When there was a single motion direction (!S), the current in-
jected to a neuron labeled by !i was I(!i) ! I0 " I1exp("(cos(!i # !S) #
1)); for MT pyramids, we used I0

E ! 1 nA and I1
E ! 0.9 nA; for MT

interneurons, we used I0
I ! 0.2 nA and I1

I ! 0.18 nA; and for both cell
types, " ! 2.53 (this choice of " gives a connectivity profile very close to
a Gaussian with a constant baseline, with the same width as MT-to-PFC
connections). When two overlapping directions of motion were visually
presented, the current impinging on MT neurons was the sum of the
currents corresponding to the two single stimuli, normalized so that the
maximal current was still I0 " I1 (supplemental Fig. 1 A, available at
www.jneurosci.org as supplemental material).

This normalization was derived from the observation that the maxi-
mal response of a direction-selective V1 neuron remains the same for
either single motion or transparent motion stimuli (Snowden et al.,
1991). More abstract models of V1 neurons selective to motion direction
typically include a similar normalizing factor (Simoncelli and Heeger,
1998; Rust et al., 2006). PFC model neurons received motion-specific
sensory inputs only through the MT-to-PFC pathway.

In all our simulation trials and during the attentional C-period, all PFC
neurons also received a constant current injection of 0.025 nA. This
current was not selective, and thus it did not carry any direction of
motion information. It was too weak to trigger by itself a persistent
activity pattern in the PFC network (see Fig. 2 A, left), but strong enough
so that, when presented coincidentally with a visual stimulus, the PFC
was able to store the directional information from MT (see Fig. 2 A,
right). Such a “gating input” allows our model to differentiate an atten-
tional cue from a visual stimulus presented during the T-period in Figure
2 A, left.

The integration method used was a second-order Runge–Kutta algo-
rithm with a time step of $t ! 0.02 ms. The custom code for the simu-
lations was written in C"".

Results
The network model architecture
We built a network model of spiking neurons composed of two
interacting areas, a sensory area selective for motion direction
(MT) and a working memory area that selectively stored this
information. The internal structure in each of the two local net-
works is in accordance with the known anatomical and physio-
logical characteristics of cortical microcircuitry. The interareal
reciprocal connections followed some simple rules, based also on
biological plausibility: neurons with similar preferred directions
were more strongly connected (following a Gaussian function),

and synapses were all excitatory, but could target both pyramidal
cells and interneurons. For explicit details, see Materials and
Methods.

Our model was constrained based on a number of specific
experimental results in area MT. On the one hand, neural re-
sponses to a motion stimulus in the receptive field have been
quantitatively characterized (Maunsell and Van Essen, 1983;
Snowden et al., 1992). On the other hand, there is evidence that
the circuits in area MT are endowed with competition mecha-
nisms, because the spiking response of an MT cell (but not a V1
cell) is suppressed when two superimposed moving random dot
patterns are presented (Snowden et al., 1991; Treue et al., 2000)
(see scheme of these stimuli in Fig. 1). We used this data to
constrain our MT network model. To this end, we used both
full-scale simulations (see Materials and Methods) and a mean-
field approximation (Renart et al., 2003) of the MT network to
allow for extensive parameter space exploration. We found that
the appropriate competitive responses could be realized (supple-
mental Fig. 1, available at www.jneurosci.org as supplemental
material) if bottom-up inputs into MT targeted also local-circuit
inhibitory neurons. Interneurons project onto excitatory cells
strongly to provide inhibition commensurate with the overall
feedforward drive, thereby instantiating a circuit mechanism for
normalization (Simoncelli and Heeger, 1998; Rust et al., 2006).
The downstream working memory area was modeled as by
Compte et al. (2000). This module will be referred to as prefrontal
cortex (PFC) module for the sake of simplicity, although working
memory and selective attention are likely to be subserved by both
prefrontal and parietal cortices (Colby and Goldberg, 1999; Hop-
finger and Mangun, 2000; Corbetta and Shulman, 2002; Lebedev
et al., 2004; Moore, 2006; Grent-t Jong and Woldorff, 2007). In
this model, working memory of a directional cue is achieved
through reverberatory interactions between spiking neurons in
the local network. Thus, the two networks in our model share the
same qualitative internal architecture, but the PFC module is
endowed with strong recurrent excitation, whereas the MT net-
work is dominated by inhibition. Both cortical network modules
are reciprocally connected with topographically specific
bottom-up and top-down synaptic connections (Fig. 1) to ex-
plore the orienting effects of a selective firing pattern in the PFC

Figure 1. Scheme of the loop architecture (red is excitation, and blue is inhibition). Two
kinds of motion stimuli are considered (random-dot patterns; yellow arrows indicate signal
motion directions): single (left) and transparent (right) motion. WM, Working memory.
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network over the population activity and single neuron responses
in the MT network. The bottom-up connection parameters were
tuned to allow the transmission of visual information from the
MT to the PFC module.

The parameters of the top-down connection were tuned to
produce selectivity enhancement of MT neural population re-
sponses (Fig. 2C) in agreement with experimental data
(Martinez-Trujillo and Treue, 2004). We will call this selective
enhancement with inhibitory surround of population responses,
where by inhibitory surround we mean that peak responses are
enhanced and surround responses are suppressed. Such an inhib-
itory ring around the attentional focus has been recently vali-
dated in imaging studies in humans as well (Hopf et al., 2006).
The selectivity enhancement of population profiles is a relevant
finding, because what matters functionally are instantaneous
population activity patterns rather than neuronal tuning curves
obtained from multiple trials.

The rest of the phenomenology reported here (see Figs. 3–5)
emerged from the model constrained this way, without any fur-
ther parameter tuning.

Attentional enhancement of population selectivity
A single-trial simulation (Fig. 2A, right) consisted of three task
epochs. In a cue period (C), a transient input about attended
motion direction (!A) triggered a self-sustained persistent activ-
ity (peaked at the attended directional angle !A) in the PFC net-
work. In simulations, it was done by a combination of a direc-
tional stimulus (!A) to the MT network, whose activity was

projected through weak bottom-up con-
nections to PFC, and a transient nonspe-
cific input to the PFC module (see Materi-
als and Methods). This “gating input” was
weak enough so it did not trigger by itself
persistent activity in the PFC module (Fig.
2A, left), but it allowed this activity to de-
velop in case a stimulus was simulta-
neously presented to the MT network (Fig.
2A, right). A plausible physiological sub-
strate for this input could be found in the
phasic alertness circuits recently identified
in the superior temporal gyrus or in the
thalamus (Sturm and Wilmes, 2001; Fan et
al., 2005; Thiel and Fink, 2007). We thus
assume that projections from these areas
generate a slightly net increase of unspe-
cific external input to PFC neurons during
the C-period of our task. The C-period was
followed by a delay period (D), where in
the absence of all external inputs PFC
maintained the information of the at-
tended feature, if presented. Finally, in a
test period (T), a test stimulus !S was pre-
sented to the MT network.

For comparison, when no attentional
cue was shown in a stimulation trial (Fig.
2A, left), no persistent activity was pro-
duced in the PFC network, nor was there
top-down signal to modulate the MT net-
work response during the T-period. In this
example, the attended direction and the
stimulus were the same (!A ! !S ! 0°).

As can be seen in Figure 2B, the spiking
response of a neuron with !pref ! 0° was

enhanced by the attentional signal (red) compared with control
(black). The population activity pattern (the average firing rate
during the T-period plotted for all neurons) exhibits sharpened
selectivity, similar to that observed experimentally (Martinez-
Trujillo and Treue, 2004): neural activity was increased at the
focus of attention but suppressed on the surrounds (Fig. 2C, red)
compared with the unattended case (black) (selective enhance-
ment with inhibitory surround). Such sharpening of population
activity occurred because the top-down projection from PFC not
only provided local excitation, but also targeted MT interneurons
that then projected unspecifically onto MT excitatory neurons
and suppressed firing on the flanks (supplemental Fig. 2, avail-
able at www.jneurosci.org as supplemental material). Indeed, at-
tention strongly increased peak inhibitory firing rate ("25 Hz).
When computed as a perecentage increase from baseline firing,
this represents the same modulation (35%) as for excitatory neu-
rons (Mitchell et al., 2007).

We confirmed that this enhanced selectivity was robust to
parameter variations in the top-down projection, especially if
changes of top-down synapses onto excitatory neurons and those
onto inhibitory cells were approximately balanced (supplemental
Fig. 3A,C, available at www.jneurosci.org as supplemental mate-
rial). The selectivity enhancement is quantified by the ratio of
firing rates with and without attention (Fig. 2C), called modula-
tion ratio (Martinez-Trujillo and Treue, 2004), plotted as a func-
tion of the difference between the attended direction !A and the
preference of the neuron !pref. The modulation ratio curve of the

Figure 2. Feature-based attention in model simulations for single motion stimulus. A, Network activity for an unattended
(left) and an attended trial (right). x-Axis, Time; y-axis, neurons labeled by preferred direction !pref. Activity is color-coded. C, Cue
period; D, delay period; T, test period. Calibration, 1 s. B, Activity of a neuron with !pref ! !S. Top, Sample membrane potential;
middle, spike trains in several trials; bottom, trial-averaged activity (red, attended; black, unattended trials) (calibration: time, 1 s;
voltage, 50 mV; rate, 40 Hz). C, Selective enhancement of MT population activity. The scheme (top) depicts how the curves
(attended in red; unattended in black) were generated: for fixed test stimulus !S and attended feature !A, the activity of all
neurons (blue arrows) were measured. D, Smoothed modulation ratio (firing rate with attention divided by that without atten-
tion) plotted against the distance between attended feature and neuronal preference.
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A related problem: spontaneous activity

• Where does it come from? 

• How is it maintained?  How does it !move"?

• Are these !attractor states"? 

• Is it structured?

• Why is it there? (any functional advantages?) 

• Is it noise?

• Is it the brain trying to !predict" the input?

Arieli et al 1997; Tsodyks et al, 1999; 
Fiser et al, Nature, 2004 evoked (horizontal 

orientation)
spontaneous 
(one frame)


