
Perceptual Learning (2)

Readings: 

Tsodyks and Gilbert, Neural networks and perceptual learning (2004)

Seitz and Watanabe, A unified model for perceptual learning (2005)

[Thanks to Aaron Seitz for many slides of this lecture]

• Studying perceptual learning to understand plasticity in adult.

• Perceptual learning leads to dramatic improvements in detection 

and discrimination task (e.g. orientation discrimination, often 2-3 

fold).

• Learning is often very specific to trained configuration (position, 

orientation etc..) which suggests that learning can take place in 

!early" visual processing areas.

• Electrophysiological recordings in V1 and V4 find some changes 

in tuning curves (sharpening) after learning, but probably too 

modest to explain behavioral improvements. 

• One possibility is that learning affects not only the !neural 

representation" but also the !read-out".

Summary of last lecture 

Mechanisms of learning ? 

• How does the brain ‘know’ which neurons/
connections to change? how to change them ?

• What are the signals that control/guide learning?

Models of Learning : Supervised Learning

• Teacher is provided.

• Training data consists in pairs 

(X,Y)

• System has to learn the mapping 

function.

• Learning = Minimization of ‘error’  

computed at output (e.g.  sq. error 

between obtained Y and desired Y), 

by modifying the components of the 

system (weights of the neural 

network).

• The error signal controls learning. 

• After training, system can 

generalize to inputs close to learnt 

inputs.



•Some reward is given 

following actions due to Y.

•The system learns to 

maximize the reward.

•Takes longer than supervised 

learning, but more biologically 

plausible.

• reward /reinforcement signal 

controls learning

Models of Learning: Reinforcement Learning

• Only X is given, and a cost function 

guiding the self-organization of the 

system

• internal criterion is used to guide 

learning.

• Optimize representation.

•Example : hebbian learning 

(learning is only dependent on level 

of activity of presynaptic and 

postsynaptic cells), models of 

development (e.g. maps)

Models of Learning : Unsupervised Learning

Learning hypotheses

• Passive learning.

Learning is just controlled by statistics of the world. 

!Bottom-up". Prediction: some task transfer

•  Task-related Learning. 

Learning is related to the task. Some top-down signal is needed, possibly 

about neural representations relevant to the task (!tag"), and/or level of 

performance / error / reward (supervised- reinforcement).

Prediction: no task transfer.

• Attention !selects"/"tags"  the appropriate neural representation/ networks ?  

prediction: no learning if stimulus unattended or not perceived.

• Giving feedback during training // supervised - reinforcement 

learning.

• Numerous of report of successful learning in absence of 

feedback, specially in easy tasks (e.g. Shiu and Pashler, 1992).

• but feedback often facilitates / accelerates learning in some 

tasks (Herzog & Fahle, 1997)

• Block feedback (percentage correct after eg  80 trials) is as 

effective as trial by trial feedback (Herzog & Fahle, 1997)

• Incorrect feedback slows learning (Herzog and Fahle, 1997).

• suggests that learrning doesn’t rely on a ‘teacher signal’. 

However, feedback can be used when present, in a complex way.

Does feedback guide learning ? 



Ahissar & Hochstein, 1993; Karni & Sagi, 1995; Shiu & 

Pashler, 1992;  and others . . .
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FIG. 1. (A) Four stimulus types: vertical (left) versus horizontal
(right) arrays for the global identification task and arrays that contain
an odd element (bottom) versus arrays that do not (top) for the local
detection task. (B) Trial temporal sequence. Subjects pressed the
ready key in response to the fixation cross. Stimulus was followed by
a mask after a variable stimulus-onset asynchrony (SOA). Subjects
then pressed a response key.

Stimuli were presented in blocks of 20 trials with the same
SOA. Each session comprised 70 blocks of 20 trials each.
Each session began with a set of 11 blocks starting from the
longest SOA (183 ms) and gradually reaching the shortest
SOA (16 ms) in an interleaved manner (blocks with SOAs of
183, 150, 116, 83, 50, and 16 ms followed by blocks of 166,
133, 100, 66, and 33 ms). Based on performance in these initial
blocks, the range of SOAs to be presented next was chosen
so that the shortest SOA would be the longest in which the
subject still performed at chance level (s55% correct) and the
longest SOA would be the shortest where the subject already
showed near perfect performance (:95% correct). Within
that chosen range (constrained to include at least three
different SOAs), blocks were presented in pseudorandom
sequence. Following blocks of presentations with these
SOAs, the next range of SOAs was chosen based on perfor-
mance in these blocks and following the above criterion. As
a result of this procedure, performance was kept around 75%
correct within and throughout sessions.

Training Procedure. We measured the percentage correct
as a function of SOA. The average performance of each
session was evaluated by computing the best-fit psychomet-
ric function of the form: f = 1 - 0.5 exp(-t/r)" where and
ar are free parameters, f is the proportion of correct re-

sponses, t is the trial SOA, r is the threshold SOA at 81.6%
correct, and cr is the slope at threshold multiplied by 2e (20).
Each subject was first tested on each task, to allow a

within-subject comparison of performance. Subsequently, the
subject was trained with one task until the threshold curve as a

function of session number nearly reached an asymptote and
seemed to no longer decline. He or she was then tested and
trained with the alternative task and randomly chosen for
testing sessions with varied sets of stimuli. Within each session,
only one task and one set of stimuli were used. Note that there
is no difference between a training and a testing session in
duration and procedure or in effect on subsequent performance.
Twelve subjects participated in this experiment (six men and

six women). Subjects were 18-40 years old with normal or

corrected to normal eyesight and were paid for participation.

RESULTS
Training Effects. All subjects improved in both tasks, as

measured by a reduction in the stimulus-mask SOA to

produce a fixed accuracy of performance. The number of
sessions needed to reach near asymptotic performance was
variable among subjects (range, 3-15). Examples ofthe initial
and final psychometric functions (first and last sessions) for
each task are illustrated in Fig. 2. In Fig. 3C (four left bars),
we demonstrate that the across-subject average threshold
SOA for the two tasks decreased by >50% from initial
session to asymptotic level.

Stimulus Specificity. Following training with a fixed set of
stimuli, we tested whether the improvement in performance
of these tasks was stimulus specific. We found that learning
was stimulus specific for both tasks and did not transfer fully
to performance with altered stimuli. However, their speci-
ficities differed; learning local detection was specific to
parameters of the elements of the stimulus array while
learning global orientation identification was specific to a
global attribute of the entire stimulus array.

Stimulus specificity of both types is illustrated in Fig. 3.
Local detection was orientation and size specific as follows:
rotating the elements by 900 (Fig. 3 A and C, rotated elements)
or halving the length of the individual elements and the
interelement distances (Fig. 3C, small elements and array)
substantially increased the local detection threshold from
asymptote (Fig. 3C, after training) toward its pretraining
value (Fig. 3C, before training). Global identification thresh-
old, on the other hand, remained asymptotically low despite
element rotation (Fig. 3C, rotated elements). Global identi-
fication threshold was increased when the change in element
size caused a decrease of the array size (Fig. 3 B and C, small
elements and array) but not when the number of rows and
columns was doubled to compensate for the reduction in
element size (Fig. 3C, small elements). Thus, global identi-
fication depended on global array size not on properties of
local elements.

In summary, the improvement in performance for both of
our new tasks is stimulus specific, suggesting that learning
takes place at processing levels that are stimulus-related and
where different ranges ofthe stimulus attributes (orientation,
size) are separately processed. The different stimulus spec-
ificities of the two tasks indicate that even at these early
stimulus-linked levels different networks underlie perfor-
mance and training of these tasks.
Task Specificity. Having established that acquaintance with

the specific stimulus is necessary for complete learning, we
subsequently investigated whether this is a sufficient condi-
tion. In other words, we tested the hypothesis that top-down,
task-related information would not affect perceptual learn-
ing. If such were the case, the effect of learning one task with
a given set of stimuli would transfer to another task using the
learned set of stimuli. Alternatively, no transfer between the
tasks would occur if the hypothesis were incorrect, and even
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FIG. 2. Performance improvement from initial sessions (solid
symbols) to posttraining final sessions (open symbols). Data for
subject YY performing the local detection task (Left) and the global
identification task (Right) are fit to Quick psychometric functions
(20). Training induces a leftward shift and a steepening of the
psychometric curves, substantially decreasing the threshold SOA
(arrows). In Figs. 3 and 4, threshold decrease is used as a measure
of learning.

Psychology: Ahissar and Hochstein

•  Same stimulus -- different tasks  

• no transfer 

•  A&H propose that attention selects which 

aspects of the neural representation are 

learnt.

• Similarly Shiu & Pashler 1992 (contrast vs 

orientation discrimination of line)
!Vertical or Horizontal?

!is there an odd element?

[Ahissar and Hochstein , 
1993]

How to study exo-attentional learning? 

1) Use a distracting task - requires subjects to 

“attend” away from training stimulus

2) Use a subliminal stimulus - subjects cannot 

attend to it even if they try

Watanabe & Seitz: Attention really needed ?
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Phase 1: 
motion direction test

A

Phase 2:
RSVP training

?

Phase 3: 
motion direction test

Experimental Design Watanabe et al, Nature, 2001

Fiser & Aslin 2001, 2002; Watanabe et al 2001, 2002

B

Testing
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Passive Perceptual Learning ? Seitz and Watanabe, 2003



Passive Learning Prediction Specific Attention Prediction

Reinforcement Learning Prediction

Main effect (p<.01, ANOVA test)

(p<.01, t-test vs. other directions) 

Seitz and Watanabe, Nature 2003

Adapted from Seitz & Watanabe, Nature 2003

Results



Summary of Watanabe 2001 & Seitz and Watanabe, 2003

•  Learning found for subliminal feature 

•  only when paired with the task target#

•   Results are at odds with both the specific attention and 

passive learning hypotheses. 

•# Reinforcement learning hypothesis supported : 

successful recognition of target evokes an 

alertness or internal reward signal that triggers 

plasticity of simultaneously presented features.

 An imbalance in identification-accuracy of two masked 

targets presented in rapid succession.
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Attentional Blink

• Subliminal motion is paired with 

T2 and presented in or out the 

attentional blink, while subjects 

do the RSVP task.

• When motion is in the attentional 

blink, no clear performance 

change is observed.

• consistent with the idea that 

succesful recognition of target is 

necessary for learning of paired 

motion to occur / !internal reward 

to be released"

Perceptual Learning also Blinks

AB direction compared to the
NoAB direction. To control for this
possibility we introduced a control
task, using a new set of subjects,
to test if there was a reduced
ability of subjects to report the AB
direction. Subjects were required
to give an immediate report of the
motion direction paired with T2.
The stimulus sequence and task
constraints, until motion offset, of
this control were identical to the
main task, so any differences in
stimulus processing between the
AB and NoAB directions should
be revealed as performance
differences in motion direction
identification. Task performance
at 5% coherence (used for
training) was poor both for the AB
and NoAB conditions but
surprisingly was slightly, but
significantly, better for the AB
direction (NoAB = 15.6 ± 4.4 vs
AB = 22.9 ± 5.8; p < 0.01 t test).
While this result is opposite to
that predicted by the low-level
hypothesis, it was not unexpected
as the NoAB direction is later in
the motion stream and is likely
subject to forward masking. This
rules out all possible confounds of

a low-level stimulus processing
deficit during the blink.

Although it had been
hypothesized that successful
recognition of a task-target leads
to the release of a diffuse learning
signal, resulting in learning for
those features temporally
correlated with that target [3],
until now we lacked a framework
by which to identify the
requirements for this signal to be
released. We have shown the
bottleneck believed to be
responsible for the attentional
blink encompasses processes
critical for perceptual learning.
We suggest that a high level
processing stage limited by the
attentional blink gates the release
of a non spatially or featurally
specific learning signal. This
signal effects learning of low-level
stimulus features.

Our results have potentially
important implications for other
types of learning and attentional
processes. They help reconcile
results of subliminal learning with
attentional learning theories.
Subliminal learning may involve
attentional processing, but
attention does not need to be
directed to a feature for that
feature to be learned. This is
consistent with data indicating
that attention involves multiple,
but distinct, subsystems [12,13]
and findings that an array of
different processes are limited by
the blink [11]. While some of these
attentional systems are featurally
specific, others are not and may
account for subliminal learning
[14]. This unification of these two
lines of research is an important
step toward increasing our
understanding of the mechanisms
that underlie our ability to direct
attention to important
environmental factors and to learn
from them.
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Figure 3. Performance of seven subjects
on direction discrimination task before
(dotted lines) and after (continuous
lines) subliminal training.
(A) For the motion direction paired with
T2 of the NoAB condition, improved per-
formance after training is observed
across all levels of tested motion coher-
ence. (B) For the motion direction paired
with T2 of the AB condition, no clear per-
formance change was observed. The
bars represent standard errors.
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Current Biology

Seitz et al, 2005.

• juice rewards to humans !

• no task - drop of juice is 

paired with one orientation, 

visible (exp 1) or made invisible 

using continuous flash 

suppression (exp 2)

•   shows that reward, in 

absence of any task or 

awareness, is sufficient to 

cause visual learning

reward in absence of task nor awarenessManuscript Under Submission (Please do not distribute)               9 

 

 

Figure 1 

Seitz et al, SFN, 2007.
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Figure 1

Schematic illustration of the processes that gate perceptual learning. The key assumption is that for sensory stimulation to be sufficient, it must
drive the neural system past the point of a learning threshold. Whereas simple sensory stimulation is insufficient, factors such as attention or
reinforcement have important permissive roles. In addition, sensory inputs or magnetic or electrical stimulation that are optimized to meet further
requirements such as synchronization can also boost signals that normally are insufficient to surpass this threshold. In particular, specific
spatiotemporal stimulation protocols such as high-frequency burst-like stimulation, which induce synaptic plasticity in brain-slice preparations,
are highly effective.

Current Opinion in Neurobiology 2007, 17:1–6 www.sciencedirect.com
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 ‘common learning mechanism involves Hebbian learning process gated by 
neuromodulatory signals (e.g.  acetylcholine and dopamine) that are activated 
both in attentional and reinforcement paradigms’

 Seitz and Dinse 2007

Models needed !

- Huge amount of psychophysical data.

- Recently, physiological data.

- Simple models based on assumptions /

• neural representation vs read-out learning

• learning schemes: e.g. hebbian vs gated by reinforcement signals

- can make clear predictions about:

•stimulus transfer, task transfer, deterioration, biases in absence of 

signals

- provide framework to relate learning with neural coding / information 

transmission

ideally, help construct experiments that will disentangle all current 

hypotheses.


