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The ability to hold information in memory over a time
scale of seconds is a critical component of cognitive
functions such as language, abstract thought, planning
and most of the mental processes we associate with
human intelligence. Working memory, as this critical
function is known, can be thought of as a blackboard of
the mind (Baddeley 1992). Because of its central role in
cognitive function, working memory has attracted
intense research scrutiny over several decades. Early,
lesion studies revealed profound short-term memory
deficits after selective ablation of the prefrontal cortex
(Jacobsen 1936; Milner 1963; Goldman-Rakic 1987).
Subsequent neurophysiological experiments in monkeys
demonstrated that prefrontal neurons continue to dis-
charge even after the offset of transient sensory stimuli
that animals are required to remember (Fuster and
Alexander 1971; Kubota and Niki 1971; Funahashi and
others 1989). This persistent discharge is widely thought
to be the neural correlate of working memory. The

advent of imaging techniques, PET and fMRI, verified
persistent activation of the human brain during the main-
tenance of information in memory and confirmed the
involvement of the prefrontal cortex in the process
(Jonides and others 1993; Courtney and others 1997;
Ungerleider and others 1998). Neural correlates of
working memory have since been observed in other
brain regions as well, and indeed, the prefrontal cortex is
only part of a broader network of interconnected cortical
and subcortical areas (Fig. 1). The differential roles and
relative contributions of these brain structures in memo-
ry function continue to be investigated.

The representation of spatial information and particu-
larly the position of a visual stimulus on the fronto-par-
allel plane has been a popular model for the investigation
of working memory. Among its advantages is that space
is represented in the brain in a well-understood, para-
metric fashion; the primary visual cortex is organized
retinotopically, providing a clear correspondence
between neuronal activity and stimulus position. In con-
trast to retinal location, the representation of other stim-
ulus attributes (e.g., object identity) is encoded in still
poorly understood dimensions. Visuospatial memory
tasks (Fig. 1) provide the best-understood model of
working memory, and much effort has been devoted to
understanding the cortical mechanisms underlying their
execution. This review summarizes recent progress in
the field, with an emphasis on close interactions between
experimental and computational approaches that have
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led to new insights, as well as open questions for future
investigations.

Neural Correlates of Spatial Working Memory

Electrophysiological studies in the monkey prefrontal
cortex (Fig. 2) first revealed that a population of pre-
frontal neurons continues to discharge in a persistent
fashion, even after sensory stimuli are no longer present
(Fuster and Alexander 1971; Kubota and Niki 1971;
Funahashi and others 1989). The part of the visual space
where stimulus appearance can produce sustained acti-
vation has been termed the neuron’s memory field, in
analogy to the receptive field of neurons responding to
sensory stimulation. Different prefrontal neurons exhib-
it different memory fields, and the overall activity of the
population can encode the location of a remembered
stimulus.

To elucidate the neural mechanisms of spatial work-
ing memory, it is desirable to dissect neural activity
related to the mnemonic content per se, dissociated from
the other aspects of a behavioral task. One of the most
often-used, as well as simplest, behavioral paradigms for
evaluating persistent activity is the oculomotor delayed-
response task (Fig. 2). In this task, monkeys are required
to fixate a central point on a screen, to remember where
a brief visual cue appeared, and after a delay period of a
few seconds, to indicate the remembered location of the
cue by shifting their eyes to it. Neuronal activity persist-
ing after the disappearance of the visual cue in such a
task may, in principle, mediate the memory of the cue

location but may also be related solely to the preparation
of the motor response. Indeed, one of the disadvantages
of the visuospatial model is that spatial information in
the brain is inexorably linked with motor circuits for the
guidance of eye and limb movements to visual targets. It
is a challenge, therefore, to dissociate experimentally
observed neuronal activity related to visual spatial mem-
ory with that related to the preparation of motor com-
mands. A number of experiments have sought to distin-
guish between the two alternatives by dissociating the
location of a remembered stimulus with the direction of
a motor response. Monkeys have been trained to perform
an antisaccade task requiring an eye movement away
from a remembered stimulus (Funahashi, Chafee, and
others 1993), a conditional response task involving a
movement in a direction other than the stimulus location
(Niki and Watanabe 1976; Takeda and Funahashi 2002),
or a spatial match to sample task, demanding a lever
release when a stimulus appears at a previously cued
location (Sawaguchi and Yamane 1999). In all cases, dis-
charge of the majority of dorsolateral prefrontal neurons
was found to encode the location of the remembered
stimulus, although a minority of neurons did represent
the actual motor response. A signal-detection theory
analysis of prefrontal cortical activity revealed that the
latter reflects sensory attributes of a remembered stimu-
lus even when the particular stimulus is not guiding a
motor action (Constantinidis and others 2001b).

Although visual stimuli have been most extensively
used in neurophysiological investigation, spatially local-
ized mnemonic neuronal activity is not restricted to
vision. Prefrontal cortical neurons exhibit sustained dis-
charges in auditory memory tasks, spatially tuned to the
location of the sound source (Azuma and Suzuki 1984;
Vaadia and others 1986; Bodner and others 1996). A par-
ticular prefrontal cortical subdivision appears to receive
specialized inputs of spatial auditory information
(Romanski and others 1999). Beyond the prefrontal cor-
tex, neurons in lateral intraparietal area (LIP) of the pos-
terior parietal cortex have been shown to be active dur-
ing tasks requiring orienting to a remembered auditory
target (Mazzoni and others 1996) but only if they have
been trained to perform an eye-orienting task to audito-
ry stimuli (Grunewald and others 1999).

Working Memory in a Distributed Network

Although first described in the prefrontal cortex, neu-
rons active during spatial working memory have been
reported in other cortical areas. The dorsolateral pre-
frontal cortex (areas 46 and 8) receives input from the
posterior parietal cortex, an area of the dorsal visual
stream, which is involved with the processing of visuo-
spatial information. Posterior parietal neurons in areas
LIP and 7a (Fig. 3) are tuned to the spatial location of
stimuli, and they too discharge in a sustained fashion
when animals are trained to remember the spatial loca-
tion of a stimulus (Andersen and others 1987; Gnadt and
Andersen 1988; Quintana and Fuster 1992;
Constantinidis and Steinmetz 1996). A study comparing

Fig. 1. Successive frames illustrate the sequence of events in
the oculomotor delayed-response task. Trials begin with the
appearance of a fixation point at the center of the screen, which
the monkey is required to foveate throughout the trial. A spatial
cue is subsequently presented, typically at one of eight loca-
tions (left). After a delay period of a few seconds, the fixation
point is turned off and the monkey is required to indicate the
location of the cue by moving his eyes accordingly on the
screen.
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responses in the dorsolateral prefrontal and posterior
parietal cortex of the same monkeys trained to perform
an oculomotor delayed-response task revealed no appre-
ciable differences in the two areas (Chafee and
Goldman-Rakic 1998). Indeed, imaging studies in
humans almost invariably report concurrent prefrontal
and parietal activation in working memory tasks
(Jonides and others 1993; Courtney and others 1997;
Owen and others 1998; Ungerleider and others 1998;
Marshuetz and others 2000; Bunge and others 2001;
Rowe and Passingham 2001; Stern and others 2001;
Munk and others 2002). The distinct and cooperative
roles of these areas remain unresolved.

Memory-related activity has been further described in
earlier areas of the dorsal visual pathway projecting to
the posterior parietal cortex, such as area V3A and MT
(Nakamura and Colby 2000; Bisley and others 2004)
and even V1 (Super and others 2001). In addition, spa-
tial memory responses have been recorded in the primate
entorhinal cortex (Suzuki and others 1997). Also active
during spatial working memory are brain areas involved
in the control of movement, such as the premotor and
supplementary motor cortex (di Pellegrino and Wise
1993b; Russo and Bruce 1996), superior colliculus
(Glimcher and Sparks 1992), and basal ganglia
(Hikosaka and Wurtz, 1983; Hikosaka and others 1989;
Kimura and others 1992). These results show that

mnemonic neural activity is widespread. However, infor-
mation is scarce as to whether persistent activity is pri-
marily generated in certain local brain areas, while neu-
rons in other areas simply reflect sustained inputs from
memory cells upstream, or persistent activity depends on
feedback connection pathways in a large brain network.
There have been conflicting reports on whether delay-
period-persistent activity is prevalent in the thalamus
(Fuster and Alexander 1973; Sommer and Wurtz 2004).
The clarification of this issue would help to assess
whether the cortico-thalamic-basal ganglia loop is criti-
cal to the generation of working memory activity in the
cortex.

Important differences between the activation of the
prefrontal and posterior parietal cortex have begun to be
unveiled through the use of more complex cognitive
tasks. When monkeys are trained to remember the spa-
tial location of a sample stimulus and ignore intervening,
distracting stimuli, neurons in posterior parietal areas 7a
and LIP encode the location of the most recent stimulus,
whether it is the remembered sample or the behaviorally
irrelevant distractor. Parietal neurons respond in a per-
sistent fashion to the presentation of distractor stimuli in
the receptive field (Constantinidis and Steinmetz 1996;
Powell and Goldberg 2000) while ceasing to represent
the sample stimulus, although the animal continues to
retain the sample in memory and successfully completes

Fig. 2. Activity of a single prefrontal neuron, exemplifying persistent discharges during the execution of the oculomotor delayed-
response task. Discharges are arranged as to indicate the location of the cue. The neuron is mostly active during the delay period fol-
lowing presentation of a stimulus in the upper left (135-degree) location. From Funahashi and others (1989) with permission.
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the trial. Prefrontal neurons, on the other hand, encode
the actively remembered cue (di Pellegrino and Wise
1993a, 1993b). This prefrontal trait of resistance to
sequentially presented distractors has been recently ver-
ified by human imaging experiments (Cornette and oth-
ers 2002; Sakai and others 2002). Computational studies
have offered insights on how a working memory network
can filter out behavioral irrelevant stimuli, suggesting a
possible role of NMDA receptors, dopamine innerva-
tion, and specialized interneuron types (Compte and oth-
ers 2000; Brunel and Wang 2001; Wang and others
2004).

Responses of neurons activated by spatial working
memory can be modulated by other factors, as it has
recently been revealed by the use of more complex
behavioral paradigms. When the animal is cued to
remember one of multiple stimuli in the visual field, pre-
frontal neurons preferentially represent the attributes of
the attended stimulus (Rainer and others 1998b;
Everling and others 2002). The response of prefrontal
neurons to the same operant stimuli can also vary
depending on the expectation of reward, when the later
changes from trial to trial (Leon and Shadlen 1999). A
similar modulation of neuronal responses to identical
stimulation has been observed in animals trained to per-
form a number of alternative tasks, requiring association
of the same stimulus with different possible motor

choices, according to different rules (White and Wise
1999; Asaad and others 2000; Wallis and others 2001).
Prefrontal activation by such nonspatial factors has been
readily observed in human fMRI experiments, leading
some experimenters to question whether the role of pre-
frontal cortical activity is spatial in nature at all (Curtis
and D’Esposito 2003). Such a view is difficult to recon-
cile, however, with the unequivocal spatial tuning of
neuronal activity recorded in neurophysiological experi-
ments. Effects of cognitive functions such as attention
and reward expectation have been demonstrated in other
areas of the working memory network, most extensively
in the posterior parietal cortex (Platt and Glimcher 1999;
Constantinidis and Steinmetz 2001). How spatial loca-
tion can be decoded independently of other factors mod-
ulating neuronal activity is still an open question.

Microcircuit Organization of
Spatial Working Memory

There has been some debate about whether the ventral
subdivision of the prefrontal cortex comprising areas 12
and 45 (the prefrontal inferior convexity) might have a
role in spatial memory as well. These areas receive input
from the inferior temporal cortex, the final stage of the
ventral visual pathway, and for this reason have been
thought to represent memory for the identity of stimuli
(Wilson and others 1993). However, it has been suggest-
ed that inferior convexity neurons might represent spa-
tial information as well, and conversely dorsolateral pre-
frontal neurons might represent stimulus identity, partic-
ularly after animals have been trained to perform a
memory task that requires them to remember both the
location and identity of a stimulus (Rao and others 1997;
Rainer and others 1998a). These experiments led to the
suggestion that information for spatial location and iden-
tity might be combined in the prefrontal cortex. Newer
studies shed light on this apparent discrepancy. It has
now been demonstrated that the object selectivity
observed in dorsolateral prefrontal neurons could be
accounted for by broad but significant tuning to stimu-
lus shape already present at the level of the posterior
parietal cortex (Sereno and Maunsell 1998). Similarly,
neurons in the inferior temporal cortex can be highly
selective for spatial position (DiCarlo and Maunsell
2003). The selectivity for object and spatial information
is therefore a matter of degree (a gradient) in the pre-
frontal cortex, as a result of the cross-talk between the
dorsal and ventral visual pathways upstream and possi-
bly through reciprocal connections between the dorsal
and ventral subregions of the prefrontal cortex. In addi-
tion, experience-dependent plasticity might endow pre-
frontal cortical neurons with the ability to encode com-
bined object and spatial information, which could be
used to subserve flexible sensorimotor association in
behavioral control (Asaad and others 1998; White and
Wise 1999).

Within a prefrontal subregion (say, area 46), previous
experiments have failed to establish a clear pattern of
topographic organization of prefrontal (or posterior pari-

Fig. 3. The spatial working memory network. Cortical areas
anatomically interconnected with the dorsolateral prefrontal
cortex and activated by spatial memory.
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etal) memory fields, unlike the primary visual cortex, in
which the entire visual space is represented topographi-
cally across the cortical surface. Despite the apparent
lack of an overall retinotopic map across the surface of
the prefrontal cortex, there is strong evidence for a sys-
tematic organization of spatial information at a local
level. Localized prefrontal lesions produce behavioral
deficits in the execution of mnemonic tasks involving
only a restricted area of visual space, typically in the
contralateral hemisphere, an effect known as a
“mnemonic scotoma” (Funahashi, Bruce, and others
1993). Similarly, chemical inactivation of prefrontal
sites produces the inability of monkeys to correctly
recall targets appearing at certain spatial locations
(Sawaguchi and Goldman-Rakic 1991, 1994), which
again is an argument for an organized representation of
visual space in the cortex. More recently, simultaneous
recordings from closely spaced electrodes have con-
firmed that neurons in the proximity of each other (lat-
erally separated by less than 0.3 mm) most often repre-
sent adjacent spatial locations (Constantinidis and others
2001a). A possible organizational scheme that could
account for these results would be for the entire visual
hemifield to be represented in repeating, topographical-
ly organized cortical modules, perhaps corresponding to
the anatomical stripe-like zones of axonal terminations
(Levitt and others 1993; Kritzer and Goldman-Rakic
1995; Pucak and others 1996).

Cellular Mechanisms of
Spatial Working Memory

The maintenance of neuronal discharge representing
remembered information can last for several seconds,
much longer than the time constants of single-neuron
biophysical processes, and it is therefore thought to be
foremost a network function. Single neurons may also be
bistable due to intrinsic membrane properties that con-
tribute to network behavior (Camperi and Wang 1998;
Wang 2001). Indeed, a recent study of in vitro slice
recordings reports that individual neurons in the entorhi-
nal cortex are capable of producing graded persistent
discharges (Egorov and others 2002). How a network
can give rise to sustained activation in the absence of a
direct sensory stimulation can be illustrated as follows:
A visual stimulus produces activation of primary visual
cortical areas, which is ultimately propagated to the pre-
frontal cortex, where it excites a population of pyramidal
neurons tuned to its location in space. These neurons are
linked through reciprocal, excitatory synaptic connec-
tions so that even when the original stimulus is no longer
present, discharges continue to reverberate in the net-
work (Wang 2001). The anatomical organization of the
prefrontal cortex in many ways resembles a recurrent
neural network (Fig. 4). Axonal projections of pyramidal
neurons originating from within the prefrontal cortex
(intrinsic projections) as well as from other cortical areas
(associational projections) terminate in a precise stripe-
like fashion, creating a regular pattern of interdigitated
columns, approximately 0.5 mm wide and 2 to 8 mm

long (Levitt and others 1993; Kritzer and Goldman-
Rakic 1995; Pucak and others 1996). Reciprocal con-
nections between neurons in such stripes create the
anatomical substrate of a recurrent network.

Biophysically realistic computational modeling has
shown that such recurrent networks can give rise to loca-
tion-specific, persistent discharges, as illustrated in
Figure 5 (Camperi and Wang 1998; Compte and others
2000; Gutkin and others 2001; Tegner and others 2002;
Renart and others 2003a, Wang, Tegner, and others
2004). The central conceptual idea that emerges from
these studies is that a spatial working memory network
should be bistable between a spontaneous resting state
and a continuous family of spatially localized persistent
firing patterns (each encoding and storing a spatial loca-
tion as an analog quantity). The appearance of the tran-
sient cue stimulus switches the network from the resting
state to a memory state representing a spatial location,
and the feedback signal or reward that indicates the end
of the trial erases the memory trace and switches the net-
work back to its resting state. It was realized that the
instantiation of a continuum of persistent states requires
the cortical network to be functionally homogeneous,
that is, to be characterized by identical cellular and
synaptic properties between its neurons. Such homo-
geneity is unrealistic for real-neuron networks but could
be effectively achieved by biological mechanisms such
as homeostatic regulations that could scale the synaptic
inputs of neurons with different rates of activity (Renart
and others 2003a). It is also worth noting that the con-
tinuous nature of spatial working memory has not been
scrutinized in experimental studies, in which only a lim-
ited number (typically eight) of spatial cues are used. It
would be desirable in future psychophysical and electro-
physiological studies to rigorously test the analog char-
acter of spatial working memory by using an arbitrary
set of cues.

Understanding the dynamical behavior of strongly
recurrent cortical microcircuits, including those presum-
ably required for persistent activity, presents experimen-
tal and theoretical challenges. In biophysically realistic
models, such a neural network is prone to dynamical
destabilization leading to either uncontrolled spike dis-
charges at very high rates, if excitatory reverberation is

Fig. 4. Schematic diagram illustrating the pattern of connec-
tions between prefrontal neurons in the superficial layers. The
figure summarizes results of anatomical tracer injection experi-
ments and retrograde labeling. From Kritzer and Goldman-
Rakic (1995), with permission.
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not counterbalanced by rate-control mechanisms, or to
excessive synchronous oscillations that may be disrup-
tive to the maintenance of persistent activity. Working
memory function was found to be particularly stable
(Fig. 6) when excitatory reverberation was characterized
by a fairly slow time course, for example, when synaptic
transmission at intrinsic connections incorporated a
large NMDA component (Wang 1999; Compte and oth-
ers 2000; Wang 2001; Tegner 2002; Renart and others
2003b). NMDA receptor–mediated recurrent excitation
may also be especially important for the robustness of
short-term memory that encodes continuous quantities,
such as spatial location or eye position (Seung and oth-
ers 2000). The voltage dependence of NMDA channels
may contribute to stimulus selectivity of a persistent fir-
ing pattern (Lisman and others 1998).

Temporal Dynamics of Persistent Activity

An interesting question is whether working memory is
stored mainly in the elevated firing rate of a subpopula-
tion of neurons or depends on more complicated tempo-
ral discharge patterns and cross-neuronal synchrony. In
principle, stimulus information can be conveyed by dif-
ferent temporal patterns of activity without any varia-
tions in the average firing rate of a neuron. In fact, under
some conditions, the averaged responses of the entire
prefrontal population may vary little between a sponta-
neous and an active memory state (Shafi and others
2003). Such a result must be treated with caution
because different classes of excitatory and inhibitory
neurons play distinct roles during working memory and
may increase or decrease their firing rates in response to
a stimulus (further discussed below). Pooling all respons-

Fig. 5. A, Model simulation
of the delayed oculomotor
response experiment (Figs.
1, 2). Spatiotemporal activity
pattern of the pyramidal cell
population. A dot at position
(t, θ) represents a spike fired
at time t by a cell with pre-
ferred cue location at direc-
tion θ. The blue line repre-
sents the time evolution of
the peak location of the
persistent activity pattern.
Right, localized activity pro-
file during the mnemonic
delay period. B, Temporal
evolution of the peak loca-
tion of memory activity in 20
trials with transient stimuli at
different locations. The
memory of the initial cue is
well preserved during the 6-
second delay period. C,
Tuning curves from 10 neu-
rons. The firing rate of each
cell for the 20 stimuli in (B) is
shown as open circles.
Adapted with permission
from Renart, Song, and oth-
ers (2003).
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es together may therefore be misleading and does not argue
against a rate code.

The question of temporal coding in the spiking pat-
terns of prefrontal cortical neurons was recently
addressed by a temporal-statistics analysis (Compte and
others 2003). The results revealed that most single units
of monkey prefrontal cortex during the mnemonic delay
can be well approximated by a purely random, Poisson
process that contains no systematic temporal patterns of
firing. A smaller proportion of prefrontal neurons exhib-
it burst discharges. The coefficient of variation of pre-
frontal interspike intervals is typically near or larger than

1, indicating a high degree of irregularity of delay peri-
od neural discharges, consistent with a network mecha-
nism for persistent activity sustained by stochastic
synaptic bombardments. Rhythmicity is rarely visible in
spike trains of single prefrontal cells during working
memory (Compte and others 2003). It is possible that the
network might display coherent oscillations detectable
only in the population level, for example, reflected in
local field potential measurements summing responses
from large numbers of neurons, whereas single cells are
highly stochastic (Pesaran and others 2002; Brunel and
Wang 2003). Regardless of whether oscillations are

Fig. 6. Stability of persistent
activity as a function of the
AMPA:NMDA ratio at the recur-
rent excitatory synapses. A–D,
Temporal course of the average
firing rate across a subpopula-
tion of cells selective to the pre-
sentated transient input, for dif-
ferent levels of the AMPA:NMDA
ratio. As the ratio is increased,
oscillations of a progressively
larger amplitude develop during
the delay period, which eventu-
ally destabilize the persistent
activity state. E, Snapshot of the
activity of the network in (C)
between 3 and 3.5 seconds.
Top, Average network activity.
Bottom, Intracellular voltage
trace of a single neuron. Inset,
Power spectrum of the average
activity of the network, showing
a peak in the γ (40 Hz) frequency
range. Persistent activity is sta-
ble even in the presence of syn-
chronous oscillations. Adapted
with permission from Renart,
Brunel, and others (2003).
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present, there is little doubt that synchronous firing aris-
es between prefrontal neurons during working memory,
as shown by simultaneously recorded pairs of single
units from behaving monkeys (Constantinidis and
Goldman-Rakic 2002). In a rodent study of delayed spa-
tial task, simultaneous recording from many (>20) single
prefrontal neurons by multiple-contact electrodes
(tetrodes) suggests that working memory could be main-
tained in a spatio-temporal firing pattern propagating
around the network, in which any given cell needs only
to fire at a high rate episodically rather than tonically
throughout the memory period (Baeg and others 2003).
This result, if confirmed by future work especially with
primates, would offer a new picture about the dynamic
organization of a working memory network. Progress in
this direction necessitates the development of techniques
for simultaneous recording of large numbers of single
neurons or imaging of spatio-temporal firing patterns in
the working memory cortical network of behaving mon-
keys.

Memory Fields Are Shaped by Inhibition

Prefrontal cortical neurons have large, often bilateral
memory fields, which are, however, spatially distinct;
they are centered at specific spatial locations and are
typically flanked by inhibitory surrounds. Inhibition is
difficult to detect in neurophysiological recordings, as
the baseline discharge rate of pyramidal neurons is low
and the inhibitory effect of a remembered stimulus can

easily go unnoticed. Nonetheless, clear examples of
inhibitory fields away from a neuron’s preferred location
have been demonstrated in neurophysiological record-
ings (Funahashi and others 1989). A recent population
analysis of a large neuronal database confirmed that the
discharge rate after the presentation of a memorandum at
a location diametric to a neuron’s preferred location has
an overall suppressive effect below the level of back-
ground activity (Constantinidis and Goldman-Rakic
2002). A direct demonstration of the role of inhibition
has been provided by micro-iontophoretic application of
GABA antagonists in vivo. Such negation of inhibitory
inputs expands the size of the neurons’ memory fields,
unmasking excitatory zones that were suppressed during
normal neuronal function (Rao and others 2000).
Inhibitory interactions have also been demonstrated by
means of simultaneous recordings and cross-correlation
analysis, which also indicated that interneurons inhibit
pyramidal neurons active at different time points of the
behavioral task (Fig. 7), or exhibiting dissimilar spatial
receptive fields (Constantinidis and others 2002).

Pyramidal and nonpyramidal neurons tend to exhibit
distinct action potential waveforms and rates of dis-
charges, making it possible to differentiate them in
extracellular recordings in vivo (Wilson and others
1994; Constantinidis and Goldman-Rakic 2002). It has
been thus possible to examine the properties of inhibito-
ry neurons themselves during the maintenance of infor-
mation in memory. Interneurons receive inputs from
nearby pyramidal neurons, and they too exhibit sus-

Fig. 7. An example of an inhibitory interaction detected through simultaneous recordings from two microelectrodes. a–b, Responses
of two neurons recorded 0.3 mm apart. c–d, The neurons’ spatial tuning, computed in the saccade period. e, Coactivation function,
indicating the time lag that produced the maximum temporal overlap of the two neurons' responses, shows a 250-ms lag. f, Cross-
correlation histogram revealing a trough, offset from time zero, consistent with direct inhibition from neuron A onto neuron B. From
Constantinidis and others (2002), with permission.
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tained responses and spatially tuned memory fields.
Initial reports from sequential microelectrode recordings
within 0.4 mm of each other suggested that interneurons
display inverted tuning relative to pyramidal neurons
(Fig. 8); interneuron discharges were found to decrease
below the baseline during the maintenance in memory of
a stimulus in the preferred location of nearby pyramidal
neurons (Wilson and others 1994). Later results, based
on simultaneous recordings from the same electrode or
separate electrodes 0.2 to 0.3 mm apart, indicated that
nearby pyramidal neurons and interneurons are tuned to
similar spatial locations and demonstrate persistent ele-
vation of neuronal activity (Rao and others 1999;
Constantinidis and Goldman-Rakic 2002).  Pyramidal
cells and interneurons recorded at longer distances from
each other may be tuned to opposing spatial locations.
Neurons with suppressed responses below the baseline
now appear to constitute a distinct subclass of interneu-
rons, as suggested by computational modeling studies.
Spatially tuned, sustained activity can be achieved by a
network architecture in which nearby pyramidal cells
and interneurons show similar selectivity, whereas fur-
ther separated pyramidal cells and interneurons display
opposite tuning (Fig. 9A). A diversity of inhibitory neu-
rons within each cortical module cooperate to provide
synaptic inhibition, with different inhibitory neurons

exhibiting different patterns of excitation. A most recent
study proposes a theoretical framework for how three
major subclasses of interneurons conspire to subserve
spatial working memory (Fig. 9C). In this model, invert-
ed tuning, which was originally thought as a defining
property of prefrontal interneurons, is displayed by a dis-
tinct subclass of interneurons, possibly corresponding to
calbindin immunoreactive cells (Wang, Tegner,  and oth-
ers 2004).

The importance of inhibition in the spatial working
memory can be illustrated by noting that localized per-
sistent activity can be achieved without any recurrent
excitation at all. Instead, significant background external
excitation that drives all neurons to fire at relatively high
rates, offset by feedback cross-directional inhibition, can
sculpture the tuning of activity in a network, allowing
interneurons to suppress those excitatory cells that are
selective for the cue stimulus (Fig. 9B). Such a network
architecture may be the basis of persistent activity that
encodes the head direction of an animal during spatial
navigation (Sharp and others 2001).

Spatial Working Memory and Mental Illness

Cognitive processes that involve spatial working memo-
ry are compromised by a number of mental illnesses,

Fig. 8. Responses of putative inhibito-
ry interneurons during the execution
of the delayed response task. Top,
inverted tuning of an interneuron (top
histogram and left polar plot) relative
to a pyramidal neuron (bottom his-
togram and right polar plot), recorded
in sequence, 0.2 mm apart. The activ-
ity of the interneuron is depressed
below the baseline during the delay
period following presentation of the
cue that evokes the best response of
the pyramidal neuron (from Wilson
and others 1994, with permission).
Bottom, elevated firing rate is
observed for an interneuron (bottom
raster plot) and a pyramidal neuron
(top raster plot) after presentation of
the cue in a location that evoked the
best response for both neurons,
which were recorded simultaneously
from electrodes 0.2 mm apart. Data
from Constantinidis and Goldman-
Rakic (2002).
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including schizophrenia (Park and Holzman 1992),
obsessive compulsive disorder (Purcell and others
1998), major depressive disorder (Murphy and others
2003), and chronic alcoholism (Sullivan and others
1993).

Spatial working memory impairment has been most
extensively studied in schizophrenia. Positive symptoms
of schizophrenia include delusions, hallucinations,
thought disorders, and attentional impairments, and they
respond well to typical antipsychotic drugs. Negative

symptoms (absence of normal traits) include affective
and motivational deficits, emotional and social with-
drawal, disorganized speech, and anhedonia.
Schizophrenic patients exhibit impaired performance in
spatial working memory tasks that involve eye or manu-
al movements toward the remembered direction of a
visual target presented a few seconds earlier or that
require them to keep track of the locations of visual
stimuli presented or sampled in sequence (Park and oth-
ers 1995; Pantelis and others 1997). Schizophrenic
patients are similarly impaired in antisaccade tasks,
requiring an eye movement in the direction opposite to a
visual target, and to smooth-pursuit eye movements,
tracking a moving visual stimulus (Ettinger and others
2004; Reuter and others 2004). Impairment of spatial
working memory performance has been observed in
patients with both negative and positive symptoms of
schizophrenia, including those with psychosis, those
who are medicated and unmedicated, those in the acute
phase of illness or in relapse, and even in undiagnosed
relatives of schizophrenic patients (Park and others
1995; Carter and others 1996; Park and others 1999;
Wood and others 2003). Given the strong linkage
between schizophrenia and spatial working memory,
performance in spatial working memory tasks has been
considered a potential predictive indicator and a marker
for the genetic liability to the disease (Fuller and others
2002; Gasperoni and others 2003; McGorry 2003;
Niendam and others 2003). The link between working
memory and schizophrenia may be the consequence of
prefrontal malfunction giving origin to both diminished
ability to maintain information in memory and a host of
other cognitive distortions. On the other hand, working
memory impairment may be a contributing cause of the
cognitive defects (Goldman-Rakic 1994).

Why and how spatial working memory is impaired in
schizophrenic patients cannot be truly answered at a fun-
damental level without a deep understanding of the
underlying cellular and circuit mechanisms. For exam-
ple, when the inhibitory circuit organization in the pre-
frontal cortex is elucidated, it will become clear why par-
ticular kinds of defects in cortical interneurons cause
behavioral impairments (Lewis and others 2003).
Another important example comes from recent progress
in studies of dopamine modulation of spatial working
memory. Schizophrenia is associated with changes in
dopamine innervation and action. The fact that the
frontal lobe receives a much more prominent dopamin-
ergic innervation compared to the parietal or occipital
areas involved with spatial stimulus representation has
also led to speculation that unique aspects of memory
maintenance associated with the prefrontal cortex are
dopamine dependent.

The effects of dopamine are complex and in many
ways remain unclear. Direct injections of dopamine ago-
nists in the prefrontal cortex of monkeys performing a
memory task were shown to degrade behavioral per-
formance at the spatial location encoded by the injected
site, suggesting a possible inhibitory role of dopamine
(Sawaguchi and Goldman-Rakic 1991). However, finer

Fig. 9. Three network circuit schemes for spatially tuned per-
sistent activity patterns. A, Local recurrent excitation sustains
elevated firing in a group of cells, whereas iso-directional inhi-
bition of broader projection extent suppresses excitatory cells
on the flanks of the hill of activity. B, Tonic external inputs pro-
vide uniform drive to the entire excitatory cell population, and
cross-directional feedback inhibition gives rise to spatial local-
ization of persistent activity. C, Coordinated operation by three
subtypes of inhibitory cells in a spatial working memory net-
work. Perisoma-targeting (parvalbumin-containing [PV]) cells
provide lateral inhibition, as in (A). Within a column, calbindin-
containing (CB) interneurons target the dendrites of excitatory
neurons, whereas calretinin-containing (CR) interneurons pref-
erentially project to CB cells. Excitation of a group of excitato-
ry cells recruits locally CR neurons, which sends enhanced inhi-
bition to CB neurons, leading to dendritic disinhibition of the
same excitatory cells. (C) is taken from Wang, Tegner, and oth-
ers (2004), with permission.
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studies of dopamine agonist micro-iontophoresis in the
prefrontal cortex revealed excitatory effects at low con-
centrations and a dose-dependent effect (Williams and
Goldman-Rakic 1995). Dopamine application in pre-
frontal slice preparations increases the excitability of
pyramidal neurons, at least in the superficial cortical lay-
ers (Henze and others 2000). On the other hand,
dopamine can decrease the presynaptic efficacy of neu-
rotransmission onto pyramidal neurons in layer 5 (Gao
and others 2001), and it may even have opposite effects
on different synapses of the same neuron: It has been
shown to increase the efficacy of inhibitory synapses tar-
geting the dendritic tree, while decreasing the inhibitory
effect of perisomatic synapses (Gao and others 2003).
Functionally, using micro-iontophoresis in behaving
monkeys, it was found that different subtypes of
dopamine receptors mediate distinct effects on neural
activities responsible for different epochs of the task: D1
receptors affect memory storage during the delay, where-
as D2 receptors modulate the neural activity during the
behavioral response at the end of the trial (Wang,
Vijayraghavan,  and others 2004). As a result of the mul-
tiple actions of dopamine, episodic hypo- and hyperac-
tivity of the prefrontal cortex may coexist in the same
schizophrenic patient in the course of the illness
(Seamans and Yang 2004).

Although the effects of dopamine are complex, they
are consistent with the idea that dopamine increases the
signal-to-noise ratio of activity representing a remem-
bered stimulus (Camperi and Wang 1998; Durstewitz
and others 2000; Brunel and Wang 2001; Cohen and oth-
ers 2002). Enhancement of dendritic inhibition during
the maintenance of memory could be an effective mech-
anism of filtering distracting, sensory information
(Wang and others 2004).

Conclusions

In summary, thanks to a highly interdisciplinary
approach combining in vitro and in vivo electrophysiol-
ogy and computational modeling, there has been signif-
icant progress in our understanding of the cortical basis
of spatial working memory. However, we are still faced
with many challenges ahead. Functional questions about
the organization of the prefrontal cortex and its spatial
working memory function remain unanswered. Little is
known about the precise role of NMDA receptors to
excitatory reverberation, the respective roles of and the
interplay between prefrontal and parietal cortices, and
the continuous nature of spatial encoding at the neural
level. Progress on these issues will help to arrive at a
deep understanding of the circuit mechanisms of spatial
working memory and shed light into the cellular origins
of memory impairments associated with schizophrenia
and other mental disorders.
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