
Reinforcement Learning in the brain

• Reading: Y Niv, Reinforcement learning in the brain, 2009.

Animal Conditioning and RL

• two basic types of animal conditioning 

(animal learning)

• how do these relate to RL?

20

Monday, 8 March 2010

Reinforcement learning and the brain: 
the problems we face all day

• Decision making at all levels
• Reinforcement learning : maximize reward and minimize punishments; 
• Sutton 1978; Sutton & Barto, 1990, 1998. 
• Why is this hard: (1) rewards/ punishment may be delayed; (2) outcome 
may depend on series of actions (credit assignment problem) 
• need learning of predictions of events and actions

the problem we all face in our daily life
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Animals learn predictions -- Pavlovian conditioning

• animals learn predictions
• conditioned suppression

• autoshaping
http://www.youtube.com/watch?v=ZlZekx1P1g4

http://www.youtube.com/watch?v=cacwAvgg8EA

Ivan Pavlov
(Nobel prize portrait)

1. Pavlovian conditioning: 

animals learn predictions
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1. Pavlovian conditioning: 

animals learn predictions
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Pavlovian conditioning examples 
(conditioned suppression, autoshaping)

22Credits: Greg Quirk, Dale Swartzentruber
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Rescorla & Wagner (1972)

• Most influential model of animal learning, explains puzzling behavioural 
phenomena such as blocking, overshadowing and conditioned inhibition.  
• The idea: error-driven learning: 
Learning occurs only when events violate expectations. 

Change in value is proportional to the difference between actual and 
predicted outcome

- learning only occurs when events not predicted
- predictions due to different stimuli are summed to form the total prediction in 
a trial.

1 Reinforcement learning: Theoretical background

The modern form of RL arose historically from two separate and parallel lines of research. The
first axis is mainly associated with Richard Sutton, formerly an undergraduate psychology ma-
jor, and his doctoral thesis advisor, Andrew Barto, a computer scientist. Interested in artificial
intelligence and agent-based learning and inspired by the psychological literature on Pavlovian
and instrumental conditioning, Sutton and Barto developed what is today the core algorithms and
concepts of RL (Sutton, 1978; Barto et al., 1983; Sutton & Barto, 1990, 1998). In the second
axis, stemming from a different background of operations research and optimal control, electrical
engineers such as Dimitri Bertsekas and John Tsitsiklis developed stochastic approximations to
dynamic programming methods (which they termed ‘neuro-dynamic programming’), which led
to similar reinforcement learning rules (eg. Bertsekas & Tsitsiklis, 1996). The fusion of these
two lines of research couched the behaviorally-inspired heuristic reinforcement learning algo-
rithms in more formal terms of optimality, and provided tools for analyzing their convergence
properties in different situations.

1.1 The Rescorla-Wagner model

The early impetus for the artificial intelligence trajectory can be traced to the early days of the
field of ‘mathematical psychology’ in the 1950’s, within which statistical models of learning
were considered for the first time. In a seminal paper Bush and Mosteller (1951) developed
one of the first detailed formal accounts of learning. Together with Kamin’s (1969) insight
that learning should occur only when outcomes are ‘surprising’, the Bush and Mosteller ‘linear
operator’ model found its most popular expression in the now-classic Rescorla-Wagner model of
Pavlovian conditioning (Rescorla & Wagner, 1972). The Rescorla-Wagner model, arguably the
most influential model of animal learning to date, explained puzzling behavioral phenomena such
as blocking, overshadowing and conditioned inhibition (see below) by postulating that learning
occurs only when events violate expectations. For instance, in a conditioning trial in which two
conditional stimuli CS1 and CS2 (say, a light and a tone) are presented, as well as an affective
stimulus such as food or a tail-pinch (the unconditional stimulus; US), Rescorla and Wagner
postulated that the associative strength of each of the conditional stimuli V (CSi) will change
according to

Vnew(CSi) = Vold(CSi)+η

�
λUS−∑

i
Vold(CSi)

�
. (1)

In this error correcting learning rule, learning is driven by the discrepancy between what was
predicted (∑iV (CSi) where i indexes all the CSs present in the trial) and what actually happened
(λUS, whose magnitude is related to the worth of the unconditional stimulus, and which quantifies
the maximal associative strength that the unconditional stimulus can support). η is a learning
rate that can depend on the salience properties of both the unconditional and the conditional
stimuli being associated.

At the basis of the Rescorla-Wagner model are two important (and innovative) assumptions or
hypotheses: 1) learning happens only when events are not predicted, and 2) predictions due to
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How do we know that animals use an error-correcting rule ?

•  blocking
•  interpretation: the bell fully predicts the food and the presence of 
the light adds no new predictive information -- therefore no 
association develops to the light.How do we know that animals use an 

error-correcting learning rule?

25

+

Phase 1 Phase II

Blocking
(NB. Also in humans)

Monday, 8 March 2010

Limitations of Rescorla & Wagner (1972)

• does not extend to 2d order conditioning.
A->B->reward; A gains reward predictive value

• Basic unit of learning = conditioning trial as discrete temporal object
 fails to account for the temporal relations between condition and 
unconditional stimuli within a trial

• TD learning as a means to overcome these limitations = extension of 
Rescorla Wagner to take into account timing of events.
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Temporal Difference (TD) learning (1)

• Consider a succession of states S, following each other with P(St+1|St) 
• Rewards observed in each state with probability P(r|St)

• Useful quantity to predict is the expected sum of all future rewards, given 
current state St, = value of state S, V(St)

In order to formally introduce TD learning, let us depart for the moment from animal condition-

ing and human decision-making. Consider a dynamic process (called a Markov chain) in which

different states S ∈ S follow one another according to some predefined probability distribution

P(St+1|St), and rewards are observed at each state with probability P(r|S). As mentioned, a

useful quantity to predict in such a situation is the expected sum of all future rewards, given the

current state St , which we will call the value of state St , denoted V (St). Thus

V (St) = E
�

rt + γrt+1 + γ2rt+2 + ...
��St

�
= E

�
∞

∑
i=t

γi−t ri

�����St

�
(2)

where γ ≤ 1 discounts the effect of rewards distant in time on the value of the current state.

The discount rate was first introduced in order to ensure that the sum of future rewards is finite,

however, it also aligns well with the fact that humans and animals prefer earlier rewards to later

ones, and such exponential discounting is equivalent to an assumption of a constant ‘interest

rate’ per unit time on obtained rewards, or a constant probability of exiting the task per unit

time. The expectation here is with respect to both the probability of transitioning from one state

to the next, and the probability of reward in each state. From this definition of state values it

follows directly that

V (St) = E [rt |St ]+ γE [rt+1|St ]+ γ2E [rt+2|St ]+ ... = (3)

= E [rt |St ]+ γ ∑
St+1

P(St+1|St)(E [rt+1|St+1]+ γE [rt+2|St+1]+ ...) = (4)

= P(r|St)+ γ ∑
St+1

P(St+1|St)V (St+1) (5)

(assuming here for simplicity that rewards are Bernoulli distributed with a constant probability

P(r|St) for each state). This recursive relationship or consistency between consecutive state

values lies at the heart of TD learning. The key to learning these values is that the consistency

holds only for correct values (ie, those that correctly predict the expected discounted sum of

future values). If the values are incorrect, there will be a discrepancy between the two sides of

the equation, which is called the temporal difference prediction error

δt = P(r|St)+ γ ∑
St+1

P(St+1|St)V (St+1)−V (St). (6)

This prediction error is a natural ‘error signal’ for improving estimates of the function V (St). If

we substitute this prediction error for the ‘surprise’ term in the Rescorla-Wagner learning rule,

we get

V (St)new = V (St)old +η · δt , (7)

which will update and improve the state values until all prediction errors are 0, that is, until the

consistency relationship between all values holds, and thus the values are correct.

However, returning to prediction learning in real-world scenarios, we note that this updating

scheme (which is at the basis of a collection of methods collectively called “dynamic program-

ming”; Bellman, 1957) has one major problem: it requires knowledge of the dynamics of the
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• Discount factor introduced to make sure that the sum is finite, but also 
humans and animals prefer earlier rewards to later ones
• incorporating probabilities P(St+1|St) and P(r|St), we get recursive form
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Temporal Difference (TD) learning (2)

• prediction error is a natural signal for improving estimates V(St), giving

• When estimated values are incorrect, there is a discrepancy between 2 
sides of equation: prediction error:

In order to formally introduce TD learning, let us depart for the moment from animal condition-
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• = Optimal learning rule, basis of “dynamic programming”. 
• One problem:  assumes knowledge of P(St+1|St) and P(r|St) which is 
unreasonable in basic learning situations. 
• Model-free Approximation which can be formally justified:

environment, that is, P(r|St) and P(St+1|St) (the “world model”) must be known in order to

compute the prediction error δt in equation (6). This is clearly an unreasonable assumption

when considering an animal in a Pavlovian conditioning task, or a human predicting the trends

of a stock. Werbos (1977) in his “heuristic dynamic programming methods”, and later Barto,

Sutton, and Watkins (1989) and Bertsekas and Tsitsiklis (1996), suggested that in a “model-free”

case in which we can not assume knowledge of the dynamics of the environment, the environ-

ment itself can supply this information stochastically and incrementally. Every time an animal is

in the situation that corresponds to state St , it can sample the reward probability in this state, and

the probabilities of transitions from this state to another. As it experiences the different states

repeatedly within the task, the animal will obtain unbiased samples of the reward and transition

probabilities. Updating the estimated values according to these stochastic samples (with a de-

creasing learning rate or ‘step-size’) will eventually lead to the correct predictive values. Thus

the stochastic prediction error

δt = rt + γV (St+1)−V (St) (8)

(where rt is the reward observed at time t, when in state St , and St+1 is the next observed state

of the environment) can be used as an approximation to equation (6), in order to learn in a

“model-free” way the true predictive state values. The resulting learning rule is

Vnew(St) = Vold(St)+η(rt + γV (St+1)−V (St)). (9)

Finally, incorporating into this learning rule the Rescorla-Wagner assumption that predictions

due to different stimuli Si comprising the state of the environment are additive (which is not the

only way, or necessarily the most sensible way to combine predictions, see Dayan, Kakade, &

Montague, 2000), we get for all Si present at time t

Vnew(Si,t) = Vold(Si,t)+η

�
rt + γ ∑

Sk@t+1

Vold(Sk,t+1)− ∑
S j@t

Vold(S j,t)

�
, (10)

which is the TD learning rule proposed by Sutton and Barto (1990). As detailed above, the

formal justification for TD learning as a method for optimal RL derives from its direct relation to

dynamic programming methods (Sutton, 1988; Watkins, 1989; Barto, Sutton, & Watkins, 1990).

This ensures that using TD learning, animals can learn the optimal (true) predictive values of

different events in the environment, even when this environment is stochastic and its dynamics

are unknown.

Indeed this rule is similar, but not identical, to the Rescorla-Wagner rule. As in the Rescorla-

Wagner rule, η is a learning rate or step-size parameter, and learning is driven by discrepan-

cies between available and expected outcomes. However, one difference is that in TD learning

time within a trial is explicitly represented and learning occurs at every timepoint within a trial.

Moreover, in the specific tapped delay line representation variant of TD learning described in

equation (10), stimuli create long-lasting memory traces (representations), and a separate value

V (Si,t) is learned for every timepoint of this trace (for instance, a stimulus might predict a reward

exactly five seconds after its presentation). A second and more important difference is in how

predictions, or expectations, are construed in each of the models. In TD learning, the associative

strength of the stimuli (and traces) at time t is taken to predict not only the immediately forth-

coming reward rt , but also the future predictions due to those stimuli that will still be available

in the next time-step ∑S j@t+1V (S j,t+1), with γ≤ 1 discounting these future delayed predictions.

7

~ current reward+next prediction - current prediction
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Temporal Difference (TD) learning (3)

• Resulting learning rule:

• Incorporating Rescorla-Wagner idea that predictions due to different 
stimuli are additive:
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•This is TD learning rule as proposed by Sutton & Barton (1990)
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Instrumental conditioning: adding control

• Animals not only learn associations between stimuli and reward but also 
between actions and reward
• Learning to select actions that will increase the probability of rewarding 
events and decrease the probability of aversive events.
• rat lever pressing in boxes -- operant conditioning (Skinner)

http://www.youtube.com/watch?v=cl7jr9EVcjI&feature=related

Example: Free operant 

conditioning (Skinner)

27
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Actor/Critic Methods

•  How can such action selection be learned? 
• problem of credit assignment
• RL : base action selection not only on immediate outcomes but also future 
value predictions.
• Barto (1983) shows that credit assignment problem can be solved by a 
learning system  comprised of 2 neurons-like elements:
- the critic, uses TD learning to construct values of states
- the actor, selects actions at each state using prediction error.

Idea: if positive prediction error is encountered, current action has improved 
prospects for the future and should be repeated.
Learning of policies:

 

at each state. These two elements were the precursors of the modern-day Actor/Critic framework

for model-free action selection which has been closely associated with reinforcement learning

and action selection in the brain.

The insight in the ASE-ACE model, first due to (Sutton, 1978), is that even when the external

reinforcement for a task is delayed (as when playing checkers), a temporal difference predic-

tion error can convey, at every timestep, a surrogate ‘reinforcement’ signal that embodies both

immediate outcomes and future prospects, to the action just chosen. This is because, in the

absence of external reinforcement (ie,rt = 0), the prediction error δt in equation (8) becomes

γV (St+1)−V (St), that is, it compares the values of two consecutive states and conveys informa-

tion regarding whether the chosen action has led to a state with a higher value than the previous

state (ie, to a state predictive of more future reward) or not. This means that whenever a positive

prediction error is encountered, the current action has improved prospects for future rewards,

and should be repeated. The opposite is true for negative prediction errors, which signal that the

action should be chosen less often in the future. Thus the agent can learn an explicit policy –

a probability distribution over all available actions at each state π(S,a) = p(a|S), by using the

following learning rule at every timestep

π(S,a)new = π(S,a)old +ηπδt (11)

where ηπ is the policy learning rate and δt is the prediction error from equation (8).

Thus, in Actor/Critic models, a Critic module uses TD learning to estimate state values V (S)
from experience with the environment, and the same TD prediction error is also used to train the

Actor module, which maintains and learns a policy π (Figure 1). This method is closely related to

policy improvement methods in dynamic programming (Sutton, 1988), and Williams (1992) and

Sutton et al. (2000) have shown that in some cases the Actor/Critic can be construed as a gradient

climbing algorithm for learning a parameterized policy, which converges to a local maximum

(see also Dayan & Abbott, 2001). However, in the general case Actor/Critic methods are not

guaranteed to converge on an optimal behavioral policy (cf. Baird, 1995; Konda & Tsitsiklis,

2003). Nevertheless, some of the strongest links between RL methods and neurobiological data

regarding animal and human decision making have been related to the Actor/Critic framework.

Specifically, Actor/Critic methods have been extensively linked to instrumental action selection

and Pavlovian prediction learning in the basal ganglia (eg. Barto, 1995; Houk et al., 1995; Joel

et al., 2002), as will be detailed below.

1.3.2 State-action values

An alternative to Actor/Critic methods for model-free RL, is to explicitly learn the predictive

value (in terms of future expected rewards) of taking a specific action at a certain state, that is,

learning the value of the state-action pair, denoted Q (S,a). In his PhD thesis, Watkins (1989)

suggested Q -learning as a modification of TD learning that allows one to learn such Q -values

(and brings TD learning closer to dynamic programming methods of ‘policy iteration’; Howard,

1960). The learning rule is quite similar to the state-value learning rule above

Q (St ,at)new = Q (St ,at)old +ηδt (12)
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Figure 1: Actor/Critic architecture: The state

St and reinforcement signal rt are conveyed to

the Critic by the environment. The Critic then

computes a temporal difference prediction er-

ror (equation 8) based on these. The predic-

tion error is used to train the state value predic-

tions V (S) in the Critic, as well as the policy

π(S,a) in the Actor. Note that the Actor does

not receive direct information regarding the ac-

tual outcomes of its actions. Rather, the TD pre-

diction error serves as a surrogate reinforcement

signal, telling the Actor whether the (immedi-

ate and future expected) outcomes are better or

worse than previously expected. Adapted from

Sutton & Barto, 1998.

albeit with a slightly different TD prediction error driving the learning process

δt = rt +max
a

γQ (St+1,a)−Q (St ,at) (13)

where the max operator means that the temporal difference is computed with respect to what is

believed to be the best action at the subsequent state St+1. This method is considered ‘off-policy’

as it takes into account the best future action, even if this will not be the action that is actually

taken at St+1. In an alternative ‘on-policy’ variant called SARSA (the acronym for state-action-

reward-state-action), the prediction error takes into account the next chosen action, rather than

the best possible action, resulting in a prediction error of the form:

δt = rt + γQ (St+1,at+1)−Q (St ,at). (14)

In both cases, action selection is easy given Q -values, as the best action at each state S is that

which has the highest Q (S,a) value. That is, learning Q -values obviates the need for sepa-

rately learning a policy. Furthermore, dynamic programming results regarding the soundness

and convergence of ‘policy iteration’ methods (in which a policy is iteratively improved through

bootstrapping of the values derived given each policy; Howard, 1960; Bertsekas & Tsitsiklis,

1996) ensure that if the proper conditions on the learning rate are met and all state-action pairs

are visited infinitely often, both Q -learning and SARSA will indeed converge to the true op-

timal (in case of Q -learning) or policy-dependent (in the case of SARSA) state-action values.

Interestingly, recent electrophysiological recordings in non-human primates (Morris et al., 2006)

and in rats (Roesch et al., 2007) suggest that dopaminergic neurons in the brain may indeed be

conveying a prediction error that is based on state-action values (rather than state values, as in

the Actor/Critic model), with the former study supporting a Q -learning prediction error, and

the latter a SARSA prediction error. Whether these results mean that the brain is not using an

Actor/Critic scheme at all, or whether the Actor/Critic framework could be modified to use state-

action values (and indeed, the potential advantages of such a scheme) is still an open question

(Niv et al., 2006)
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Q learning

•  Watkins (1989)
• Alternative: explicitly learn the predictive value (future expected rewards) of 
taking an action at each state, = learn the value of state-action pairs Q(S,a)
• learning rule:

at each state. These two elements were the precursors of the modern-day Actor/Critic framework

for model-free action selection which has been closely associated with reinforcement learning

and action selection in the brain.

The insight in the ASE-ACE model, first due to (Sutton, 1978), is that even when the external

reinforcement for a task is delayed (as when playing checkers), a temporal difference predic-

tion error can convey, at every timestep, a surrogate ‘reinforcement’ signal that embodies both

immediate outcomes and future prospects, to the action just chosen. This is because, in the

absence of external reinforcement (ie,rt = 0), the prediction error δt in equation (8) becomes

γV (St+1)−V (St), that is, it compares the values of two consecutive states and conveys informa-

tion regarding whether the chosen action has led to a state with a higher value than the previous

state (ie, to a state predictive of more future reward) or not. This means that whenever a positive

prediction error is encountered, the current action has improved prospects for future rewards,

and should be repeated. The opposite is true for negative prediction errors, which signal that the

action should be chosen less often in the future. Thus the agent can learn an explicit policy –

a probability distribution over all available actions at each state π(S,a) = p(a|S), by using the

following learning rule at every timestep

π(S,a)new = π(S,a)old +ηπδt (11)

where ηπ is the policy learning rate and δt is the prediction error from equation (8).

Thus, in Actor/Critic models, a Critic module uses TD learning to estimate state values V (S)
from experience with the environment, and the same TD prediction error is also used to train the

Actor module, which maintains and learns a policy π (Figure 1). This method is closely related to

policy improvement methods in dynamic programming (Sutton, 1988), and Williams (1992) and

Sutton et al. (2000) have shown that in some cases the Actor/Critic can be construed as a gradient

climbing algorithm for learning a parameterized policy, which converges to a local maximum

(see also Dayan & Abbott, 2001). However, in the general case Actor/Critic methods are not

guaranteed to converge on an optimal behavioral policy (cf. Baird, 1995; Konda & Tsitsiklis,

2003). Nevertheless, some of the strongest links between RL methods and neurobiological data

regarding animal and human decision making have been related to the Actor/Critic framework.

Specifically, Actor/Critic methods have been extensively linked to instrumental action selection

and Pavlovian prediction learning in the basal ganglia (eg. Barto, 1995; Houk et al., 1995; Joel

et al., 2002), as will be detailed below.

1.3.2 State-action values

An alternative to Actor/Critic methods for model-free RL, is to explicitly learn the predictive

value (in terms of future expected rewards) of taking a specific action at a certain state, that is,

learning the value of the state-action pair, denoted Q (S,a). In his PhD thesis, Watkins (1989)

suggested Q -learning as a modification of TD learning that allows one to learn such Q -values

(and brings TD learning closer to dynamic programming methods of ‘policy iteration’; Howard,

1960). The learning rule is quite similar to the state-value learning rule above

Q (St ,at)new = Q (St ,at)old +ηδt (12)

9

p(a|S) 
policy !

Environment

Actor

a
c
ti

o
n

 (
a
)

s
ta

te
 (

S
)

S evaluation 

function V(S)

Critic

reward
(rt)

TD 

error

"
t

Figure 1: Actor/Critic architecture: The state

St and reinforcement signal rt are conveyed to

the Critic by the environment. The Critic then

computes a temporal difference prediction er-

ror (equation 8) based on these. The predic-

tion error is used to train the state value predic-

tions V (S) in the Critic, as well as the policy

π(S,a) in the Actor. Note that the Actor does

not receive direct information regarding the ac-

tual outcomes of its actions. Rather, the TD pre-

diction error serves as a surrogate reinforcement

signal, telling the Actor whether the (immedi-

ate and future expected) outcomes are better or

worse than previously expected. Adapted from

Sutton & Barto, 1998.
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Interestingly, recent electrophysiological recordings in non-human primates (Morris et al., 2006)

and in rats (Roesch et al., 2007) suggest that dopaminergic neurons in the brain may indeed be

conveying a prediction error that is based on state-action values (rather than state values, as in
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How does the brain do reinforcement learning ?

• “the largest sucess of computational neuroscience”, 
dopamine and prediction error

in comes computational 

neuroscience

15

• (relatively) New Idea:

• The brain is a computing device

• Computational models can help us talk about 

functions of the brain in a precise way

• Abstract and formal theory can help us 

organize and interpret (concrete) data 
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What is Dopamine ?

Parkinson’s Disease

! Motor control / initiation?

Dorsal Striatum (Caudate, Putamen) 

Ventral Tegmental Area 
Substantia Nigra

Nucleus Accumbens
(ventral striatum) 

Prefrontal Cortex

31

What is dopamine and why do 

we care about it?
• Parkinson’s 
Disease : motor 
control/ initiation
• addiction, 
gambling, natural 
rewards
• also involved in : 
working memory, 
novel situations, 
ADHD, 
schizophrenia

Monday, 8 March 2010

Former idea: Dopamine signals reward (Wise, ‘80s)

• Initial idea: dopamine might represent reward signals 
• neuroleptics (dopamine antagonists) cause anhaedonia
• brain self stimulation by rats
• dopamine important for reward mediated conditioning

the anhedonia hypothesis (Wise, ’80s)

• Anhedonia = inability to experience positive emotional 

states derived from obtaining a desired or biologically 

significant stimulus 

• Neuroleptics (dopamine antagonists) cause anhedonia

• Dopamine is important for reward-mediated conditioning

34

http://www.youtube.com/watch?v=7HbAFYiejvo
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New idea: phasic dopamine signals prediction error 

• Schultz et al 90s
• monkeys underwent simple instrumental or pavlovian conditioning
• disappearance of dopaminergic response at reward delivery after learning
• if reward is not presented, response depression below basal firing at 
expected time of reward.

Schultz, Dayan, Montague, 1997 36
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dopamine and prediction 

• The idea: dopamine encodes prediction error (Montague, Dayan, Barto, 
1996)
• provided normative basis for understanding not only why dopamine  
neurons fire when they do, but also what the function of these firing might 
be.
• evidence for dopamine dependent, or dopamine gated plasticity in 
synapses between cortex and striatum.

40

dopamine and synaptic plasticity

Wickens et al, 1996

• prediction errors are for learning…

• cortico-striatal synapses show 

dopamine-dependent plasticity

Monday, 8 March 2010
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Tobler et al, 2005
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prediction error hypothesis 

of dopamine

• checking that size of response at onset of CS is proportional to reward size
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Prediction error: stringent tests

• Bayer & Glimcher, Neuron, 2005
• firing rates of dopamine neurons following delivery of reward 
encode a computation reflecting the difference between the current 
reward and a recency-weighted average of previous rewards

model prediction error
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fMRI data

• fMRI to study the underpinnings of RL in the human brain
• model driven analysis  -- search the brain for predicted hidden variables 
that should control learning and decision making, eg state values and 
prediction errors.

• prediction errors signals found in nucleus accumbens and orbito frontal 
cortex, both major dopaminergic targets.

• O Doherty et al (2004) show that FMRI correlates of prediction error 
signals can be dissociated in dorsal and ventral striatum according to 
whether instrumental conditioning vs pavlovian condition, -- supporting an 
Actor/Critic architecture.
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short aside: functional magnetic 

resonance imaging (fMRI)
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Summary

• Optimal learning depends on prediction and control

• the problem: prediction of future reward

• the algorithm: TD learning

• neural implementation: dopamine dependent learning in cortico-
striatal synapses in basal ganglia

• RL has revolutionised how we think of learning in the brain
implications for the understanding of disorders, such as 
Parkinson’s and schizophrenia, as well as addiction.
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