Models of networks - continued

Readings: D&A, chapter 7.
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Network models - summary

* Network models: to understand the implications of connectivity in

terms of computation and dynamics.

¢ 2 Main strategies: Spiking vs Firing rate models.

* The issue of the emergence of orientation selectivity as a model

problem, extensively studied theoretically and experimentally.

- Two main models: feed-forward and recurrent.

- Detailed spiking models have been constructed which can be directly

compared to electrophysiology
- The same problem is also investigated with a firing rate model, a.k.a.
the ‘ring model’.

The Ring Model (1)
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ABSTRACT The role of intrinsic cortical connections in
processing sensory input and in generating behavioral
output is poorly understood. We have examined this issue in
the context of the tuning of neuronal responses in cortex to
the ori ion of a visual sti We lytically study a
simple network model that incorporates both orientation-
selective input from the lateral geniculate nucleus and
orientation-specific cortical interactions. Depending on the
model parameters, the network exhibits orientation selec-
tivity that originates from within the cortex, by a symmetry-
breaking mechanism. In this case, the width of the orien-
tation tuning can be sharp even if the lateral geniculate
nucleus inputs are only weakly anisotropic. By using our
model, several experimental consequences of this cortical
mechanism of orientation tuning are derived. The tuning
width is relatively independent of the contrast and angular
anisotropy of the visual stimulus. The transient population
response to ing of the sti ori ion exhibits a
slow “virtual rotation.” Neuronal cross-correlations exhibit
long time tails, the sign of which depends on the preferred

Murray Hill, NJ, December 21, 1994 (received for review July 28, 1994)

ivity among cortical neurons can be gained from measure-
ments of the correlations between the responses of different
neurons (10). Theoretical predictions regarding the magnitude
and form of correlation functions in neuronal networks have
been lacking.

Here we study mechanisms for orientation selectivity by
using a simple neural network model that captures the gross
architecture of primary visual cortex. By assuming simplified
neuronal stochastic dynamics, the network properties have
been solved analytically, thereby providing a useful framework
for the study of the roles of the input and the intrinsic
connections in the formation of orientation tuning in the
cortex. Furthermore, by using a recently developed theory of
neuronal correlation functions in large stochastic networks, we
have calculated the cross-correlations (CCs) between the
neurons in the network. We show that different models of
orientation selectivity may give rise to qualitatively different
spatiotemporal patterns of neuronal correlations. These pre-
dictions can be tested experimentally.

Madol
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The Ring Model (2)

* N neurons, with preferred angle, §; ,evenly distributed

between —r/2 and 7/2
* Neurons receive thalamic inputs h.

+ recurrent connections, with excitatory weights between

nearby cells and inhibitory weights between cells that are

further apart (mexican-hat profile)

dv(0)
YT T

weight

-100

-150

—-200

—v(0) + | h(0) +

0
orientation 6

/2

—m/2

/

d79 (=Xo+ A1cos(2(6 —0'))) v(6)

Thursday, 4 February 2010



The Ring Model (3) The Ring Model (4)
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Model analyzedlie & physical system. Figure 7.10: The effect of contrast on orientation tuning. A) The feedforward in-

put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 80%, 40%, 20%, and 10%. B) Th? outPut firing rates
in response to different levels of contrast as a function of orientation preferellqce.
These are also the response tuning curves of a single neuron with preferred orien-
tation zero. As in A, the four curves, from top to bottom, correspond to contrasts

* Model achieves i) orientation selectivity; ii) contrast invariance of tuning, even
if input is very broad.

i i i ivi ican- f 80%, 40%, 20%, and 10%. The recurrent model had Ao = 7.3, A; = 11, A = 40
* The width of orientation selectivity depends on the shape of the mexican-hat, ;IZ, a{\d 40 207, and 105 The recurrent modelhad Jn =723 1 =11, 4 =40
but is independent of the width of the input. as indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997; based

i on data from Sclar and Freeman, 1982.)
* Symmetry breaking /Attractor dynamics.
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Attractor Networks

: Pergamon o ’ o0 L.'«ild',.‘ih
sAttractor network : a network of neurons, usually recurrently connected, whose time @ ® PIL: S0042-6989(97)00100-4 st
dynamics settle to a stable pattern. o . |
* That pattern may be stationary (fixed points), time-varying (e.g. cyclic), or even ls)redm.tl(.)ns of a Recurrent Model of Orientation

i i 1vit
stochastic-looking (e.g., chaotic). elect y

MATTEO CARANDINL*} DARIO L. RINGACH}
Received 3 January 1997; in revised form 21 March 1997

* The particular pattern a network settles to is called its ‘attractor’.

Recurrent models of orientation selectiviy in the visual cortex postulate that an initally broad
) ) tuning given by the pattern of geniculate afferents is substantially sharpened by intrasorieal
*The ring model is called a line (or ring) attractor network. Its stable states are also feedback. We show that these models can be tested on the basis of their predicted responses fo
certain visual stimuli, without the need for i iologi ipulations. First,
) ) , we consider a detailed recurrent model proposed by Somers, Nelson and Sur [(1995) Journal o
sometimes referred to as ‘bump attractors’. Neuroscience, 15, 5448-5465] and show thal it can be simplified to  single equation: s eomter..
surround feedback filter in the orientation domain. Then, we explore the responses of the simplified
model to stimuli containing two or more orientations. We find that the model exhibits peculiar
responses to stimuli containing two orientations, such as plaids or crosses: if the component
orientations differ by less than 45 deg the model cannot distinguish between them: it the
orientations differ by more than 45 deg the model overestimates their angle by as much 15 30 dep.
Moreover, the model cannot signal the presence of three orientations separated by 60 deg (1
responds as if there were only two orientations), and the addition of two-dimensional visual nore oo
an oriented stimulus results in strong spurious responses at the orthogonal oricntation. We argu
that the effects of attraction and repulsion between orientations and the emergence of responses at
off-optimal orientations are common to a wide class of feedback models of orientation stiectivity.
These models could thus be tested by measuring the visual responses of cortical nearons to st}
containing multiple orientations. © 1997 Elsevier Science Ltd

Orientation ~ Striate cortex Model Plaid  Noise

* Reduction of the spiking model of Somers et al 1995 to rate mode;

.xi o o X1
Point Attractor Line Attractor
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Three orientations

The Ring Model (5): Sustained Activity
30 degree plaid
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matlab code available online : http:/www.carandinilab.net/publications
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What is working memory ? (a.k.a. short-term memory)

* The ability to hold information over a time scale of seconds to minutes
* a critical component of cognitive functions (language, thoughts, planning
etc..)

Sustained activity, Working Memory, Associative memory

Readings:

C.Constandinis and XJ Wang, , “a neural circuit basis for
spatial working memory”, Neuroscientist, 2004

Delayed match-to sample task:
remember ‘red’
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Oculo-motor delayed response task:
remember location of cue.

Eye movement

Fixation Point Off

Fixation

Sustained activity in PFC (1)

¢ Lesion and inactivation studies demonstrate crucial role of Prefrontal Cortex
(PFC) in working memory, in particular dorsolateral PFC (PFdl).

Central
Primary sulcws

Profrontal
aron

Motor spooch area
[Broco's ores)

[Weenicke's area)

Primary
auditory eodex
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Sustained activity in PFC (2)

Working memory vs Long-term memory

Rl nt ks ™ bl sl e b

PN TN

T TY R R

Funahashi et al, 1989

* Long-term memory : molecular or structural changes

* Short-term/ working memory: dynamic process that has not
yielded to molecular characterization. Sustained Activity.
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Working memory vs Long-term memory Sustained activity is very widespread

* Sustained activity is a widespread phenomenon
* Long-term memory : molecular or structural changes

* Short-term/ working memory: dynamic process that has not * LIP and PP also have neurons which direction-specific memory fields,
yielded to molecular characterization. Sustained Activity. similar to PFC.

* Also found in inferotemporal cortex (IT), see e.g. Fuster and Jervey
1982.
Example of a discrete working memory.

* Memory related activity is also described in V3A, MT, V1, entorhinal
cortex, Pre motor cortex, SMA, SC, basal ganglia...

* The distinct and cooperative roles of these areas remain unresolved.
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Sustained activity in IT Brain calculus : integration and differentiation
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How does a transient stimulus cause

Working Memory and Sustained Activity a lasting change in neural activity?

(a) (b)

* A theory of working memory should answer:
- how it is initiated? Glutamate
- why does it persist ?

- what makes it specific?
- how does it end?

Parietal

Prefrontal

Glutamate

Glutamate
Thalamus

Inferior
temporal

- reason for capacity limit? iy

- relationship with attention, long term memory?

© A (@
* Mechanism : reverberations through connections (which?), or j? Vo loe/lcan
cellular? S o *\EOH/ o
. . 1z iz ¥4
* Lots of experimental and theoretical work to answer these 50‘
questions, in PFC, HD, Oculo-motor system mv
ot sovnl
I 255
TRENDS in Neurosciences
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Attractor paradigm for persistent activity Hopfield Networks

* A Hopfield net is a form of recurrent artificial
neural network invented by John Hopfield (1982).

* Since the 1970s it has been proposed that delay activity patterns « Hopfield nets typically have binary (1/-1 or 1/0)

can be theoretically described by ‘dynamical attractors threshold units:

-1 otherwise.

S/L B { 1 if Z] W;jS; = 91'_,

weights in black
Nodes numbers in red

where s; state of unit j, and 91' is the threshold
The weights have to follow: wii=0 , wi=w;;

* Hopfield nets have a scalar value associated with each state of the network
referred to as the "energy", E, of the network, where:

E = —%Zwijsisj +ZQ; Lh

i<j
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Hopfield Networks Associative memories

* Running: at each step, pick a node at random and update
(asynchronous update)

* The Hopfield network is an associative/content addressable memory. It can be used to
recover from a distorted input the trained state that is most similar to that input. E.g., if

The energy is guaranteed to go down and the network to settle in local we train a Hopfield net with 5 units so that the state (1, 0, 1, 0, 1) is an energy minimum,

minima of the energy function. and we give the network the state (1, 0, 0, 0, 1) it will converge to (1, 0, 1, 0, 1).

* Learning: the weights are learnt, so as to ‘shape’ those local minima.
The network will learnt to converge to learnt state even if it is given only
part of the state

1 k=N
Wi = N fzkff

k=1

{x1 B Eg Xy .3 are the ‘memories’
stored

Original ‘T
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half of image
corrupted by
noise

20% corrupted
by noise
(whole image)

Attractor paradigm for persistent activity
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The Ring Model (1)

* Since the 1970s it has been proposed that delay activity patterns
can be theoretically described by ‘dynamical attractors’

* Recently, a great effort to build biophysically plausible model of
sustained activity / attractor dynamics for memory.
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ABSTRACT  The role of intrinsic cortical connections in
processing sensory input and in generating behavioral
output is poorly understood. We have examined this issue in
the context of the tuning of neuronal responses in cortex to
the ori ion of a visual sti We ically study a
simple network model that incorporates both orientation-
selective input from the lateral geniculate nucleus and

ivity among cortical neurons can be gained from measure-
ments of the correlations between the responses of different
neurons (10). Theoretical predicti ding the ituds
and form of correlation functions in neuronal networks have
been lacking.

Here we study mechanisms for orientation selectivity by
using a simple neural network model that captures the gross

or pecific cortical on the

hil e of primary visual cortex. By assuming simplified

model parameters, the network exhibits ori ion selec-
tivity that originates from within the cortex, by a symmetry-
breaking mechanism. In this case, the width of the orien-
tation tuning can be sharp even if the lateral geniculate
nucleus inputs are only weakly anisotropic. By using our
model, several experimental consequences of this cortical
mechanism of orientation tuning are derived. The tuning
width is relatively independent of the contrast and angular
anisotropy of the visual stimulus. The transient population
response to changing of the stimulus orientation exhibits a
slow ‘““virtual rotation.” Neuronal cross-correlations exhibit
long time tails, the sign of which depends on the preferred

1 stochastic d: ics, the network properties have
been solved analytically, thereby providing a useful framework
for the study of the roles of the input and the intrinsic
connections in the formation of orientation tuning in the
cortex. Furthermore, by using a recently developed theory of

1 correlation ions in large ic networks, we
have calculated the cross-cor i (CCs) between the
neurons in the network. We show that different models of
orientation selectivity may give rise to qualitatively different
spatiotemporal patterns of neuronal correlations. These pre-
dictions can be tested experimentally.

Madel
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The Ring Model (2) The Ring Model (5): Sustained Activity

* N neurons, with preferred angle, §; ,evenly distributed
between —r/2 and 7/2
* Neurons receive thalamic inputs h.

* If recurrent connections are strong enough, the pattern of population
activity once established can become independent of the structure of the
input. It can persists when input is removed.

+ recurrent connections, with excitatory weights between « A model of working memory ?
nearby cells and inhibitory weights between cells that are

further apart (mexican-hat profile)
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Network Mechanisms & Biophysical Models Network Mechanisms & Biophysical Models

* Anatomical organization of PFC resembles a recurrent network
* Biophysical realistic computational modeling has shown that such
recurrent networks can give rise to location-specific, persistent

discharges (Compte et al 2000, Gutkin et al 2000, Tegner et al 2002, . o 3
Renart et al 2003a, Wang et al 2004) * Models are also challenged by accounting for spontaneous activity in addition

* Modeling studies show that stability is an issue in such network.
* Strong recurrent inhibition is needed to prevent runaway excitation and
maintain specificity

to memory state

I * Oscillations can destabilize the memory activity.
H&lu

* Working memory is found to be particularly stable when excitatory

reverberations are characterized by a fairly slow time course, e.g. when
\

synaptic transmission is mediated by NMDA receptors (prediction)

Fig. 4. Schematic diagram illustrating the pattern of connec-
tions between prefrontal neurons in the superficial layers. The
figure summarizes results of anatomical tracer injection experi-
ments and retrograde labeling. From Kritzer and Goldman-
Rakic (1995), with permission.
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Network Mechanisms & Biophysical Models

(@)

Neuron
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(b) 0]
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[Compte, Brunel, Goldman-Rakic and Wang, 2000]
Network of ~2500 integrate and fire neurons, mexican hat connectivity,
NMDA excitation.

Network Mechanisms & Biophysical Models
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[Renart, Brunel, Wang , 2003]
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But cellular mechanisms should not be forgotten ...

[Egorov et al, Nature, 2002]

e Layer 5 of EC in vitro, intracellular depolarization + bath application of the ACh-
receptor agonist leads to a Ca2+ -dependent plateau potential.

¢ This leads to sustained firing at a constant rate > 13 min

¢ independent of synaptic transmission.

« Level of activity can be increased or decreased using repeated inputs.

Could attractors be suited for remembering learned stimuli while such a system

could help maintaining new stimuli?

CAN channe

Stimul

Ca?* channel

Lots of interesting questions

* How are these attractors learnt?

* What is the relation with Attention?

* What is the relation with Long-term Memory ? (Is sustained activity
helpful for storage of memory?)

/7NN
. PFC(WM)|°°°°°°°°°|

A No Attention Attention Boggr:a-'up ” Tosi-;::lm
/7SN
180 s Hz 000000000
-180 : 4
[ » B c D T

180
Figure 1. Scheme of the loop architecture (red is excitation, and blue is inhibition). Two
MT i h f the hi bl bi
kinds of motion stimuli are considered (random-dot patterns; yellow arrows indicate signal
Epref o
-180
c b T Ardid, Wang and Compte 2007
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A related problem: spontaneous activity

* Where does it come from?

* How is it maintained? How does it ‘move’?

* Are these ‘attractor states’?

* |s it structured?

* Why is it there? (any functional advantages?)
¢ |s it noise?

¢ |s it the brain trying to ‘predict’ the input?

Arieli et al 1997; Tsodyks et al, 1999; Sl

Fiser et al, Nature, 2004 evoked (horizontal  spontaneous
orientation) (one frame)
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