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1 Hop�eld Attractor Network and Schizophrenia

General methods

The Hop�eld network was implemented in MATLAB. The neurons in the network are indexed linearly,
i.e. the states and energy levels of each neuron are stored in column vectors, as opposed to indexing by 2
variables that correspond to the x and y position of the neuron in the 10x10 arrangement. This was done for
e�ciency reasons, for example the various summations required are reduced to matrix multiplications. Code
optimisation enabled a large number of repetitions of each simulation to complete within a reasonable time,
leading to better estimates of average network performance under various conditions. In the next section,
that deals with pruning, the linear index of each neuron is converted to a (x, y) pair prior to calculating
distances between neurons.

Neuronal states are updated cyclically but asynchronously until convergence is achieved. Cyclical asyn-
chronous update means that each neuron is updated in turn, ordered by its (linear) index in the network,
with only one neuron being updated at each time step. This is not to be confused with what [3] refer to as
cyclical update in a footnote: their version is (or seems to be) synchronous update, whereby the new state
is calculated for all neurons (according to their current states) and then all neuronal states are updated �at
once�. This is quite di�erent from asynchronous updating (whether cyclical or random). In contrast, the only
di�erence between the update method I used and the asynchronous update originally described by Hop�eld
[4] is that neurons are picked in turn in the former case but randomly in the latter. A cyclical update may
be less plausible biologically but does not a�ect the end results; it does, however, result in somewhat faster
convergence in the computer model.

1.1 Hop�eld network

Experiment 1: storing 3 memories

The 3 memories were generated randomly and stored in the network. Degraded versions of these memories,
at 4 chosen degradation levels, 20% (low noise), 33% (moderate noise), 40% (high noise) and 45% (very
high noise), were subsequently generated. Degradation was performed by �ipping 20, 33, 40 or 45 randomly
selected states in each input. At each degradation level, the simulation was run 5000 times. The network (i.e.
the connection weights) remained the same across runs; what changed was the degraded inputs, which were
randomly generated (at the speci�ed degradation level) in each of the 5000 runs. The performance of the
network was then averaged over all runs, for each degradation level. The performance metric here is recall,
i.e. the proportion of degraded inputs that resulted in full recovery of the target memory.

Figure 1 shows the results. The network was able to recover all inputs degraded by 20% and the vast
majority of inputs degraded by 33%. As degradation increases and approaches 50%1, the ability of the
network to recover full memories diminishes signi�cantly, dropping to about 0.4 at 45% degradation.

1(50% is the maximum level of degradation, as anything beyond 50% is closer to the complement of the memory, which is
also stored in the network due to the symmetric connections.
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Figure 1: Performance of a 100-unit network in recovering each of the 3 stored memories from degraded
inputs, for each degradation level tested.

Experiment 2: performance, capacity and size correlations

This experiment examines how the number of stored memories a�ects performance and how the size of the
network a�ects its capacity.

For the former question, a network of 100 neurons was trained on varying numbers of memories and was
subsequently tested with inputs of varying degrees of degradation, including zero degradation, which served
as a �control�: if a memory cannot be recalled from intact inputs (that is, if a network presented with an
input identical to one of the stored memories does not remain in that state) then we can safely conclude
that the network's capacity has been exceeded. In other words, testing with intact inputs provides an upper
bound on the network's capacity. For each degradation level and for each number of memories (M) stored,
5000 simulations were performed to obtain reliable averages and reveal subtle e�ects.

For the second part of the experiment, capacity was de�ned as the maximum number of memories that can
be stored in the network such that the network is able to retrieve near-full (up to 2 corrupted bits) memories
from degraded inputs 75% of the times. That is, the network's capacity is exceeded once it becomes unable
to successfully recall a memory on more than 25% of the inputs. Of course, for a given number of stored
memories, the proportion of inputs that can be correctly recognised depends on how severely degraded those
inputs are. Thus the capacity, as a function of network size, was measured for 4 di�erent degradation levels,
the �rst being the control condition of 0% degradation.

The methodology was similar to the previous experiment, with two di�erences: here, a di�erent set of
memories was randomly generated in each simulation (as opposed to �xing the M memories and only varying
the degraded inputs, as in the previous section). This was done to eliminate the possibility of obtaining
results that are speci�c to the chosen memories.

Figure 2, A shows that as the number of stored memories increases, the performance of the network
decreases sublinearly at �rst and then approximately linearly (with a superlinear component at large numbers
of memories). Overall the curves look sigmoid and symmetrical about the point of median performance,
resembling psychometric curves. As expected, performance also drops when input degradation increases.

Figure 2, B shows that the capacity of the network is approximately linear in network size. A possible
informal explanation of this observation is as follows: the size of each memory (number of elements) is
exactly the network size N , thus the amount of information (�bits�) contained in each memory is linear in
N . However, information in the network is stored in its connection weights, and since there are N(N − 1)
connections, the amount of information that can be stored in a network is quadratic in N . Therefore the
number of memories that can be stored is linear in N . Hop�eld has found through simulations [4] that the
capacity of the network is approximately 0.15N . Since then, it has been shown that the capacity of the
Hop�eld network is N

2 logN if full recall is required (no corrupted bits) [7] and 0.15N if some corruption is

permitted [1]. The results of my simulation for are fairly consistent with these �ndings when the network is
evaluated against mildly corrupted inputs (0-20%).
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Figure 2: A, Network performance (recall, i.e. proportion of inputs that result in recovery of the correct
memory) as function of stored memories in a network of 100 units. B, Network capacity (number of memories
that can be stored and later retrieved correctly from partial inputs in 75% of the times) as a function of size
(number of units).

1.2 Cortical Pruning and the development of Schizophrenia

For this section, the previously described network of 100 units was modi�ed to include a stochastic element
during state update, as described in [3]. During preliminary testing, a temperature of T = 4 resulted in
network performance almost identical to the deterministic-update version of the previous subsection, as
Figure 3 shows. As before, performance was averaged over 1000 runs of the experiment, each time with
di�erent, randomly generated memories.

Figure 3: Preliminary testing of the introduction of stochasticity in updating of the network state. Perfor-
mance (recall) is plotted as a function of number of stored memories at a degradation level of 20% (see Figure
2, A and text).

To quantify the e�ects of axonal pruning on the behaviour of the network, a series of simulations where
performed; in each simulation, a di�erent set of 9 memories were randomly generated and stored in the
network. Axonal pruning was then performed, using values of pruning coe�cient p̂ ranging from 0.5 to 1 in
steps of 0.1. Following pruning, the network was tested on degraded inputs, using two levels of degradation,
20% and 33%, as in [3]. Thus there was a total of 6× 2 = 12 simulations, each repeated 1000 times to obtain
averages. This is in contrast to the methodology in [3], where results are reported only for a single set of 9
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memories and 18 degraded inputs (9 inputs for each of the 2 degradation levels)2.
Figure 4, A shows the performance of the network as a function of axonal wiring reduction (AWR), which

is de�ned as the combined length of pruned axons divided by the total axonal length in the (unpruned)
network. AWR is a monotonic function of the pruning coe�cient p̂, with values of p̂ in the range [0.5, 1]
corresponding to AWR values in the range [0.67, 0.91]. AWR was used instead of p̂ in order to allow direct
comparison with the results of Ho�man and Dobscha (Figure 4, B - adapted from [3]). Performance is
quanti�ed by the proportion of network responses that were successes (where success is de�ned as either an
end state with a Hamming distance of no more than 3 from the target state or as a �generalisation�) as well
as the proportion of responses that were �loose associations� (de�ned as end states more than 10 Hamming
units (HU) away from the target that were not generalisations). Generalisations are end states that are more
than 10 HU away from the target but are closest to the two memories that the input state was closest.[3].

It can be seen that in both simulations, as AWR increases, the number of successful runs decreases whereas
the number of loose associations increases. The overall levels of these two performances indices are di�erent
for the two degradation levels, as one would expect, however my simulations show that the rates of these
changes are independent of the degradation level. Furthermore, Ho�man and Dobscha report a threshold-like
behaviour, where network performance is quite good until an AWR of 80%, after which performance drops
rapidly. In my simulation, no such threshold-like e�ects are evident, although the slopes of all curves become
progressively steeper past the 80% mark. Finally, the authors note that for the moderately degraded inputs
(20 HU), the number of loose associations remains low even past the threshold (even though the number of
successful runs decreases). This is not the case in my simulation.

All of these di�erences likely stem from the fact that my simulations were repeated 1000 times and thus
were able to reveal the average behaviour of the network, whereas the authors report results from a single
set of simulations: it is possible that with another set of simulations (using di�erent memories) the authors
would have obtained quantitatively di�erent results.

Figure 4: Network performance as a function of axonal wiring reduction (AWR). A, results from present
simulations. B, results from a single simulation by Ho�man and Dobscha (adapted from [3]).

Discussion

Ho�man and Dobscha [3] argue that the formation of parasitic foci in overpruned regions of the network
could account for the positive symptoms of schizophrenia. These parasitic foci are persistent and are not
parts of any memory. If axonal pruning occurs in the frontal cortex, such parasitic foci could manifest as
intruding thoughts that are out of the patient's control. While this could in principle account for experiences
that are not based on reality and are incoherent with other thoughts, not all Schneiderian symptoms �t this
description. For example, it is di�cult to see how thought broadcasting and thought insertion could occur via

2The authors focused on a single case as they had to show speci�c patterns that developed due to pruning, such as parasitic
foci. Studying this kind of e�ects is of course only possible on a case-by-case basis.
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such a mechanism: these are primary (�rst-rank) symptoms of schizophrenia and not secondary explanations
of delusional nature. While the model could account for the formation of bizarre thoughts, it cannot explain
why people believe that these thoughts were inserted to them. A uni�ed treatment of Schneiderian symptoms
is therefore beyond the capabilities, and indeed the scope, of this model.

Hallucinations seem to be accounted for by the model in a more convincing way. Considering that each
unit in the network codes for a feature, an overpruned cortical region could, according to the model, produce
nonmemory parasitic foci, i.e. combinations of features. If these features happen to be sensory (e.g. visual),
it is easy to see how hallucinations could occur. Such combinations of features do not correspond to an actual
memory and may not even be plausible (realistic), which is typical of hallucinations.

As for delusions, the authors suggest that large parasitic foci control the state of most other neurons in
the network by locking into activation patterns that are independent of input. Delusions could then be a
result of the patterns taking control of belief orientations. It is not obvious to me how an associative memory
population that serves as a model of working memory could interact with the populations dealing with beliefs.
Such a mechanism, if it exists, is once again beyond the scope of the current model.

Pruning is not the only way to degrade the performance of the Hop�eld network. It is well-known that
by making the connections asymmetric (i.e. wi→j 6= wj→i) convergence of the network can no longer be
guaranteed in general (although it has been proven than a Hop�eld network with nonnegative asymmetric
weights can be stable for any input [6]). As for dopamine neuromodulation and the e�ects of stress, these
are not processes that can be directly incorporated to the model. The Hop�eld network, even in its conti-
nuous form, is �ring rate based. To model the e�ects of dopamine neuromodulation directly, spiking neuron
models are necessary that are rich enough to model the dynamics of various synapses and the e�ects of the
di�erent receptors, such the D1 and D2 dopaminergic receptors, thought to play an important role in the
symptomatology of schizophrenia (see [8] for a review).

2 Neuron Model of Izhikevich

The neuron model of Izhikevich was implemented as described in [5] and after studying the code samples
available at www.izhikevich.com. Figure 5 shows the results of my simulations. All dynamic modes described
in Part III of [5] were found, with the exception of the resonator (RZ); it proved impossible to produce
anything similar to the pattern described in [5]. Incidentally, the resonator is used twice in code samples
published by Izhikevich however with di�erent parameters. None of the two published parameter sets was
able to reproduce the reported pattern in my simulation. The parameters used in my simulations to produce
all 8 patterns are listed in Table 2. In all cases except TC (both) and RZ, a step current of 10nA with a
10ms onset was applied (and held until the end of the trial). Between 0 − 10ms the current was zero. In
the �rst case of TC, the step current was 3nA whereas in the second, the current between 0 − 10ms was
−30nA in order to simulate the hyperpolarisation (−90mV ) that is required to induce the short burst when
the current is set to 0 at 10ms (and for the duration of the trial). In the case of RZ, the present result was
obtained by inducing two short current pulses on top of the step current applied in all other cases.
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Figure 5: Dynamic modes of the Izhikevich model, corresponding to the ones described in part III of [5].

a b c d

0.02 0.20 -65 8 RS

0.02 0.20 -55 4 IB

0.02 0.20 -50 2 CH

0.10 0.20 -65 2 FS

0.02 0.26 -55 3 TC

0.10 0.26 -60 -1 RZ

0.02 0.26 -65 2 LTS

Table 2: Parameter values for the di�erent dynamic modes described in Part III of [5].

3 Spikes, Attractors, and Schizophrenia

Izhikevich [5] states that by modifying the thalamic input and synaptic strenghts (connection weights) in
the population of neurons, it is possible to obtain various dynamic modes. In the example code in , these
parameters are hardcoded (i.e. they are not represented by variables).

The connection weights are represented by the following line of code (taken directly from [5]):

S=[0.5∗ rand (Ne+Ni ,Ne) ,− rand (Ne+Ni , Ni ) ] ;

and the aforementioned hardcoded parameters are the factors 0.5 and -1 that control the mean of the random
variables representing the excitatory and inhibitory (respectively) connection weights. These parameters are
hereafter referred to as 〈we〉 and 〈wi〉.

Likewise, the thalamic input is represented by the following line of code:

I =[5∗ randn (Ne , 1 ) ; 2 ∗ randn (Ni , 1 ) ] ;
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The hardcoded parameters are the factors 5 and 2 that specify the variance of the zero-mean, normally
distributed excitatory and inhibitory (respectively) input currents. These parameters are hereafter referred
to as σe and σi.

Figure shows raster plots of the activity of a population consisting of 800 excitatory and 200 inhibitory
neurons, for selected values of the 4 parameters.

The �rst row shows what happens when the variance of the excitatory input is increased 2, 3 or 4 times
from the hardcoded value: in all 3 cases, the network exhibits high, synchronised activity that lasts about
20ms, followed by a longer period of relative silence, after which the inhibitory population shows high-
frequency rhythmic activity (from about 100 to 160Hz). In the brain, such activity could account for gamma
waves, at least for the �rst case of σe = 10, as for higher values the oscillation frequency is higher than then
typical upper limit of gamma waves (100Hz). The excitatory population shows some synchronised rhythmic
activity at �rst but as σeincreases, the excitatory �rings look more chaotic.

The second row shows what happens when the mean excitatory weight is increased to 1, becoming equal
to the mean inhibitory weight. In this case, when σe is smaller than about 3.335 nothing interesting hap-
pens (population activity looks random). However, above that threshold, the network exhibits remarkable
synchronisation, with very de�ned alternating periods of silence and activity. During the silent period, the
excitatory population is almost completely inactive, while the inhibitory one shows moderate (unsynchroni-
sed) activity. Towards the end of the silent period, the excitatory activity starts to increase, which results in
an explosive increase in activity of the entire network that lasts about 50ms. Such activity could give rise to
low-frequency (3− 5Hz in the present examples), high-amplitude waves, similar to delta waves.

The third row shows what happens when 〈we〉 and 〈wi〉 are both increased. Unlike in the �rst two rows,
the insets in the third row result from 3 runs of the same experiment (using the same parameters). The reason
for this is that this mode was highly variable; raster plots of activity signi�cantly across di�erent runs of the
same simulation, unlike in the previous two cases, where the raster plots were very similar across runs and
thus are illustrated only once per parameter set. What we see in these plots are extended periods of very high
global activity interrupted by periods where excitatory activity is absent except for a few (1-10) excitatory
neurons that sustain activity during this period and sometimes even until the next silent period. During
these silent periods, inhibitory neurons exhibit high-frequency synchronised activity, directly proportional to
the number of excitatory neurons with sustained activity. Such a pattern is unstable and I am not aware of
any similar pattern of activity, pathological or not, observed in the brain; it is interesting nonetheless.

Perhaps the most instructive result of this simulation was the fact that the discovered dynamic modes are
quite robust: they depend on statistical properties of the network parameters and not on their exact values.
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Figure 6: Raster plots of activity of 800 excitatory (bottom) and 200 inhibitory (top) neurons for selected
values of mean connection weight and variance of the thalamic drive.

The model of Izhikevich could be used to implement more plausible attractor-based networks. Hop�eld
networks are point attractor networks; there are however (both theoretical and experimental) reasons to
believe that other types of attractor networks are also present in the nervous system, such as line and plane
attractors for oculomotor control [9], ring attractors as a model of the head direction system in rodents
[10] and cyclic attractors as a model of oscillatory/repetitive movements, such as walking or swimming. A
potentially interesting endeavour would be to incorporate Izhikevich's neuron model to the working memory
model of Brunel and Wang [2], replacing their leaky integrate-and-�re neuronal model. Brunel and Wang
study the e�ects of neuromodulation on the conductance of NMDA and GABA synapses but neuromodulation
is added on top of the model, by simply changing the synaptic conductances in a similar manner as dopamine
in the prefrontal cortex. As they themselves point out and as mentioned before, dopamine neuromodulation
likely plays an important part in schizophrenia and thus directly simulating it in models may provide valuable
insight into the related mechanisms.
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