1. Encoding (continued)

readings: encoding D&A ch.1

Single cell tuning curves vs population response

Single cell tuning curve: change stimulus, record spike count for every stimulus

Population response: keep stimulus fixed, record spike count of every neuron in the population

Encoding problem: $P[\mathbf{r}|s]$

What is the relationship between stimuli in the world and the activity of the brain?

properties of neurons

2. Describing 'the noise'

• Beyond describing only the mean spike count ...

•To model the statistics of the response (one trial), we can use tools from probability theory: stochastic (random) processes.

- The spike count *r* on one trial is considered as a random variable.
- The probability of getting each outcome (n=1,2 .., 10, 50 spikes) is given by a probability distribution for which we want to find a suitable model.
- To do that, we use known statistics of *n*: the mean *<n>=f(s)* and 2d order statistics (variance, correlations).

Describing the variance of the spike count

- Measure the variance of the spike count, for a number of repetitions with the same stimulus.
- Experiments show that the variance of the spike count is linearly related to the mean spike count (with prop. const ~1).
- Noise is often described as Poisson, or Gaussian with a variance proportional to the mean.

- Divide time window T into N bins. p=probability of spiking in each bin.
- In each bin, toss a coin with probability P(head)=p, if you get a head, record a spike.
- For small p, the number of spikes in T follows a Poisson distribution.

Properties

- variance(spike count) = mean(spike count). (~data)
- Inter-spike intervals (ISI) follow an exponential distribution (~data, except for very short intervals(refractory period) and for bursting neurons).
- · Poisson model can be made to include a refractory period
- Homogeneous: mean spike count is fixed in time window f(s) / Inhomogeneous -- changing in time window :f(s,t).

a) Poisson Distribution

Probability of a spike count (positive integer -- discrete probability distribution) occurring in a fixed period of time, knowing average spike count f(s)
The assumption is that the generation of each spike (and its stochasticity) is independent of all other spikes

$$P(n = k|s) = \frac{e^{-f(s)}f(s)^k}{k!}$$

e.g. if f(s)=10, P(n=10|s)=0.125 P(n=7|s)=0.09 P(n=3|s)=0.007

Figure 1: A. Snippet of a Poisson spike train with r = 100 and $\delta t = 1$ msec. B. Spike count histogram calculated from many Poisson spike trains, each of 1 sec duration with r = 100, superimposed with the theoretical (Poisson) spike count density. C. Interspike interval histogram calculated from the simulated Poisson spike trains superimposed with the theoretical (exponential) interspike interval density.

b) Gaussian distribution

- Another model that is commonly used to describe the variability of the spike count is the Gaussian noise model.
- The activity of a neuron (number of spikes) can be described as:

$$n = f(s) + \eta(s)$$
$$\eta(s) \simeq N(0, \sigma^2(s))$$

• To mimic a Poisson process, we choose $\sigma^2($

 $\sigma^2(s) = f(s)$

From one neuron to the population : Describing pair-wise noise correlations

- An important question in neuroscience is to understand whether the noise is independent between neurons.
- Measure Trial-to-trial fluctuations of pairs of neurons, for same s.

When neuron 1 is above its mean, is neuron 2 also ? or are their fluctuations independent?

• Experimental data show weak positive correlations, which might be critical for the accuracy of the code.

Comparison of Poisson vs Gaussian noise with variance equal to the mean

Where does the noise come from?

• Is this 'Poisson' variability really noise? (unresolved, yet critical question)

- Where could it come from?
- Probably not in the sensory inputs (e.g. random arrival of photons)
- Probably not in the spike initiation mechanism (Mainen and Sejnowski 1995)
- · Probably not in the stochastic nature of opening / closing of ion channels

• Probably not in the unreliable synapses (spontaneous AP, spontaneous release of vesicles, variability in size of PSPs).

Encoding: Summary

- * Spikes are the important signals in the brain.
- What is still debated is the code: number of spikes, exact spike timing, temporal relationship between neurons' activities?
- Experimentalists have characterized the activity of neurons all over the brain and in particular in sensory cortex, motor cortex etc ..., mainly in terms of tuning curves and response curves. A variety of well-specialized areas. Detailed wiring and mechanisms at the origins of these responses are largely unknown.
- Other techniques to predict activity (when stimulus is changing) : STA, reverse correlation.
- The large variability (in ISI, number of spikes) is often well described by a Poisson or Gaussian model.

Where does the noise come from?

• Neurons embedded in a recurrent network with sparse connectivity and balance between excitatory and inhibitory inputs tend to fire with Poisson statistics (Van vreeswijk and Sompolinksy, 1997)

• a consequence of using steady signals (Mainen and Sejnowski, 1995, Butts et al 2007).

• Variability could offer distinct advantages (eg. enhance weak signals, encoding and manipulating uncertainty (Alex Pouget) or emerge from deterministic Bayesian processes (Sophie Deneve))

• Large Spontaneous Activity (Tsodyks al 1999; Fizser et al . 2004)

Further reading: Neuronal variability: noise or part of the signal? Stein et al, Nature Rev Neuroscience, 2005.

Overview of the visual cortex

Two streams:

- Ventral 'What': V1,V2, V4, IT, form recognition and object representation
- Dorsal 'Where': V1,V2, MT, MST, LIP, VIP, 7a: motion, location, control of eyes and arms

Dorsal pathway • MT: MOTION. stimulus of choice: random dot patterns.

Dorsal pathway

• MST: linear, radial, circular motion (flow field).

• LIP: spatial position in head-centered coordinates. spatial attention, spatial representation. saliency map -- used by oculo-motor system (the "saccade planning area"). spatial memory trace and anticipation of response before saccade.

• **VIP**: spatial position in head-centered coordinates, multi-sensory responses. speed, motion.

• **7a:** large receptive fields, encode both visual input and eye position.

21

Encoding applications: Cochlear implants ('bionic ears')

http://www.youtube.com/watch?v=4Avc3nNFxIA&feature=related

http://www.youtube.com/watch?v=-WA7-k UcWY&feature=related

• surgically implanted electronic device that provides a sense of sound to a person who is profoundly deaf or severely hard of hearing.

- 188 000 people worldwide in 2009.
- a set of electrodes stimulating neurons in the cochlea.

