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Encoding applications: Cochlear implants (‘bionic ears’)

http://www.youtube.com/watch?v=4Avc3nNFxIA&feature=related

http://www.youtube.com/watch?v=-WA7-k_UcWY&feature=related

• surgically implanted electronic device that provides a sense of sound to a 
person who is profoundly deaf or severely hard of hearing.
• 188 000 people worldwide in 2009.
• a set of electrodes stimulating neurons in the cochlea. 

Encoding applications: retinal implants (‘bionic eyes’)

• in development 
• meant to partially restore vision to people 
with degenerative eye conditions such as 
macular degeneration
• stimulating the retina with array of 
electrodes.

http://www.youtube.com/watch?v=696dxY6BYBM&feature=related

http://www.3news.co.nz/Retinal-implant-trial-helps-
blind-people-see-shapes/tabid/313/articleID/184658/
Default.aspxhttp://www.dailymotion.com/video/xfreg4_retinal-
implants-allow-blind-to-see-shapes_news

Sheila Nirenberg: A prosthetic 
eye to treat blindness
http://www.ted.com/talks/
sheila_nirenberg_a_prosthetic_eye_to_treat_blindness.html
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In response to a stimulus with unknown orientation s, we observe a 
pattern of activity r (e.g. in V1). What can we say about s given r?
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es
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preferred orientation

r

?



Decoding populations of neurons

An estimation problem (detecting signal in noise).
! Tools : estimation theory, bayesian inference, machine learning 

When does the problem occur?:

1 - Point of view of the experimentalist or Neuro-Engineering. Seeking the 
most effective method (e.g. prosthetics) to read out the code.

 
" Statistical optimality
" considering the constraints  (e.g. real time?)

2 - Model of the brain’s decoding strategy
e.g. mapping from sensory signals to motor response and understanding 

the relationship between physiology and psychophysics

" statistical optimality ? 
" optimality within a class ?  
" or simplicity/ arbitrary choice? (what are the biological constraints ?)  

Decoding: to understand the link between 
Physiology and Psychophysics

• Understanding the relationship between neural responses and 
performances of the animal:

• Detection Task: e.g. can you see the target ? 
Measure Detection threshold. 
 
• Estimation Task: e.g. What is the angle of the bar ? The contrast of the 
grating? Measure Estimation errors (bias -- illusions).

• Discrimination Task: e.g. What is the minimal difference you can see?
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Decoder

"  optimality criterion? 
MSE(s) =< (ŝ− s)2 >

1. Optimal Decoding

sp
ik

es
/s

ŝ = argmaxsP (r|s)
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"  Maximum Likelihood:  
if we know P[r|s], 
choose the stimulus s that has maximal probability of having 
generated the observed response, r.

1. Optimal Decoding
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ŝ = argmaxsP (r|s)

"  Maximum Likelihood:  
if we know P[r|s], 
choose the stimulus s that has maximal probability of having 
generated the observed response, r.

1. Optimal Decoding
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ŝ = argmaxsP (r|s)

"  Maximum Likelihood:  
if we know P[r|s] (the encoding model), 
choose the stimulus s that has maximal probability of having 
generated the observed response, r.

1. Optimal Decoding
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"  Maximum a Posteriori:  
if we know P[r|s] and have a prior on s, P[s], 
choose the stimulus s that is most likely, given r.

ŝ = argmaxsP (s|r) = argmaxsP [r|s]P [s]

1. Optimal Decoding
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Simple 
Decoders

Is the brain able to do ML or MAP estimation ?

- Unknown
- It is argued that realistic architectures could perform ML 
[Deneve, Latham, Pouget al 2001,  Ma, Pouget et al 2006, Jazayeri and 
Movshon 2006]



!180 !90 0 90 180
0

25

50

!
test

 R
e

s
p

o
n

s
e

s

A ! Tuning Curves

!180 !90 0 90 180

0

25

50

!
test

B ! Population Response

2. Simpler Decoding Strategies

 Winner Take All : 

If we know the preferred orientation of all neurons,
choose the preferred orientation of the neuron that responds most.

 

preferred orientation
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2. Simpler Decoding Strategies

2. Simpler decoding strategies: 
Optimal Decoders within a class 

Optimal decoders often requires much too much data  (full model P[r|s]), seem 
too complex:

The question then is the cost of using non-optimal decoders.

- Linear Decoders, eg. OLE, [Salinas and Abbott 1994] 

- Decoders that ignore the correlations (decode with the “wrong model” which 
assumes independence) [Nirenberg  & Latham 2000, Wu et al 2001, Series et 
al 2004]

ŝ =
�

i

wiri

Use of simple decoding methods for prosthetics

Brain-machine interface usually use very simple decoding techniques 
 ... and they show promising results (as well as surprising learning effects).

See eg. lab of M. Nicolelis @ Duke, and A. Schwartz @ Pittsburg

http://www.youtube.com/watch?v=sm2d0w87wQE

http://www.zdnet.com/blog/btl/60-minutes-decoding-language-of-the-brain-video/10669

http://www.youtube.com/watch?
v=7kctOHnrvuM&feature=related
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http://www.youtube.com/watch?v=Cwda7YWK0WQ

Decoding from fMRI -- classification techniques

‘reading your mind’

Decoding in humans
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Neuronal ensemble control of prosthetic
devices by a human with tetraplegia
Leigh R. Hochberg1,2,4, Mijail D. Serruya2,3, Gerhard M. Friehs5,6, Jon A. Mukand7,8, Maryam Saleh9†,
Abraham H. Caplan9, Almut Branner10, David Chen11, Richard D. Penn12 & John P. Donoghue2,9

Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing
movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To
translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after
spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent.
Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables
useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity
recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion
modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a ‘neural
cursor’ with which MN opened simulated e-mail and operated devices such as a television, even while conversing.
Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-
jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity
could provide a valuable new neurotechnology to restore independence for humans with paralysis.

Hundreds of thousands of people suffer from forms of motor
impairment in which intact movement-related areas of the brain
cannot generate movements because of damage to the spinal cord,
nerves, or muscles1. Paralysing disorders profoundly limit indepen-
dence, mobility and communication. Current assistive technologies
rely on devices for which an extant function provides a signal that
substitutes for missing actions. For example, cameras can monitor
eye movements that can be used to point a computer cursor2.
Although these surrogate devices have been available for some
time, they are typically limited in utility, cumbersome to maintain,
and disruptive of natural actions. For instance, gaze towards objects
of interest disrupts eye-based control. By contrast, an NMP is a
type of brain–computer interface (BCI) that can guide movement
by harnessing the existing neural substrate for that action—that is,
neuronal activity patterns in motor areas. An ideal NMP would
provide a safe, unobtrusive and reliable signal from the discon-
nected motor area that could restore lost function. Neurons in the
primary motor cortex (MI) arm area of monkeys, for example,
provide information about intended arm reaching trajectories3–5,
but this command signal would work for an NMP only if neural
signals persist and could be engaged by intention in paralysed
humans.
In concept, NMPs require a sensor to detect the activity of multiple

neurons, a decoder to translate ensemble firing patterns into motor
commands, and, typically, a computer gateway to engage effectors.
BrainGate (Cyberkinetics, Inc.) is an NMP system under development

and in pilot trials in people with tetraparesis from spinal cord injury,
brainstem stroke, muscular dystrophy, or amyotrophic lateral sclero-
sis. Currently, this system consists of a chronically implanted sensor
and external signal processors developed from preclinical animal
studies (see Methods)6–8. The participant described in this report, the
first in the BrainGate trial, is a 25-yr-old male (MN) who sustained a
knife wound in 2001 that transected the spinal cord between cervical
vertebrae C3–C4, resulting in complete tetraplegia (C4 ASIA A)9. The
array was implanted in June 2004 into the MI arm area ‘knob’10, as
identified on pre-operative magnetic resonance imaging (MRI)
(Fig. 1c). Post-operative recovery was uneventful. The data presented
here are derived from 57 consecutive recording sessions from
14 July 2004 to 12 April 2005 (9months).

Signal quality and variety
Action potentials were readily observable on multiple electrodes,
indicating that MI neural spiking persists three years after SCI, as
suggested indirectly by functional MRI data11–14. Recorded signals
ranged from qualitatively well-isolated single neurons to mixtures of
a few different waveforms (Fig. 2a). Different waveform shapes were
identified visually, using standard time-amplitude windows, but
there was no further attempt to distinguish between well isolated
and intermixed waveforms, both of which we refer to in this report as
‘units’. An average of 26.9 ^ 14.2 units were observed each day
(range 3–57), with mean peak-to-peak spike amplitudes of
76.4 ^ 25.0 mV (mean ^ s.d., n ¼ 56 sessions) (see Supplementary

ARTICLES
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http://www.braingate2.org/60mins.html
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fMRI

http://videolectures.net/fmri06_mitchell_odmsp/

classification techniques ;a machine learning problem

28

lie detection

http://www.youtube.com/watch?v=rpe_TRbRdGA

http://www.dailymotion.com/video/x3673c_wired-science-lie-detectors-pbs_shortfilms
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Decoding:  Summary of previous slides

"  Decoding: for neuro-prostheses and/or for understanding the relationship 
between the brain’s activity and perception or action

" Different strategies are possible: optimal decoders (e.g. ML, MAP) vs 
simple decoders (e.g. winner take all, population vector), depending on 
what we know about the encoding model, and constraints.


