
2. Decoding (continued)

readings: Decoding D&A ch.3
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s ŝ
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Decoding:  Summary of Last Lecture

!  Decoding: for neuro-prostheses and/or for understanding the relationship 
between the brain’s activity and perception or action

! Different strategies are possible: optimal decoders (e.g. ML, MAP) vs 
simple decoders (e.g. winner take all, population vector), depending on 
what we know about the encoding model, and constraints.

" E.g. stimulus = oriented Gabor patch;
" Encoder = set of noisy tuning curves, e.g. in V1;
" r =population response;
" Estimator/Decoder = model we choose for this (e.g optimal);
"       = perceived orientation of Gabor patch;
" How can we relate this model of perception with measured 

psychophysical performance?
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 Some chosen
estimator ŝ1
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From Population Codes to Psychophysical Performances
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" what is the influence of the shape of the tuning curves and 
noise in our visual cortex on our performances in perception? 
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" performances change with learning, attention, aging etc.. can 
we figure out what is changing in the brain?
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How can we describe the performances of our estimator ?
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• Bias.
 

If                         the estimator is said to be unbiased.  

b(s) = E(ŝ|s)− s

E(ŝ|s) = s

How can we describe the performances of our estimator ?

• Bias.
 

If                         the estimator is said to be unbiased.  

• Variance

Estimation theory tells us that, knowing the encoder model P[r|s], there is a 
lower bound on the variance that can be achieved by any decoder.   This 
quantity is known as the Cramer-Rao Bound. The denominator is known as 
Fisher Information which is a function of P[r|s]

b(s) = E(ŝ|s)− s

E(ŝ|s) = s

var(ŝ)
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var(ŝ) ≥ (1 + b�(s))2

IF (s)

How can we describe the performances of our estimator ?



what is being measured in psychophysics ? a) Estimation tasks

Tilt after-effet Fraser Illusion

Poggendorf 
Illusion

Stare at this 
for 20 sec

Then look at 
that

Zollner Illusion

" The measured quantity is the difference between the perceived 
orientation and the real orientation: 
 < ŝ > −s

b) Discrimination Tasks

" Is the second grating of the same 
orientation as the first grating, or a different 
orientation?

" The measured quantity is the Discrimination 
Threshold  a.k.a Just Noticeable difference (JND)
- on average detected on 76% of the trials.

b) Discrimination Tasks

" Is the second grating of the same 
orientation as the first grating, or a different 
orientation?

" The measured quantity is the Discrimination 
Threshold  a.k.a Just Noticeable difference (JND)
- on average detected on 76% of the trials.

Discrimination threshold depends on the overlap 
between the internal ‘representation’ of the 2 
stimuli: p[!1|r] and p[!2|r]:
• The bias of the internal representation  
(expansion/contraction of the ‘distance’ between 
the stimuli)
• How noisy the internal representation is (the 
variance of the estimates)

<!1> <!2>

<!1> <!2>

!1 !2



var(ŝ)

b(ŝ) =< ŝ > −s

Linking the statistics of the model and psychophysics
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discrimination threshold (76% 
correct)
just noticeable difference

From the Cramer Rao Bound,  knowing the encoder model and independently of 
the decoder, it is known that the threshold is bounded by the sqrt of Fisher 
information: threshold(ŝ) ≥ 1�

IF (s)

threshold(ŝ) =
std(ŝ)

1 + b�(ŝ)

[Series et al, 2010]

Fisher information: the best possible discrimination 
performance for a given encoder model

" Interpreted as a measure of ‘information’ in the responses;
" a useful tool to relate directly the properties of the neural responses with 
discrimination performance.
" is related with Mutual information and Stimulus Specific Information 
(Brunel and Nadal 1998, Yarrow, Challis and Series 2012).

IF (s) = − <
∂2lnP [r|s]

∂s2
>

" Fisher information: gives the discrimination threshold that would be obtained 
(asymptotically) by an optimal decoder, for eg. ML (units of var ^-1)
" is expressed in terms of the encoding model P[r|s], i.e.  in terms of the 
tuning curves and the noise
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From Population Responses to Psychophysics
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 Two strategies:
" Assume the decoder is optimal: Compute Fisher information from P[r|s].  This 
gives us the minimal possible variance of any unbiased decoder, and the minimal 
threshold of any decoder (biased or unbiased).
" Construct explicitly the decoder (e.g. population vector). Compute explicitly bias, 
variance, and threshold of estimates.

P [r|s]
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var(ŝ) � 1
IF (s)

‣ Number of neurons?
‣Tuning curves shape ?
‣ Noise correlations ?

Questions that we can explore:
What changes in encoder would increase discrimination performances?

thres(ŝ) � 1�
IF (s)

From Population Responses to Psychophysics
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For independent neurons, FI of the 
population is the sum of each 
neurons’ FI

Slope 2

variance

What are the factors that control performance?

Ii(s) =
f �

i(s)2

fi(s)

I(s) =
�

i

f �
i(s)2

fi(s)

" Fisher information formalises intuition and provides a tool to explore 
these questions precisely.

" For Poisson noise P (n = k|s) =
e−f(s)f(s)k

k!

IF (s) = f �(s)Q−1(s)f �(s) +
1
2
Trace[Q−1(s)Q�(s)Q−1(s)Q�(s)]

For correlated neurons, FI is modulated by 
correlations. 

What are the factors that control performance?

P [r|s] =
1�

(2π)N |Q(s)|
e−

1
2 (r−f(s))TQ−1(s)(r−f(s)))

For Gaussian correlated noise:

Research questions (1)

" What would be the ‘optimal’ shape for tuning curves?
" Are adaptation, attention and learning a step towards more ‘optimal’ tuning 
curves for the attended/trained stimulus ? 

[Dean, Harper & McAlpine, Nature Neuro,  2005]

Neurons in auditory midbrain of the guinea pig adjust their response to improve the 
accuracy of the code close to the region of most commonly occurring sound levels.

Research questions (2)

" How many neurons participate in a psychophysical task ? (see also, lab 1) 
1, 10, 100, 10000? How can we find out ? 
" comparing performance (e.g. MT: Britten et al 1992). stimulating (MT: 
Salzman, Britten, Newsome 1990).

Houweling & Brecht, Nature, 2008
Barrel cortex single cell stimulation.



Research questions (3)

" Pooling from large populations of neurons thought to be a way to 
average out the noise.
" Pairs of neurons show correlations in their variability: does pooling 
more and more neurons increases (linearly) the accuracy of the 
representation? 
or  Is information saturating over a certain number of neurons ? 
[Zohary et al 1994]

" Could that be that adaptation and attention act by changing 
correlations? [Cohen & Maunsell 2009; Gutnisky & Dragoi 2008]

Research questions (4)

" Can the study of illusions inform us on the type of ‘decoder’ 
that is used in the brain?  [Series, Stocker and Simoncelli 2009]

Sensory Adaptation 

Verify that this grating is vertical

Sensory Adaptation 

Fixate on the central circle for 30 sec



Sensory Adaptation 

Now observe the grating again

The Tilt After-Effect

Visual Adaptation: Psychophysics

Visual adaptation leads to:
# estimation tasks:  strong biases (mainly repulsion)                    

Repulsion
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Visual adaptation leads to:
# estimation tasks:  strong biases  (mainly repulsion)                    

Visual Adaptation: Psychophysics
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Visual adaptation leads to:
# estimation tasks: strong biases  (mainly repulsion)
# discrimination tasks:  changes in performance                   

Visual Adaptation: Psychophysics



Visual Adaptation: Physiology

Mainly a Gain change 
[Van Wezel & Britten 2002, Krekelberg et 
al. 2006]
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Other effects are controversial, 
dependent on time scale and area: 
shifts in preferred orientation, 
changes in width, changes in 
variability.
[Kohn & Movshon 2004, Dragoi et 
al, 2000]
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Neural activity and perception are both affected by sensory history. The
work presented here explores the relationship between the physiological
effects of adaptation and their perceptual consequences. Perception is
modeled as arising from an encoder-decoder cascade, in which the en-
coder is defined by the probabilistic response of a population of neurons,
and the decoder transforms this population activity into a perceptual es-
timate. Adaptation is assumed to produce changes in the encoder, and
we examine the conditions under which the decoder behavior is con-
sistent with observed perceptual effects in terms of both bias and dis-
criminability. We show that for all decoders, discriminability is bounded
from below by the inverse Fisher information. Estimation bias, on the
other hand, can arise for a variety of different reasons and can range from
zero to substantial. We specifically examine biases that arise when the
decoder is fixed, “unaware” of the changes in the encoding population
(as opposed to “aware” of the adaptation and changing accordingly). We
simulate the effects of adaptation on two well-studied sensory attributes,
motion direction and contrast, assuming a gain change description of en-
coder adaptation. Although we cannot uniquely constrain the source of
decoder bias, we find for both motion and contrast that an “unaware” de-
coder that maximizes the likelihood of the percept given by the preadap-
tation encoder leads to predictions that are consistent with behavioral
data. This model implies that adaptation-induced biases arise as a result
of temporary suboptimality of the decoder.

Neural Computation 21, 3271–3304 (2009) C© 2009 Massachusetts Institute of Technology
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Figure 1: Encoding-decoding framework for adaptation. The encoder repre-
sents stimulus s using the stochastic responses of a neural population, r. This
mapping is affected by the current adaptation state, and the responses can also
affect the adaptation state. Two types of decoders can be considered. (A) An
aware decoder knows of the adaptive state of the encoder and can adjust it-
self accordingly. Note that although the diagram implies that the adaptation
state must be transmitted via a separate channel, it might also be possible to
encode it directly in the population response. (B) An unaware decoder is fixed
and ignores any adaptive changes in the encoder.

assume an unaware ML decoder, denoted MLunaw , which selects as an esti-
mate the stimulus that maximizes the probability of the observed response
under the preadaptation encoding model Ppre(r | s).

In conclusion, two distinct types of decoder, “aware” and “unaware,”
have been related to measures of discriminability or estimation, respec-
tively: biases in estimation have typically been explained using fixed (and
thus, unaware) decoders such as the population vector (see e.g., Jin et al.,
2005), whereas discriminability has typically been studied using the Fisher
information, which implicitly assumes an unbiased (and thus, in most cases,
aware) estimator. However, no consistent account has been provided of
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[Series, Stocker and Simoncelli, 2009]

Summary

!  The efficiency of Estimators / Decoders can be characterized by the bias 
and the variance.

! The bias and variance of estimators used to read-out neural responses can 
be easily compared with psychophysical performance (estimation biases, 
and discrimination threshold).

! Fisher Information is related to the minimal variance of a unbiased estimator.
! In a model of a population of neurons, Fisher Information can be expressed 

in terms of the tuning curves and the noise.
! Fisher information can be used to relate population responses and 

discrimination performances. It gives a bound on the discrimination 
threshold

! Fisher Information can be used to explore the factors that impact on the 
precision of the code / behavioral performances.

 


