Network models - summary

Models of networks - continued

Readings: D&A, chapter 7.

* Network models: to understand the implications of connectivity in
terms of computation and dynamics.

¢ 2 Main strategies: Spiking vs Firing rate models.

* The issue of the emergence of orientation selectivity as a model
problem, extensively studied theoretically and experimentally.

- Two main models: feed-forward and recurrent.

- Detailed spiking models have been constructed which can be directly
compared to electrophysiology

- The same problem is also investigated with a firing rate model, a.k.a.
the ‘ring model’.

What is working memory ? (a.k.a. short-term memory)

Sustained activity, Working Memory, Associative memory

Readings:

C.Constandinis and XJ Wang, , “a neural circuit basis for
spatial working memory”, Neuroscientist, 2004
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¢ The ability to hold information over a time scale of seconds to minutes
¢ a critical component of cognitive functions (language, thoughts, planning
etc..)

Delayed match-to sample task:
remember ‘red’




Test your working memory

http://www.ted.com/talks/
makes_sense_of the_world.

eter_doolittle_how_your_working_memo
html

TED:

Oculo-motor delayed response task:
remember location of cue.

Eye movement

Fixation Point Off
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Sustained activity in PFC (1)

Sustained activity in PFC (2)

¢ Lesion and inactivation studies demonstrate crucial role of Prefrontal Cortex
(PFC) in working memory, in particular dorsolateral PFC (PFdl).
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Working memory vs Long-term memory Sustained activity is very widespread

* Sustained activity is a widespread phenomenon
* Long-term memory : molecular or structural changes

* Short-term/ working memory: dynamic process that has not * LIP and PP also have neurons which direction-specific memory fields,
yielded to molecular characterization. Sustained Activity. similar to PFC.

¢ Also found in inferotemporal cortex (IT), see e.g. Fuster and Jervey
1982.
Example of a discrete working memory.

* Memory related activity is also described in V3A, MT, V1, entorhinal
cortex, Pre motor cortex, SMA, SC, basal ganglia...

* The distinct and cooperative roles of these areas remain unresolved.

Sustained activity in IT Brain calculus : integration and differentiation
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Working Memory and Sustained Activity

How does a transient stimulus cause
a lasting change in neural activity?

* A theory of working memory should answer:
- how it is initiated?

- why does it persist ?

- what makes it specific?

- how does it end?

- reason for capacity limit?
- relationship with attention, long term memory?

* Mechanism : reverberations through connections (which?), or
cellular?

* Lots of experimental and theoretical work to answer these
questions, in PFC, HD, Oculo-motor system
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TRENDS in Neurosciences

Attractor paradigm for persistent activity

Hopfield Networks

* Since the 1970s it has been proposed that delay activity patterns
can be theoretically described by ‘dynamical attractors’

* A Hopfield net is a form of recurrent artificial
neural network invented by John Hopfield (1982).
* Hopfield nets typically have binary (1/-1 or 1/0)
threshold units:

S/L B { 1 if EJ ?.L‘,jij = 91'_,

-1 otherwise.

weights in black
Nodes numbers in red

where s; state of unit j, and ‘9i is the threshold
The weights have to follow: w;i=0 , wi=w;

* Hopfield nets have a scalar value associated with each state of the network
referred to as the "energy", E, of the network, where:

E= —%Z'LL‘US;'S_? +z€1 85

i<j




Hopfield Networks Associative memories

* Running: at each step, pick a node at random and update
(asynchronous update)

* The Hopfield network is an associative/content addressable memory. It can be used to
recover from a distorted input the trained state that is most similar to that input. E.g., if
The energy is guaranteed to go down and the network to settle in local we train a Hopfield net with 5 units so that the state (1, 0, 1, 0, 1) is an energy minimum,

and we give the network the state (1, 0, 0, 0, 1) it will converge to (1, 0, 1, 0, 1).

minima of the energy function.

* Learning: the weights are learnt, so as to ‘shape’ those local minima.
The network will learnt to converge to learnt state even if it is given only
part of the state

x4 o X3 Xy .} arethe ‘memories’
stored

Original ‘T'

half of image
corrupted by
noise

20% corrupted
by noise
{whole image)

Attractor paradigm for persistent activity

The Ring Model (1)

* Since the 1970s it has been proposed that delay activity patterns
can be theoretically described by ‘dynamical attractors’

* Recently, a great effort to build biophysically plausible model of
sustained activity / attractor dynamics for memory.

Proc. Natl. Acad. Sci. USA
Vol. 92, pp. 3844-3848, April 1995
Neurobiology

Theory of orientation tuning in visual cortex

(neural networks / cross-correlations /symmetry breaking)

R. BEN-YIsHAT*, R. LEV BAR-OR*, AND H. SOMPOLINSKY T

*Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel; and TAT&T Bell Laboratories,

Murray Hill, NJ 07974

Ce i by Pierre C. Hohenberg, AT&T Bell Lab. ies, Murray Hill, NJ, December 21, 1994 (received for review July 28, 1994)

ABSTRACT The role of intrinsic cortical connections in
processing sensory input and in generating behavioral
output is poorly understood. We have examined this issue in
the context of the tuning of neuronal responses in cortex to
the orientation of a visual stimulus. We analytically study a
simple network model that incorporates both orientation-
selective input from the lateral geniculate nucleus and
orientation-specific cortical interactions. Depending on the
model parameters, the network exhibits orientation selec-
tivity that originates from within the cortex, by a symmetry-
breaking mechanism. In this case, the width of the orien-
tation tuning can be sharp even if the lateral geniculate
nucleus inputs are only weakly anisotropic. By using our
model, several experimental consequences of this cortical
mechanism of orientation tuning are derived. The tuning
width is relatively independent of the contrast and angular
anisotropy of the visual stimulus. The transient population
response to changing of the stimulus orientation exhibits a
slow “virtual rotation.” Neuronal cross-correlations exhibit
long time tails, the sign of which depends on the preferred

ivity among cortical neurons can be gained from measure-
ments of the correlations between the responses of different
neurons (10). Theoretical predictions regarding the magnitude
and form of correlation functions in neuronal networks have
been lacking.

Here we study mechanisms for orientation selectivity by
using a simple neural network model that captures the gross
architecture of primary visual cortex. By assuming simplified
neuronal stochastic dynamics, the network properties have
been solved analytically, thereby providing a useful framework
for the study of the roles of the input and the intrinsic
connections in the formation of orientation tuning in the
cortex. Furthermore, by using a recently developed theory of
neuronal correlation functions in large stochastic networks, we
have calculated the cross-correlations (CCs) between the
neurons in the network. We show that different models of
orientation selectivity may give rise to qualitatively different
spatiotemporal patterns of neuronal correlations. These pre-
dictions can be tested experimentally.

Madol




The Ring Model (2) The Ring Model (5): Sustained Activity

* N neurons, with preferred angle, ¢; ,evenly distributed * If recurrent connections are strong enough, the pattern of population
between —z/2 and 7/2 activity once established can become independent of the structure of the
* Neurons receive thalamic inputs h. input. It can persists when input is removed.

+ recurrent connections, with excitatory weights between « A model of working memory ?

nearby cells and inhibitory weights between cells that are
further apart (mexican-hat profile)
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Network Mechanisms & Biophysical Models Network Mechanisms & Biophysical Models

* Anatomical organisation of PFC resembles a recurrent network * Modelling studies show that stability is an issue in such network.
* Biophysical realistic computational modelling has shown that such

recurrent networks can give rise to location-specific, persistent

discharges (Compte et al 2000, Gutkin et al 2000, Tegner et al 2002, . o -
Renart et al 2003a, Wang et al 2004) * Models are also challenged by accounting for spontaneous activity in addition

 Strong recurrent inhibition is needed to prevent runaway excitation and

maintain specificity

to memory state

! * Oscillations can destabilise the memory activity.

Hat

* Working memory is found to be particularly stable when excitatory

reverberations are characterised by a fairly slow time course, e.g. when
Vi

synaptic transmission is mediated by NMDA receptors (prediction)

Fig. 4. Schematic diagram illustrating the pattern of connec-
tions between prefrontal neurons in the superficial layers. The
figure summarizes results of anatomical tracer injection experi-
ments and retrograde labeling. From Kritzer and Goldman-
Rakic (1995), with permission.




Synaptic input

* Different synapses have different dynamics.
* Excitatory synapses: AMPA is fast, NMDA slow.
* Inhibitory synapses: GABAa are fast, GABAb slower.
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Network Mechanisms & Biophysical Models
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[Compte, Brunel, Goldman-Rakic and Wang, 2000]

*Network of ~2500 integrate and fire neurons, mexican hat connectivity,
NMDA excitation.

*Reproduce Funahashi et al 1989.

*Selectivity of memory field, temporal drifts, robustness to distractors.

Biophysical Models -- drift and robustness to distractors.
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Network Mechanisms & Biophysical Models

Fig. 6. Stability of persistent
activity as a function of the
AMPA:NMDA ratio at the recur-
rent excitatory synapses. A-D,
Temporal course of the average
firing rate across a subpopula-
tion of cells selective to the pre-
sentated transient input, for dif-
ferent levels of the AMPA:NMDA
ratio. As the ratio is increased,
oscillations of a progressively
larger amplitude develop during B
the delay period, which eventu-
ally destabilize the persistent
activity state. £, Snapshot of the
activity of the network in (C)
between 3 and 3.5 seconds.
Top, Average network activity.
Bottom, Intracellular voltage
trace of a single neuron. Inset,
Power spectrum of the average ~ C
activity of the network, showing
a peak in the ¥ (40 Hz) frequency
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But cellular mechanisms should not be forgotten ...

[Egorov et al, Nature, 2002]

e Layer 5 of rat EC in vitro, intracellular depolarisation + bath application of the
ACh-receptor agonist leads to a Ca2+ -dependent plateau potential.

¢ leads to sustained firing at a constant rate > 13 min

¢ independent of synaptic transmission.

e activity level can be increased or decreased using repeated inputs.

see also [Lowenstein ... and Hausser, Nat Neuro, 2005, bistability in Purkinje
neurons]

Could attractors be suited for remembering learned stimuli while such a system
could help maintaining new stimuli?
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Lots of interesting questions

* How are these attractors learnt?
¢ What is the relation with Attention?
* What is the relation with Long-term Memory ? (Is sustained activity

helpful for storage of memory?) nip:uww youtube comwateh?v-ksBgssEarR0&teature=related
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Figure 1. Scheme of the loop architecture (red i exctaton, and blue s inhibition). Two
Kinds of motion stimuliare considered (random-dot patterns; yellow arrows indicate signal

Ardid, Wang and Compte 2007

Link with disease (schizophrenia)

* Working Memory deficits core of cognitive deficits in Scz

* Schizophrenia associated with reduced function of NMDA receptor (and
ketamine blocks NMDA).

* Instability of attractor states, shallower basins of attraction

* spontaneous attractors: positive symptoms?

Review
A computational neuroscience approach to schizophrenia and its onset

Edmund T. Rolls®*, Gustavo Deco®¢

2 0xford Centre for Computational Neuroscience, Oxford, UK
 Computational Neuroscience, Universitat Pompeu Fabra, Barcelona, Spain

€ Institucié Catalana de Recerca i Estudis Avangats, Barcelona, Spain b
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Link with disease (schizophrenia)

Cerebral Cortex Advance Access published November 29, 2012
Cerebral Cortex
doi:10.1093/cercor/bhs370

Linking Microcircuit Dysfunction to Cognitive Impairment: Effects of Disinhibition
Associated with Schizophrenia in a Cortical Working Memory Model

John D. Murray!2, Alan Anticevic>%5, Mark Gancsos?, Megan Ichinose?, Philip R. Corlett>5, John H. Krystal345.67
and Xiao-Jing Wang?8
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* Desinhibition via perturbation of
NMDA receptors on Inhib cells.

* broadens selectivity, increases drift
and vulnerability to distractors




Ageing and working memory

LETTER

Neuronal basis of age-related working memory
decline

Min Wang', Nao J. Gamo', Yang Yang', Lu E. Jin', Xiao-Jing Wang', Mark Laubach?, James A. Mazer', Daeyeol Lee'
& Amy F. T. Arnsten'

doi:10.1038/nature10243

270 [ NATURE [ VOL 476 [ 1T AUGUST 2011

Many of the cognitive deficits of normal ageing (forgetfulness, dis- s
tractibility, inflexibility and impaired executive functions) involve
prefrontal cortex (PFC) dysfunction'~". The PFC guides behaviour
and thought using working memory”®, which are essential functions
in the information age. Many PFC neurons hold information in
working memory through excitatory networks that can maintain
persistent neuronal firing in the absence of external stimulation®.
This fragile process is highly dependent on the neurochemical
environment’. For example, elevated cyclic-AMP signalling reduces
persistent firing by opening HCN and KCNQ potassium channels®.
It is not known if molecular changes associated with normal ageing
alter the physiological properties of PFC neurons during working
memory, as there have been no in vivo recordings, to our knowledge,
from PFC neurons of aged monkeys. Here we characterize the first
recordings of this kind, revealing a marked loss of PFC persistent
firing with advancing age that can be rescued by restoring an optimal

hemical envi ings showed an age-related
decline in the firing rate of DELAY neurons, whereas the firing
of CUE neurons remained unchanged with age. The memory-
related firing of aged DELAY neurons was partially restored to
‘more youthful levels by inhibiting cAMP signalling, or by blocking
HCN or KCNQ channels. These findings reveal the cellular basis of

ge-relat itive decline in PFC,and

that physiological integrity can be rescued by addressing the
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Trends in Cognitive Sciences 14 (2010) 365-375
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Dynamic Network Connectivity: A new
form of neuroplasticity

Amy F.T. Arnsten, C 1itinos D. Paspalas, Nao J. Gamo, Yang Yang and Min Wang

Department Neurobiology, Yale Medical School, 333 Cedar St., New Haven, CT 06510, USA

Prefrontal cortical (PFC) working memory functions «Strength of PFC connections are

depend on i cell that il

e strangth of PEG network semnections oan be rapdiy rapidly and reversibly modulated by

and ibly i or by sig- . .

naling events within slender, elongated spines: a pro- molecular sig nahng events (e_g_ cAMP

cess we term Dynamic Network Connectivity (DNC). This
newly discovered form of neuroplasticity provides great .
flexibility in mental state, but also confers vulnerability gateS pOtaSSIum Channe|S, ACh, N E,
and limits mental capacity. A remarkable number of
genetic and/or environmental insults to DNC signaling DA)

des are i with itive di such as

ia and age-related itive decline. These

insults can dysregulate network connections and erode
higher cognitive abilities, leading to symptoms such as
forgetfulness, susceptibility to interference, and disor-

ganized thought and behavior. ¢ to accommodate the state of arousal
and cognitive or physiological
demands
e Link with ageing and disorders

A related problem: spontaneous activity

* Where does it come from?

* How is it maintained? How does it ‘move’?

* Are these ‘attractor states’?

¢ Is it structured?

* Why is it there? (any functional advantages?)
¢ |s it noise?

¢ |s it the brain trying to ‘predict’ the input?

Arieli et al 1997; Tsodyks et al, 1999;

Fiser et al, Nature, 2004 evoked (horizontal
orientation)

Caarrent Biokgy
spontaneous
(one frame)

Conclusions

e attractor networks as (main) model of working memory / sustained
activity

* effort to provide biologically plausible spiking models, comparable to
recordings in PFC

« currently, interesting link with disease and ageing
-- working memory impairments as instability of attractor states e.g.

due to deficits in NMDA, changes in E/I balance.

* spontaneous activity as a similar problem.




Assignment 3 : choice of paper

e computational : has equations in it
e cognitive: talks about some aspect of cognition

® neuroscience: at a level that can be compared with data from the
brain

e not a review ! (but read reviews too).

e Dbest if published in a good journal
® recent.

e best if well cited and had important impact on the field.

Assignment 3 : structure of essay

¢ background: what was known before this paper. (litterature
review)

e motivation for this paper / hypothesis

¢ what the paper shows : describe methods and results in a
simple way (description)

¢ discussion: strengths and weakness of paper, what makes
it interesting? important ? how could it be extended?
validated? was it followed up by other studies?

Assignment 3 : how | mark

Background knowledge and scientific maturity
¢ Description and interpretation

¢ Discussion, criticism

Style and writing.

a
95

Assignment 3 : common mistakes

* not giving big picture --> focussing immediately on details
¢ not being critical of the paper’s limitations

¢ not offering more discussion/ extensions/ thinking than
presented in the paper




