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Psychosis is linked to dysregulation of the neuromodulator dopamine and antipsychotic drugs (APDs) work by blocking dopamine

receptors. Dopamine-modulated disruption of latent inhibition (LI) and conditioned avoidance response (CAR) have served as standard

animal models of psychosis and antipsychotic action, respectively. Meanwhile, the ‘temporal difference’ algorithm (TD) has emerged as

the leading computational model of dopamine neuron firing. In this report TD is extended to include action at the level of dopamine

receptors in order to explain a number of behavioral phenomena including the dose-dependent disruption of CAR by APDs, the

temporal dissociation of the effects of APDs on receptors vs behavior, the facilitation of LI by APDs, and the disruption of LI by

amphetamine. The model also predicts an APD-induced change to the latency profile of CARFa novel prediction that is verified

experimentally. The model’s primary contribution is to link dopamine neuron firing, receptor manipulation, and behavior within a

common formal framework that may offer insights into clinical observations.
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INTRODUCTION

Perturbations in dopamine transmission are central to a
number of human illnesses including addiction, Parkinson’s
disease, attention-deficit hyperactivity disorder (ADHD),
and schizophrenia. As a result there has been tremendous
interest in understanding the psychological and behavioral
functions of dopamine, and a number of overlapping
hypotheses have been suggested. These hypotheses include
roles for dopamine in hedonia (Wise, 1982), reward
learning (Robbins and Everitt, 1996), incentive salience
(Berridge and Robinson, 1998), sensorimotor function and
anergia (Salamone et al, 1994). In parallel, mathematical
models have been used to link some of these psychological
constructs to the physiology of the dopamine system
(Schultz, 1998; Seamans and Yang, 2004). Many of these
models have concentrated on ‘normal’ dopaminergic
conditions (McClure et al, 2003; Schultz et al, 1997), and
the current aim is to explore how one such model can be

extended to address the abnormal conditions encountered
in schizophrenia and their treatment.

Of all the mathematical models linking dopamine,
behavior, and psychology, the Temporal Difference Learn-
ing model (TD) has enjoyed particular success (Montague
et al, 1996; Redish, 2004; Schultz et al, 1997). TD is a
powerful formal reinforcement learning technique that has
been used to solve many challenging machine learning
problems. For example, the technique has been used to train
computers to play backgammon to the highest human
standards by associating a simulated reward with winning a
game (Tesauro, 1994). At the heart of TD is a prediction-
error signal that is zero if the environment behaves as
expected, positive in response to unexpected reward, and
negative following omission of expected reward. Striking
parallels have been observed between the firing of
dopamine neurons in monkeys and the prediction-error
signal in TD simulations (Bayer and Glimcher, 2005). For
example, dopamine neurons show burst firing in response
to unexpected reward or unexpected predictors of reward
(Romo and Schultz, 1990), an absence of firing in response
to rewards that are expected (Schultz et al, 1992), and below
baseline depressions in firing in response to omission of an
expected reward (Hollerman and Schultz, 1998). Extensions
of TD from neuron firing to expressed behavior of animals
have been suggested (Dayan and Balleine, 2002; McClure
et al, 2003; Montague et al, 1995), creating an opportunity
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to relate the TD model of dopamine function to a vast array
of experimental animal data.

Dopamine plays a central role in the pathophysiology of
schizophrenia, particularly with respect to the manifestation
of psychosis (ie delusions, hallucinations etc.) (Abi-Darg-
ham, 2004). Every clinically effective antipsychotic drug
(APD) blocks dopamine D2 receptors (Kapur and Mamo,
2003), and dopamine-enhancing agents such as amphet-
amine can induce psychomimetic symptoms in otherwise
normal people (Connell, 1958). Given the technical and
ethical limitations of direct experiments in patients, animal
models of altered dopamine function have provided a major
venue for understanding both the pathophysiology and
treatment of schizophrenia. For example, conditioned
avoidance (CA) is a classic animal model in the study of
antipsychotic drugs and their dopamine-blocking proper-
ties (Wadenberg et al, 2001), and one that has been used
extensively as a pre-clinical screen for antipsychotic efficacy
(Janssen et al, 1965). Meanwhile, latent inhibition (LI) is
widely used in the study of selective attention in the context
of reward learning. LI is disrupted not only in animals and
people following induced-hyperdopaminergic states but
also in patients with schizophrenia (Weiner, 2003). There
is a rich history of animal and human experimentation
that supports LI disruption as a plausible model of the
processing deficits seen in schizophrenia (Lubow, 2005),
and it is of great interest to determine the applicability of
TD to altered dopamine function in both these behavioral
paradigms.

The primary contribution of this paper is to demonstrate
that the TD model of dopamine neuron firing can be
extended to account for animal behavior in CA during
manipulation of the dopamine D2 receptor via systemically
administered haloperidol. In order to model the effects of
pharmacological manipulation on behavior, we make the
following assumptions that link a computational model to
biology.

(a) The firing of dopamine neurons represents a TD-like
prediction error signal.

(b) Burst-firing of dopamine neurons leads to phasic
increases in dopamine within the synapse.

(c) The prediction error is detected by synaptic dopamine
receptors, and then processed downstream of those
receptors.

(d) Haloperidol blocks the effect of phasically released
dopamine on the intrasynaptic dopamine D2 receptors,
thereby pharmacologically decreasing the prediction
error as it is perceived downsteam of the dopamine
receptor.

(e) Amphetamine enhances the effect of phasically released
dopamine on the intrasynaptic dopamine receptors,
thereby pharmacologically increasing the prediction
error as it is perceived downstream of the dopamine
receptor (see Redish (2004) for a related idea).

In TD, the prediction error signal is used to update
internal estimates of the reward or punishment associated
with conditioned stimuli. Our approach is to model
haloperidol by subtracting a dose-dependent constant from
the prediction error before it is used to update the internal
estimates. Conversely, amphetamine is modeled by adding a

constant to the prediction error before it is used to update
the internal estimates. Note that it is not necessary to argue
that haloperidol attenuates the phasic release itself, simply
that the impact of that release on the D2 receptor is reduced
due to receptor blockade, making the prediction error
appear smaller than it actually is. Following McClure et al
(2003), we make the final assumption that the TD internal
estimates of rewards are used by the animal to motivate
behavior. Therefore, correlations are sought between the
magnitudes of these internal estimates within the model,
and the strength/probability of observing the conditioned
avoidance response in animals. These assumptions are
evaluated in the discussion.

Abstract computational models of such phenomena
cannot be evaluated in terms of the precision with which
they match any single experiment. This is because there
always exist some model parameters that are biologically
underconstrained and that can be hand-tuned, ad-hoc, for
the best possible quantitative match. Therefore we seek a
broad qualitative correspondence between experimental
data and model output, but one that generalizes to other
experiments with minimal alteration to the model. Towards
this aim, in the second section of this paper, the same model
of CA is applied to historical and independently collected
data from LI experiments. Within the model, we make the
assumption that LI can be accounted for by a pre-exposure-
induced retardation in conditioning. Under this assump-
tion, the same model used to account for effects of
dopamine manipulations on CA is also shown to account
for the effects of dopamine manipulations on LI. In the light
of these computational analyses, the role of dopamine in
these animal models is re-interpreted to reflect processes
of prediction error, reward learning, and attribution of
incentive salience.

DEVELOPING THE MODEL FOR CONDITIONED
AVOIDANCE

Introduction

In a typical conditioned avoidance experiment, a rat is
placed in a two-compartment shuttle box and presented
with a neutral conditioned stimulus (CS) such as a light or
tone for 10 s, immediately followed by an aversive
unconditioned stimulus (US), such as a foot-shock. The
animal may escape the US when it arrives by running from
one compartment to the other. However, after several
presentations of the CS-US pair, the animal typically runs
during the CS and before the onset of the US, thereby
avoiding the US altogether. It is well established that
dopamine antagonists such as APDs, at non-cataleptic
doses, disrupt the acquisition and expression of conditioned
avoidance (Courvoisier, 1956).

No consensus has been reached regarding the behavioral
or psychological processes underpinning APD-induced
disruption of the avoidance response. One hypotheses
suggests that APDs disrupt avoidance by creating a mild
‘motor initiation’ deficit (Anisman et al, 1982; Fibiger et al,
1975). An alternative hypothesis states that in addition to
any effect on the motor system, APDs decrease CA by
impairing reward learning and by hindering the attribution
of motivational salience to the CS (Beninger, 1989a, b).
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According to the ‘motor initiation’ deficit account, avoid-
ance disruption might be expected to possess three
characteristics: (a) manifestation that is contemporaneous
with the presence of the drug; (b) dose dependency; (c) little
or no evidence of disruption once the drug has left the
system. This scenario, labeled ‘simple motor disruption’ in
Figure 2 (top), is illustrated for three hypothetically
increasing doses of dopamine blockade with interspersed
drug-free sessions. According to the alternative ‘motiva-
tional salience’ hypothesis, dopamine is required for the
dynamic attribution of incentive salience to the CS, and to
mediate the CS’s ability to motivate an avoidance response.
Both models make similar predictions about overall session
effects and simple dose-dependency, but the critical
difference relates to trial-by-trial variation within the
session. Unlike the simple motoric model, a learning-based
account predicts that APD-induced disruption will gradu-
ally manifest itself as the session progresses, even though
dopamine receptor blockade is stable. Furthermore, dis-
ruption in a subsequent drug-free session should be
influenced by what was learned (under the influence of
the drug) in the previous session. TD exemplifies the idea
that dopamine mediates reward learning, and Figure 2
(middle) contrasts the TD model predictions to those of the
motoric model, in the same simulated experiment.

Materials and Methods

In this section, the TD method used to generate Figure 2
(middle) is outlined, followed by a description of an animal
experiment used to distinguish between Figure 2 (top) and
(middle).

Modeling CA with TD. TD operates by learning to estimate
the total expected future reward or punishment following
each simulated stimulus. Learning is driven by a prediction
error signal and it is this signal that is thought to
correspond to dopamine neuron firing. In the case of CA,
consider two simulated environment states: one represent-
ing the CS, and one representing the US. Additionally, in
order to allow TD to capture the observed sensitivity of
dopamine neurons to inter-stimulus intervals (Hollerman
and Schultz, 1998), a number of internal interval or timing
states are also conventionally assumed. These internal
timing states are denoted here as I1, I2, etc and are shown
in Figure 1. It is unclear how animals represent event timing
and there is no way of knowing exactly how many of these
timing states to use. Fortunately, it is usually the case that

the final behavior of the model depends only quantitatively,
and not qualitatively, on this decision. Each state has a fixed
intrinsic reward associated with it, and since the US is the
only intrinsically reinforcing state in this simulation, it is
assigned a reward of 1, while all other states are assigned
zero reward. The states and rewards are fixed at the
beginning of the simulation and effectively model the
animal’s environment.

Also associated with each state is a value. The Value
(henceforth capitalized to distinguish the special meaning)
is the agent’s internal estimate of the total future reward
expected to follow that state. Initially, all these Values are
zero (the agent starts off naive), but will be adapted through
experience. In this particular example, we expect all the
Values to eventually adapt towards 1 because r(US)¼ 1, and
this comprises the only future reward following the CS.
However, in the general case, there could be many different
states following the ‘CS’, each encountered with different
probabilities and each with their own intrinsic reward. In
such cases, the Value of the CS is adapted during learning to
reflect the expected total reward following that CSFthat is,
a sum of all future consequences. If the states and rewards
are a model of the animal’s environment, the Values are a
highly abstract model of the information learned by the
animal and subsequently used to motivate behavior. The
Values can be interpreted as the agent’s representation of
incentive salience (McClure et al, 2003), and are used within
machine learning to drive behavior. For example, the
greater the Value of a state, the more future reward is
expected and the more incentive exists for acquiring or
avoiding that state.

To make the problem easier to model, each trial is broken
up into discrete time points, with each new time point
corresponding to a new state. For example, at time t¼ 1 the
current state is ‘CS’, and at t¼ 2 the current state is ‘I1’, etc.
For the current time point, t, a prediction error is generated
which can be loosely paraphrased as ‘actual future
reward�expected future reward’ and reflects the error in
the Value of the current state:

dðtÞ ¼ ðrðtÞ þ gVðt þ 1ÞÞ � VðtÞ ð1Þ
where V(t) is the Value of the current state, r(t) is the
intrinsic reward associated with the current state, V(t + 1) is
the Value of the next environmental state, and gp1 is an
experimenter-selected discount factor that controls the
degree to which future rewards are discounted over
immediate rewards (eg a dollar tomorrow is worth slightly
less than a dollar today, etc.). The prediction error of
Equation (1) is then used to improve the Value of the
current state:

VðtÞ ¼ VðtÞ þ adðtÞ ð2Þ
where 0pap1 is a learning rate which we assume to be
controlled by biological parameters outside the scope of the
model. The Values are gradually adapted over a number of
trials by invoking Equations (1 and 2) at each time point in
each trial. The theory behind Equations (1 and 2) was
originally developed to tackle a set of complex engineering
problems, and it is therefore striking that Equation (1) has
been shown to resemble the firing patterns of actual
dopamine neurons. In order to compare the output of the
TD model to animal behavior, McClure et al (2003) have

CS

r=0Reward:

State:

Value:

r=0 r=0 r=0 r=0 r=1

I1 I2 I3 I4 US

V(CS) V(I1) V(I2) V(I3) V(I4) V(US)

Figure 1 Representing conditioned avoidance. Each circle represents a
distinct state of the environment, and is associated with a Value (V) and a
reward (r). r is assumed to be provided by the environment and will be
zero for all neutral states. As the US is the only intrinsically rewarding state
in this task, this is the only state to have a non-zero reward. The Value, V, is
the model’s estimate of the total future reward expected to follow that
state and must be learned through experience.
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suggested that V can be interpreted as an abstract measure
of incentive salience (Berridge and Robinson, 1998) or
motivation. Although over simplifying animal behavior,
the basic principle that an animal is motivated by the
future reward predicted by a stimulus is both intuitive
and convenient. We therefore assume that V(t) can be
interpreted as motivation to produce an avoidance response
in the current state. This relationship is formalized in
the simplest possible way by defining the probability of
producing an avoidance response in the current state as:

p(t)¼V(t). As the first avoidance response of a trial will end
that trial, the overall probability of observing an avoidance
response at time t is:

p̂ðtÞ ¼ pðtÞ� 1 �
Xt�1

i¼1

p̂ðiÞ
 !

ð3Þ

Equation (3) simply states that p̂(t) equals p(t) multiplied
by the probability of not having already produced an
avoidance response in that trial (which would have ended
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Figure 2 Simulated and actual profiles of avoidance disruption over seven consecutive sessions. Top: A simple hypothesis in which avoidance disruption is
proportional to receptor blockade The probability of producing an avoidance response is plotted over a hypothetical experiment involving seven
consecutive sessions of 30 trials per session. Each hypothetical session involves a different, stable, level of dopamine receptor blockade achieved with either
low (L), medium (M), or high (H) doses of APD or vehicle (Veh). This hypothetical pattern characterizes immediate or performance-like effects. The session
labeled ‘TR’ denotes initial drug-free training. Middle: In contrast, the behavior of the TD model is displayed, again in terms of the probability of producing an
avoidance response. Each session is modeled (and labeled) using a different value of y in Equation (4). Note that although y is stable throughout each
session, avoidance continues to change within each session. ‘TR’ refers to drug-free training in which y¼ 0. The consequence of simulated dopamine
blockade (yo0) is a pharmacologically induced reduction of the prediction error, drec, and an incremental dampening of the Values below their true
equilibrium. If a drug-free session is then administered (y¼ 0), this discrepancy is gradually corrected and the full Values are restored. Bottom: Total number
of avoidances in a two-way CA animal experiment (see text) comprising seven consecutive sessions, each separated by at least 48 h. Each session consisted
of 30 trials, shown in blocks of three. The dose of APD (haloperidol) administered 1-h before each session is shown on the x-axis. ‘VEH’ refers to vehicle.
The performance on the last (of 11) drug-free training day is also shown and labeled ‘PRE’.
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the trial). Now, p̂(t) should be proportional to the number
of rats producing an avoidance response during the interval
of time represented by the current state. The overall
probability of producing an avoidance response can be
calculated by p̂(CS) + p̂(I1) + p̂(I2) + p̂(I3) + p̂(I4), where we
have replaced the variable, t, with the corresponding state.

Note that in some trials the model will produce an
avoidance response early, thus ending the trial and avoiding
the shock. In these cases, the Values of the later interval
states and US state are not updated because the simulation,
like the animal, does not experience them. After sufficient
trials and applications of Equation (2), V(CS)EV(I1)E
V(I2)EV(I3)EV(I4)EV(US)E1 (if gE1). At this point
every state accurately predicts the future reward of the US,
and there will be no residual prediction errors and no more
learning. Figure 2 (middle, labeled ‘TR’) shows how the
overall probability of producing an avoidance response
increases from 0 to 1 during thirty trials (simulating initial
training in CA).

The simplest approach to simulating dopamine receptor
manipulation is to add some constant, y, to all prediction
errors:

drecðtÞ ¼ dðtÞ þ y ð4Þ
This distinguishes between the phasic dopamine response,
d(t), which is assumed to be proportional to the amount of
dopamine released into the synapse, and the effect of that
release downstream of the dopamine receptor, drec(t).
Normally the two will be the same (y¼ 0), but when
dopamine receptors are blocked within the synapse, yo0
can be used to simulate the reduced impact of normal
dopamine release at those receptors. From now on, drec(t) is
used in place of d(t) in Equation (2) reflecting the
assumption that modification of V(t) happens downstream
of the dopamine receptor.

To summarize, each time-step in each trial is simulated
within the model by:

(1) Generation of prediction error (assumed to correspond
to phasic dopamine response).

(2) Haloperidol dose-dependent constant being subtracted
from prediction error. The new quantity is interpreted
as the drug-reduced impact of the phasic release on the
D2 receptor within the synapse.

(3) The drug-modulated prediction error is used to update
the Values. Adaptation of these representations is
assumed to occur downstream of the blocked D2-
receptor.

(4) The probability of producing an avoidance response is
generated based on the current Value for the current
state.

Figure 2 (middle) shows how the probability of producing
an avoidance response using TD varies from trial to trial in
the same simulated experiment as Figure 2 (top). Simulated
blocking of the D2 receptor leads to a gradual reduction in
the Values (and therefore avoidance response). Subsequent
simulation of drug-free trials leads to a gradual restoration
of the Values. For more details on the TD algorithm and the
parameters used, see Supplementary Materials.

Animal experiment. In pharmacological studies of APDs
in CA, aggregate session data are commonly reported.

However, in order to determine which of the scenarios of
Figure 2 (top and middle) is more accurate, trial-by-trial
data are required for interleaved drug/drug-free sessions.
Therefore, a tailored CA experiment was performed.

Twenty-four rats were first divided into three groups,
each group being trained and tested with a different CS–US
interval: 6 s (n¼ 8), 12 s (n¼ 7), and 24 s (n¼ 9). Once
allocated, each rat was only ever exposed to trials involving
the relevant CS–US interval. Three CS–US intervals were
used because the number of interval states in the model is
underconstrained and it was therefore convenient to have
experimental data pertaining to multiple intervals.

The training phase consisted of 11 sessions, separated by
at least 2 days. Detailed description of the apparatus and the
procedure can be found in Li et al (2004). Briefly, for each
session, each subject was placed in a two-compartment
shuttle box. A trial started by presenting a white noise (CS,
74 dB, 6, 12 or 24 s) followed by a scrambled footshock (10 s,
0.8 mA). The subject could avoid the shock by shuttling
from one compartment to another during the CS. Shuttling
during the shock turned the shock off. Each session
consisted of 30 trials separated by a random inter-trial
interval (30–60 s). By the end of the training phase all rats
showed avoidance performance above 75% criterion, except
one rat in the 6 s group which was dropped from the
experiment. Resultant mean avoidance was above 90% for
all three groups. The only addition to the previously
published procedure/apparatus was a barrier between the
two compartments (4 cm high), so the rats had to jump
from one compartment to the other.

After the last day of training, the drug testing started.
Exactly the same procedure was employed during testing,
except that 1 h before each testing session one of three doses
of haloperidol was administered: 0.03, 0.05, and 0.07 mg/kg
haloperidol. At least 4 days were allowed to elapse between
each drug-session, and one vehicle retraining session was
given during that interval to maintain a high level of
avoidance responding. This experiment was a within-
subject design, with all groups of rats tested in the same
order: 0.03 mg/kg, Veh, 0.05 mg/kg, Veh, 0.07 mg/kg, Veh.
The sequence therefore reflected the schedule of Figure 2
(top and middle). The 1-h interval between drug adminis-
tration and testing was to ensure stable receptor blockade
during testing. Note that three doses, 0.03, 0.05, 0.07 mg/kg
of Haloperidol were modelled by y¼�0.2, y¼�0.3,
y¼�0.4, respectively, in Equation 4. These model values
were selected for the best match to the data. The vehicle
dose was modelled by y¼ 0.

Results

For all three groups, a dose-dependent, within-session
decline in avoidance responding during each drug session
was observed, along with a gradual recovery of the response
in the subsequent drug-free session. This within-session
decline under haloperidol and within-session recovery
under vehicle is shown in Figure 2 (bottom) for the 24 s
group (the other two groups were almost identical). The
trial-by-trial data show that under a new dopaminergic state
(be it a transition to dopamine blockade, or to vehicle), the
animals’ behavior supports the TD hypothesis of a gradual
learning curve. It is important to note that within the model,
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this learning effect is not a result of changes to the hedonic
impact of the US (r(US) remains unaffected by simulated
APD), but rather to the way in which the reward is
processed in terms of the attribution of Value to
conditioned stimuli via the prediction error.

The behavior of the TD model is defined not just for each
individual trial, but also for each interval state within each
trial (c.f. Figure 1). Figure 3 (black bars, top and bottom)
shows how, under APDs, the avoidance response initiation
becomes increasingly delayed as the session progresses.
This is reflected both in the experimental data and the TD
simulation. Within the TD model, this delayed initiation
may be understood by considering that alterations to the
prediction error signal will have an impact at every state. A
cardinal feature of TD is that the Value at any given state ‘X’
is dependent on the Values at all other states that intervene
between ‘X’ and the reward. Therefore, the more intervening
states, the greater the number of prediction errors involved
in adapting the Value of ‘X’. Modifications to these
prediction errors will therefore have an accumulative effect
the further ‘X’ is from the actual reward. In short, the Values
(white bars in Figure 3 top), of distal predictors will be more
affected by simulated APDs leading to a change in the
probability distribution of the avoidance response (black
bars in Figure 3 top).

Discussion

Disruption of CA has traditionally been attributed either to
motor initiation deficits (Anisman et al, 1982; Fibiger et al,
1975) or to disrupted attribution of motivational salience to
the CS (Beninger, 1989a, b). The TD model interprets
dopamine as mediating a prediction error, the manipulation
of which leads to incremental changes in the attribution of

incentive salience to the conditioned stimulus. The model is
able to account for the gradual, dose-dependent, reduction
in avoidance responding during each session under
haloperidol. The reduction in avoidance responding in the
model is due to an incremental reduction of the incentive
salience of the CS, which is in turn due to a drug-induced
reduction to the prediction errorFa reduction that is
constant (dose-dependent) throughout the session. The
model also accounts for the observation that avoidance
responding at the beginning of each session is comparable
to the avoidance responding at the end of the previous
session, irrespective of the drug treatment in either session.
This across-session effect in the model is due to the fact that
the incentive salience of the CS only changes in response to
CS–US exposure. In the model, manipulating dopamine has
no effect whatsoever, unless the CS–US stimuli are also
present. Therefore, between sessions, no change in incentive
salience is observed, even though dopamine receptor
manipulation changes. The model also accounts for the
observed response-initiation effects (see Figure 3). Within
the model, this effect is due to the fact that manipulation of
the prediction error has a greater effect on states that are
distant from the US.

The ability of TD to account for these behavioural
observations arising out of pharmacological manipulation
of the dopamine receptor builds on the already large
literature that uses exactly the same TD model to account
for the phasic firing of dopamine neurons. The basic
hypothesis is that the US causes a phasic dopamine
response that conveys a prediction error, which in turn
increases the Value (incentive salience) of the CS. A
full discussion of this literature is out of scope of the
current account (but see Schultz (1998) for a review).
By pharmacological manipulation of the perceived phasic
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Figure 3 TD predicts within-session increases in avoidance response latency. Each graph shows the duration of the CS along the x-axis, divided either into
the states of Figure 1 (top, TD), or five temporal bins (bottom, experimental data). Top: The Value of each of the five ‘avoidance’ states are denoted by the
white bars, showing that simulated dopamine blockade has a greater cumulative impact on the ‘early’ predictors of the US. The black bars denote the
corresponding probability of observing a simulated avoidance response in that state (see Equation (3)). The leftmost graph shows the behavior of the model
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dopamine receptor blockade is presumed to be approximately constant. Notably, response initiation becomes increasingly delayed. This effect was similar
for the 6 and 24 s groups.
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response, the current model allows the prediction error to
be modified and thereby also the incentive salience of the
CS. The effects of pharmacological dopamine manipulation
on the firing of dopamine neurons, and the implications for
the TD model of dopamine neuron firing, remain untested.
Incidentally, within the TD model, the Value associated with
the CS (for example the black bars in Figure 3 (top))
predicts the phasic firing of dopamine neurons under these
behavioural/pharmacological conditions. These predictions
await testing.

GENERALIZING THE MODEL TO LI DISRUPTION

Introduction

Latent inhibition refers to a subject’s increased difficulty to
form a new association between a stimulus and a reward
due to prior exposure of that stimulus without consequence
(Lubow and Moore, 1959). The behavioral hallmark of LI is
retarded conditioning of the pre-exposed stimulus, and is
thought to reflect the ability of organisms to ignore
irrelevant stimuli (Lubow, 1989). In two pivotal studies,
Solomon et al (1981) and Weiner et al (1981) both reported
the disruption of LI (failure of pre-exposure to retard
subsequent conditioning) in animals treated with amphet-
amine (a dopamine-enhancing agent). Links with the
pharmacology of psychosis are reinforced by findings that
APDs reverse the amphetamine-induced LI deficit in
animals (reviewed in Moser et al, 2000) and enhance the
standard LI effect in normal animals (Weiner et al, 1987).
Based on this pharmacological connection, LI-disruption
was suggested as a potential model of the selective attention
deficit found in schizophrenia. Subsequently, LI has been
found to be disrupted in acute psychotic schizophrenic
patients (Baruch et al, 1988), and in normal humans treated
with amphetamine (Gray et al, 1992). These and other
evidence support the validity of LI-disruption as a model of
processing deficits in acute schizophrenia.

Materials and Method

A common LI procedure involves a pre-exposure phase
during which a neutral stimulus is repeatedly presented
without consequence, followed by a conditioning/testing
phase during which the same stimulus (now being used as a
CS) is followed by a US. LI is indexed by the impaired
acquisition of the conditioned response in pre-exposed
animals compared to non pre-exposed animals. For
example, Weiner et al (1988) pre-exposed one group of
rats (PE) to a 5 s tone, without consequence. A second
group (NPE) was not pre-exposed to the tone. Both groups
were then trained in a two-way conditioned avoidance
experiment for 60 trials. Each group was subdivided
before the experiment began. One sub-group (AMPH) was
administered with amphetamine before CA training, and
one subgroup (SAL) was administered with saline. This
yielded four groups, AMPH(PE), AMPH(NPE), SAL(PE),
SAL(NPE), and permitted an investigation into the interac-
tions of amphetamine and pre-exposure with respect to LI
(See Supplementary Material for details of the experimental
method). Figure 4 (right) summarizes the results of the
experiment, confirming both the LI affect (SAL(PE) vs

SAL(NPE)) and the disruption of LI in the amphetamine-
treated group (SAL(NPE) vs AMPH(PE)). Note that LI can
be assessed and modeled in a variety of behavioral contexts,
but CA is considered here for consistency with the TD
model used earlier.

The basic TD model does not directly account for LI,
since supplying the CS on its own during pre-exposure
yields no prediction error, no changes to incentive salience,
and no changes to how incentive salience is subsequently
assigned to the CS. However, under the assumption that
pre-exposure retards the conditioning rate of the CS, we
demonstrate that the same TD model used to account for
the haloperidol-induced disruptions to CA can be used to
account for dopaminergic interactions with LI.

Mackintosh (1974) suggested that the pre-exposure phase
decreases the associativity of the CS, and we therefore attach
an ‘associativity’ parameter, f, to the CS which controls the
rate of conditioning of that CS (Note the difference between
y and f). We abstract over the debated and potentially
detailed mechanisms by which pre-exposure may reduce
associativity by simply assuming that a non pre-exposed
CS has f¼ 1 and a pre-exposed CS has 0pfp1 which
is constant following pre-exposure. Equation (2) now
becomes:

VðtÞ ¼ VðtÞ þ afdrecðtÞ ð5Þ
effectively reducing the learning rate of a pre-exposed
stimulus. We could equally assume that pre-exposure acts
directly on the learning rate parameter. However the
learning rate parameter is intended to capture all those
miscellaneous and unknown biological factors that con-
tribute to the rate at which an association is learned, while f
is intended to specifically capture the effect of interestF
namely pre-exposure. The two approaches are mathemati-
cally equivalent. It is important to stress that the pre-
exposure phase itself will not involve any iterations of the
model’s learning equations. TD effectively does nothing
during pre-exposure. The introduction of f assumes some
unspecified mechanism has already retarded the associativ-
ity of the CS, and thereby also its ability to condition.

Figure 4 (right) confirms that the assumption of Equation
(5) does indeed yield LI under simulated pre-exposure
(f¼ 0.4). The same model used to account for haloperidol-
induced disruption of CA can now be used to account for
the interactions between dopamine manipulation and LI.
These interactions can be simulated with TD using exactly
the same mechanism that was used previously for CA. For
example, haloperidol is again simulated by yo0 (not to
be confused with associativity, f!), while the dopamine-
enhancing properties of amphetamine are now simulated by
y40. Modeling amphetamine by adding a positive constant
to the prediction error is intended to capture the enhanced
impact of the normal phasic response as a result of blocking
re-uptake within the synapse. However, enhancing the
prediction error in this way can ultimately lead to Values
greater than 1. Since the probability of producing an
avoidance response is linked to the Values, and a
probability cannot exceed one, we add the constraint that
p(t)¼V(t) or 1, whichever is least. As in CA, y is assumed
not to affect directly the amount of dopamine actually
released, but rather the impact of that release (although see
discussion). For clarification, note that y acts in the ‘post-
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receptor’ prediction-error of Equation (4) and not in the
‘phasic response’ prediction error of Equation (1).

Results

Figure 4 (right) demonstrates how the model exhibits
LI-disruption under simulated amphetamine. Within
the model, LI occurs because conditioning is retarded
by fo1 (simulated pre-exposure), while amphetamine-
induced LI disruption occurs because conditioning is
enhanced by inflated prediction errors (y40).

The model also makes predictions pertaining to the effect
of administering APDs in LI in the absence of amphetamine
treatment. In short, simulating APDs with yo0 will act in
the same direction as simulating pre-exposure with fo1. In
other words simulated APDs will exaggerate retardation in
conditioning brought about by pre-exposure and will
therefore facilitate LI. Figure 5 (right) shows the model’s

predictions under these conditions. Figure 5 (left) shows
experimental data from a similar LI experiment to that
described above, except that an APD (haloperidol) rather
than amphetamine was administered during both pre-
exposure and subsequent avoidance conditioning (Weiner
et al, 1987). Both the experiment and the simulation show
facilitation of LI under APD.

Finally, APDs possess the ability to reverse amphetamine-
induced disruption of LI (reviewed in (Moser et al, 2000)).
Within the model, this effect is trivial as amphetamine is
modeled by a positive value of y, and APDs by a negative
value. The two would therefore cancel each other if
simulated simultaneously.

Discussion

The basic TD model does not directly account for LI, since
supplying the CS on its own during pre-exposure yields no
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Figure 4 The LI effect, and its disruption with amphetamine, shown experimentally and within the TD model. Left: Acquisition rates for the four groups of
rats of interest. Pre-exposed (PE) and non pre-exposed (NPE) groups were subdivided into those treated with acute doses of amphetamine (AMP) and
placebo (SAL) before conditioning. Acute amphetamine is shown to disrupt LI. Adapted from Weiner et al (1988) Figure 2. Right: TD simulation. Both
amphetamine treatments are simulated by setting y¼ 0.3 and pre-exposure is simulated by setting f¼ 0.4. The learning rate was empirically selected
(a¼ 0.05) so that the model produced an acquisition rate for the baseline group (SAL(NPE)) that was comparable to the animal experiment. The scales of
the axes are largely irrelevant in models of this kind, because yoking the free parameters to biological constants is prohibitively difficult. However, the robust
qualitative observation is that simulated amphetamine is capable of disrupting simulated LI.
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Figure 5 The LI effect, and its enhancement under the APD haloperidol, shown experimentally (left) and within the TD model (right). The experimental
results are adapted from (Weiner et al, 1987). The model results are achieved by simulating pre-exposure with f¼ 0.6 and haloperidol with y¼�0.2. The
learning rate was arbitrarily selected (a¼ 0.09) so that the model produced a quantitatively similar acquisition rate for the baseline group (SAL(NPE)).
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prediction error, no changes to incentive salience, and no
changes to how incentive salience is subsequently assigned
to the CS. However, under the assumption that LI is due to a
pre-exposure induced retardation of conditioning (modeled
by a constant fo1), the TD model can readily be made to
exhibit LI. Then the same set of learning equations used to
model CA-disruption can also be used to reproduce the
experimentally observed interactions between dopamine
manipulation and LI. The model’s explanation of these
observations is that manipulation of the dopamine receptor
alters the dopamine-mediated ‘prediction error’ as it is
perceived downstream of the receptor, leading to incre-
mental changes in the attribution of incentive salience to the
conditioned stimulus. In summary, simulating dopamine
enhancement increases conditioning rates and asymptotes
of incentive-salience while dopamine blockade has the
reverse effect. These changes interact with the assumed
retardation in conditioning induced by pre-exposure.

If the TD model of haloperidol-induced disruption of CA
is valid, then it would be expected that the CA model could
also be used to account for dopamine-LI interactions under
a minimal number of additional assumptions. Although this
has been demonstrated, it is recognized that other
hypotheses of dopamine function may be equally able to
achieve this generalization between CA and LI. In this sense,
a parsimonious generalization from CA to LI is encouraging
but does not provide proof of validity.

The current model can be compared with a number of
existing accounts of LI. The selective attention hypothesis
(Lubow, 1997; Mackintosh, 1975) suggests that amphet-
amine-induced LI disruption reflects the inability of the
animal to ignore irrelevant stimuli (Solomon et al, 1981).
Weiner’s behavioral switching hypothesis (Weiner, 1990), on
the other hand, suggests that LI disruption reflects
enhanced switching from responding according to CS-no
US association to responding according to CS–US associ-
ation. A third alternative suggests that LI deficit is due to an
increase of the salience of the reinforcer itself under
amphetamine (Killcross et al, 1994). While the current TD
model is not in a position to differentiate between these
hypotheses, it does formally demonstrate the ability of
simulated dopamine-reinforcer interactions to address
dopaminergic disruption of both CA and LI via the
constructs of prediction error and incentive salience.

DISCUSSION

Limitations

The aim has been to extend the TD model of dopamine
neuron firing to address behavior and pharmacology in two
animal models used in schizophrenia research. In accor-
dance with TD theory, the heart of the model comprises
Values that estimate the expected future reward following
each stimulus or environment state, and a prediction error
signal that updates these Values based on the difference
between what is expected and what actually happens. The
link between the model and biology pivots on a number of
core assumptions:

(a) The firing of dopamine neurons represents a TD-like
prediction error signal.

(b) Burst-firing of dopamine neurons leads to phasic
increases in dopamine within the synapse.

(c) Haloperidol blocks the effect of phasically released
dopamine on the intrasynaptic dopamine D2 receptors,
thereby pharmacologically decreasing the prediction
error as it is perceived downsteam of the dopamine
receptor.

(d) Amphetamine enhances the effect of phasically released
dopamine on the intrasynaptic dopamine receptors,
thereby pharmacologically increasing the prediction
error as it is perceived downstream of the dopamine
receptor.

(e) The learned Values correspond to incentive salience or
‘wanting’ (Berridge and Robinson, 1998), as suggested
by McClure et al (2003), and can be interpreted as
driving motivation.

With respect to (a), the link between TD and dopamine
neuron firing remains an open discussion. Although many
experimental data agree with the TD model (Schultz et al,
1997), competing hypotheses have been suggested. These
include the notions that the phasic dopamine response
represents part of a behavioral switching mechanism
(Redgrave et al, 1999), or part of a broader salience-
processing mechanism (Horvitz, 2000).

With respect to (b), although there are no direct methods
for measuring intra-synaptic dopamine levels with sub-
second resolution (Robinson et al, 2003), fast-scan cyclic
voltammetry studies provide strong evidence that both
direct electrical stimulation of dopamine neurons and
behaviorally relevant events (eg natural rewards) lead to
phasic overflow of dopamine from the synapse (Garris et al,
1997; Phillips et al, 2003; Rebec et al, 1997; Roitman et al,
2004). However, it is worth noting that dopamine neuron
firing and dopamine release may in fact be doubly
dissociable (Garris et al, 1999; Grace, 1991).

With respect to (c) and (d), the doses of haloperidol used
in this study have previously been shown to produce
significant levels of D2-receptor occupancy (Kapur et al,
2003). While it is well demonstrated that acute ampheta-
mine increases extracellular dopamine levels as measured
by microdialysis (Segal and Kuczenski, 1992), its effects on
intrasynaptic phasic release have not been directly demon-
strated. One of the main effects of amphetamine is its
blockade of the dopamine transporter, the major mechan-
ism of quenching dopamine action in the synapse, and
(Grace, 1995) has suggested that an acute dose of
amphetamine leads to an augmentation of intrasynpatic
phasic signalling even before extrasynaptic increases are
observed (as measured by microdialysis). In the case of the
LI experiment where the animals receive amphetamine
twice (once at pre-exposure and once at conditioning),
Joseph et al (2000) have shown that amphetamine enhances
the impulse-dependent phasic dopamine release. Either of
these mechanisms could provide the proposed synaptic
enhancement of the prediction error signal. Also within the
context of LI, Feldon et al (1991) showed that only
amphetamine that causes an increase in phasic signaling,
and not dopamine agonists which cause impulse-indepen-
dent sustained stimulation of dopamine receptors, disrupts
LI. Thus, while direct measurements of intrasynaptic
dopamine are not as yet possible, the assumption that the
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phasic dopamine response carries a prediction error signal
that can be pharmacologically altered within the synapse
seems plausible.

With respect to (e), the representations learned by
animals clearly comprise more than just the attachment of
future reward values to CSs (Cardinal et al, 2002), and
indeed it has been suggested that TD offers only a partial
model of reward processing in animals (Dayan and Balleine,
2002). As with many existing variants of the TD model, the
tonic vs phasic distinction, along with extra- vs intra-
synaptic effects, varied sub-types (D1-like vs D2-like etc.),
anatomical distribution (striatal, limbic and cortical), and
complex intracellular signaling of dopamine receptors, have
been largely ignored in the current work. For example,
receptor manipulation by haloperidol or amphetamine is
likely to indirectly alter the quantity of dopamine released
via auto-receptors and other feedback mechanisms. These
and other mechanisms have not been explicitly modeled.
However, in return for these abstractions over biological
detail, a potentially useful parsimony has been achieved.

Implications for Psychosis

The interest in LI and CA is fuelled by their putative ability to
model aspects of schizophrenia. Therefore, if a computational
model such as TD can provide a framework to interpret
pharmacology and behavior in these animal models, it may
also have implications for psychosis in humans. While it has
been known for some time that a hyperdopaminergic state
leads to psychosis in schizophrenia, and while all known
APDs block dopamine, there has been no convenient model
to relate neurochemical findings to clinical observations. Two
recent clinical developments demonstrate the current model’s
potential ability to bridge this gap.

First, building on the psychological notion of dopamine
as a mediator of incentive salience (Berridge and Robinson,
1998), it has been suggested (Kapur, 2003) that psychosis,
especially delusions, can be viewed as the result of a
chaotically hyperdopaminergic system leading in turn to the
assignment of aberrant levels of incentive salience to
stimuli. While previous sections have focused on the impact
of exaggerated incentive salience on the probability of
producing a response in a behavioral task, here psychosis is
linked to excessive and aberrant incentive salience itself.
The crucial difference is that while probabilities of
producing a response cannot exceed 1 (by definition),
incentive salience, or V(CS), is unbounded. Figure 6
contrasts the attribution of incentive salience under a
normal dopamine condition with that under a chaotically
hyperactive dopamine system. The hyperactive case yields
an aberrantly high V(CS) which, under the assumption of
V(CS)¼ incentive salience, is speculated to underpin the
formation of delusions.

A second recent clinical observation relates to the time
course of antipsychotic action. Contrary to the long-held
presumption that there is a ‘delay in onset’ between
dopamine-blockade and antispychotic effect (Grace et al,
1997) it has recently been shown that there is no such delay.
Rather, the onset of antipsychotic action of APDs is
almost immediate and shows a gradually increasing effect
that asymptotes after a number of weeks (Agid et al,
2003). TD simulation of APD treatment reduces the post-
receptor effect of dopamine signaling, leading to an early
onset, gradual attenuation of attributed salience (c.f.
Figure 2, middle and bottom). Thus, the model provides
an account of two recent clinical proposals: the relationship
of psychosis to dopamine via the construct of incentive
salience, and the empirically observed pattern of
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dissociation of stable receptor blockade and antipsychotic
action.

In conclusion, TD provides a potentially useful computa-
tional tool for re-interpreting animal models of acute
schizophrenia, and its treatment. In this respect, the model
demonstrates potential for unifying electrophysiological,
pharmacological, behavioral and psychological observa-
tions. However, caution is warranted by the extent to which
each of these levels of description is necessarily abstracted
over. The current results add to the emerging and exciting
potential of TD to address human disorders in which
dopamine dysfunction is implicated.
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APPENDIX

SUPPLEMENTARY MATERIAL

All procedures were approved by the animal care committee
at the Centre for Addiction and Mental Health, and adhered
to the guidelines established by the Canadian Council on
Animal Care.

TD Simulation of Conditioned Avoidance

In TD, the Value of each state is intended as an estimate of
all future reward following that state:

VðtÞ ¼ rðtÞ þ g1rðt þ 1Þ þ g2rðt þ 2Þ::: ð6Þ
where r(t) is the reward associated with the state of time t,
and r(t + 1) is the reward associated with the following state
etc. g (between 0 and 1) is the discount factor that controls
the degree to which future rewards are discounted over
immediate rewards (eg a dollar tomorrow is worth slightly
less than a dollar today). g40.9 is commonly used, and we
arbitrarily select g¼ 0.93. As with the number of interval
states, we select a value that empirically matches the
quantitative properties of the observed data, without
affecting the qualitative performance of the model.

The Value of each state must be estimated by repeated
exposure to that state over multiple trials. To avoid the need
to wait indefinitely for all future rewards before updating
V(t), TD makes use of the recursive definition:

VðtÞ � rðtÞ þ gVðt þ 1Þ ð7Þ
appealing to the ability of V(t + 1) to itself estimate r(t + 1)
+ r(t + 2) + etc. The ‘temporal difference’ between the left
and right hand sides of Equation (7) yields an error term,
which is then used to update V(t) towards r(t) + V(t + 1)
(see Equation (1)). The assumption is that r(t) + V(t + 1) is a
more accurate estimate of the true future reward because it
incorporates real reward from the environment (ie r(t)).
These theoretical foundations of TD were formulated long
before the model’s application to the dopamine system.

In the simulation of conditioned avoidance, four internal
states were used, along with a learning rate, a¼ 0.5, and
discount factor g¼ 0.93. The drug free sessions were
simulated by setting the ‘dopamine’ parameter, y¼ 0.
Low, medium, and high doses of APD were simulated
by setting y¼�0.2, y¼�03, y¼�0.4, respectively. The
seven sessions of Figure 2 were modeled as 7� 30¼ 210
consecutive simulated trials, with only y being varied from
session to session as appropriate.
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We note that TD is usually applied to appetitive tasks,
with positive prediction error being associated with ‘better
than expected’ and negative prediction error with ‘worse
than expected’. This presents a problem for modeling
aversive paradigms. Although dopamine is clearly impli-
cated in such paradigms, APD-induced dopamine blockade
does not appear to render the CS ‘worse’ or more aversive,
but apparently less aversive. Our solution involves treating
the shock in the same way as rewards have been treated in
the pastFby setting r(US) to a positive value. The tacit
assumption being made is that the dopamine system
mediates the learning of all salient events, whether
appetitive or aversive. Electrophysiological evidence of
dopamine neuron selectivity for appetitive events (Mireno-
wicz and Schultz, 1996) undermines this assumption,
although microdialysis and voltammetry studies suggest
that dopamine is also released in response to aversive events
(Joseph et al, 2003), and indeed a more general relationship
between dopamine and salience has been posited (Horvitz,
2000). The resolution of this debate will have important
implications for how aversive paradigms such as CA are
modeled using TD in the future.

Latent Inhibition Animal Experiment

The following describes experiment 2 in (Weiner et al,
1988). Seventy-two male Wistar rats served as subjects.

They were randomly assigned to one of the eight
experimental conditions in a 2� 2� 2 design, consisting
of stimulus pre-exposure/no pre-exposure, drug/no drug
during pre-exposure, and drug/no drug during condition-
ing. The conditioned stimulus was a 5-s, 2.8 kHz tone
and the US was a shock (1.0 mA) supplied to the grid floor.
Each animal in the pre-exposed group (PE) was placed in
the shuttle box and received 50, 5-s tone presentations
without consequence. The non pre-exposed (NPE) animals
were confined to the shuttle box for an identical period of
time, but were not presented with the tone. Twenty-four hr
after pre-exposure, each animal was placed in the shuttle
box and received 60 trials of avoidance training. Each
avoidance trial started with a 5-s tone followed by a 30-s
shock, the tone remaining on with the shock. The total
number of avoidance responses (shuttle crossings) was
recorded. The appropriate drug, either 1.5 mg/kg dl-
amphetamine sulphate dissolved in 1 ml of isotonic saline
or an equivalent volume of saline, was administered
intraperitoneally 15 min prior to the start of each stage
(pre-exposure and conditioning). Subsequent reviews
(Moser et al, 2000; Weiner, 1990) suggest that the condi-
tioning phase rather than the pre-exposure phase is the
important stage for pharmacological manipulation of LI,
and so we focus on the groups that received saline during
pre-exposure.

Supplementary Information accompanies the paper on the Neuropsychopharmacology website (http://www.nature.com/npp).
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