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Outline

● Depression
● Reinforcement Learning (RL)
● RL Impairments in Depression
● → Modelling Theory
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Major Depressive Disorder (MDD)
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Major Depressive Disorder (MDD)

● Symptoms:
– Depressed mood
– Anhedonia (inability to experience pleasure)
– Loss of energy, fatigue
– Change in weight or appetite

– Insomnia / Hypersomnia

– Psychomotor agitation / retardation

– Feelings of worthlessness or excessive or inappropriate guilt

– Concentration difficulties

– Suicidal thoughts / ideation
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Major Depressive Disorder (MDD)

● Categorical view has little basis in biology?
– Research moves towards dimensional view

● RDoC framework
– Multiple levels of analysis

● Neural circuitry, genes, behaviour

● Endophenotypes
– Anhedonia

– Neuroticism
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Treatment

● Cognitive Behavioural Therapy (CBT)
● Antidepressant medication

– Selective Serotonin Reuptake Inhibitors (SSRIs)
● Primary first line treatment

– Serotonin-Norepinephrine Reuptake Inhibitor (SNRIs)

– Tricyclic Antidepressants (TCAs)

● Electroconvulsive therapy (ECT), Surgery
– Very severe, treatment-resistant cases
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MDD Theories

● Cognitive Theory (Beck, 2008)

– Negative cognitive schemas (CBT targets those)

– e.g. biased recalling of negative events

● Learned Helplessness (Seligman, 1972)

● Stress → deficits in reinforcement / reward 
processing (learning) → anhedonia (Pizzagalli, 2014)

– 70-80% of Major Depressive Episodes 
preceded by major life event
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Learned Helplessness

Huys et al., 2008; NIPS
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Impact

● High (lifetime) prevalence (esp. in developed countries)
– USA: 16.2% (Kessler et al., 2003)

– UK / Europe: 7-10% (Ayuso-Mateos et al., 2001)

– Depression rates are rising (e.g. Mojtabai et al., 2016)

● High economic impact (Europe: €92 billion in 2010) (Olesen et al., 2012)

● People are suffering
– Risk factor for suicide (Olfson et al., 2017)

● And suicide rates are increasing

– Cognitive Impairments (e.g. Snyder, 2013)

● Attention, concentration, executive functioning, working memory, …

– Impairments in Reinforcement Learning (Chen et al., 2015)
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RL Impairments in MDD

● Signal Detection Task
● fMRI studies
● Computational Modelling

● Iowa Gambling Task (?)
● Reversal Learning (?)
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Signal Detection Task (e.g. Pizzagalli et al., 2005)

● One stimulus rewarded more often
– (healthy) participants become biased towards it
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Reinforcement Learning (RL)

● Update values

● Decide between two options
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MDD Modelling Studies (behavioural)

● Chase et al., 2010
– Lower learning rates

● Kunisato et al., 2012
– Lower temperature parameter

● Huys et al., 2013
– Lower reward sensitivity

● Beevers et al., 2013
– Higher temperature parameter

● Dombrovski et al., 2010
– Lower memory [in suicide attempters]
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Brain Activity

● Model-based fMRI (e.g. Kumar et al., 2008; Gradin et al., 2011) 

– No real behavioural differences

– Abnormal reward prediction errors

– Abnormal expected reward values
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(Behavioural) Modelling

● How do I actually “fit” a model to data?
– Try to find “optimal” values for the parameters of the 

model that our data “most likely”

(maximize the probability of observed choices)
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Maximize the Likelihood

● Multiplying lots of small numbers is a bad 
idea… take the log instead!

● Instead of maximizing log likelihood →  we 
usually minimize negative log likelihood
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Example Experiment

Stankevicius et al., 2014; Further work in progress
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Our Model

● Value Update

● Decision
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NLL in MATLAB
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Estimate parameters

● Different options (e.g. gradient descent)
– We will simply use one of the built-in functions

x 0

x 1

x 2

x 3
x 4

*

*
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Possible Issues

● Lots of local minima
● Surface around minima is very flat

● Initialise with different starting points
– Randomly

– Grid
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fminunc
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How good is our estimation?

● If we are making inferences based on specific 
parameter values (e.g. look at group differences), we 
better make sure that those estimates are reliable

● Simulate data from estimated parameters
– Does generated data “look like” the original data? (similar 

summary statistics, evolution of values, …?)
● How much does the generated data vary?

– Re-fit parameters to simulated data and compare parameters 
(e.g. look at the correlation: hopefully close to 1)

● How much do the simulated parameters vary?
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How good is our estimation?

● Look at the curvature (Hessian / 2nd order 
derivative) at the estimated point (Hessian 
returned by fminunc)
– Take inverse to get covariance matrix
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Correlated Estimated Parameters

● Might cause issues during inference
– e.g. if two parameters are (highly) negatively 

correlated
● We can arbitrarily change one of the parameters and 

then adjust the second parameter so as to keep the 
previous “maximum” likelihood (extreme example)

● What does that mean if we are interested in the actual 
values of these parameters (e.g. for group comparisons)?
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Correlated Estimated Parameters

● As long as the abs(correlation) is < 1 both parameters 
will explain “something”
– Unclear what value between 0 and 1 would be “too high”; will 

depend on the problem; use simulations

● Parameters might actually be correlated
– People who learn faster (higher learning rate) might be better 

at “remembering” what they learned (lower discounting)

● Make sure parameters are distinguishable in the 
mathematical formulation
– c.f. reward sensitivity and inverse temperature
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Constraining Parameters

● Often we know what range of values is sensible 
for specific parameters (0 < learning rate < 1)
– Want to make sure estimated parameters lie within 

that range

– E.g. force parameters to be positive by 
exponentiating them at the beginning of the 
likelihood function

● Optimisation function (fminunc) can search whole space 
(-inf to +inf)
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Model Comparison

● How do we choose a model (hypothesis)?
● We want a Trade-off

– Which model fits our data best? (accuracy)
● Likelihood

– Which model is the simplest? (complexity)
● Number of parameters

● Turn to Bayesian model comparison…
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Occam’s razor

MacKay, 2003
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Bayesian Model Comparison

● … or rather approximations

● Calculate for each model
● Choose model with lowest value (if difference > 10)
● Note that adding “redundant” parameters might 

affect the comparisons
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Model Recovery Simulations

● Do we have the data we need to answer the 
questions we are asking?

● Confusion matrix
– For each model m

● Generate data from m
● Fit all models to this data
● Does model comparison choose m?
● (repeat steps inside loop multiple times)
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