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what we 
think the 
world is likeThe World

Activity in the brain

properties of neurons

P [r|s]

?

Overview of the visual cortex

Two streams:  
• Ventral ‘What’: V1,V2, V4, IT, form recognition and object representation 
• Dorsal ‘Where’: V1,V2, MT, MST, LIP, VIP, 7a: motion, location, control of eyes and 
arms

3

Overview of the visual cortex

4

Ventral pathway
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Figure 1a shows the responses of a single unit in the left posterior
hippocampus to a selection of 30 out of the 87 pictures presented to
the patient. None of the other pictures elicited a statistically signifi-
cant response. This unit fired to all pictures of the actress Jennifer
Aniston alone, but not (or only very weakly) to other famous and
non-famous faces, landmarks, animals or objects. Interestingly, the
unit did not respond to pictures of Jennifer Aniston together with the
actor Brad Pitt (but see Supplementary Fig. 2). Pictures of Jennifer
Aniston elicited an average of 4.85 spikes (s.d. ¼ 3.59) between 300
and 600ms after stimulus onset. Notably, this unit was nearly silent

during baseline (average of 0.02 spikes in a 700-ms pre-stimulus time
window) and during the presentation of most other pictures
(Fig. 1b). Figure 1b plots the median number of spikes (across trials)
in the 300–1,000-ms post-stimulus interval for all 87 pictures shown
to the patient. The histogram shows amarked differential response to
pictures of Jennifer Aniston (red bars).
Next, we quantified the degree of invariance using a receiver

operating characteristic (ROC) framework15. We considered as the
hit rate (y axis) the relative number of responses to pictures of a
specific individual, object, animal or landmark building, and as

Figure 1 | A single unit in the left posterior hippocampus activated
exclusively by different views of the actress Jennifer Aniston.
a, Responses to 30 of the 87 images are shown. There were no statistically
significant responses to the other 57 pictures. For each picture, the
corresponding raster plots (the order of trial number is from top to bottom)
and post-stimulus time histograms are given. Vertical dashed lines indicate
image onset and offset (1 s apart). Note that owing to insurmountable
copyright problems, all original images were replaced in this and all
subsequent figures by very similar ones (same subject, animal or building,
similar pose, similar colour, line drawing, and so on). b, The median

responses to all pictures. The image numbers correspond to those in a. The
two horizontal lines show the mean baseline activity (0.02 spikes) and the
mean plus 5 s.d. (0.82 spikes). Pictures of Jennifer Aniston are denoted by
red bars. c, The associated ROC curve (red trace) testing the hypothesis that
the cell responded in an invariant manner to all seven photographs of
Jennifer Aniston (hits) but not to other images (including photographs of
Jennifer Aniston and Brad Pitt together; false positives). The grey lines
correspond to the same ROC analysis for 99 surrogate sets of 7 randomly
chosen pictures (P , 0.01). The area under the red curve is 1.00.

NATURE|Vol 435|23 June 2005 LETTERS
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Quiroga et al,  Nature, 2005 -- Invariant visual representation by single neurons in the 
human brain (MTL), a.k.a the Jennifer Aniston Neuron.

https://www.youtube.com/watch?v=635Ntur8K2s

6

Dorsal pathway

• MT: MOTION. stimulus of choice: random dot patterns. 

7

Dorsal pathway

• MST: linear, radial, circular motion (flow field). 

• LIP: spatial position in head-centered coordinates. 
spatial attention, spatial representation. saliency map 
-- used by oculo-motor system (the “saccade planning 
area”). spatial memory trace and anticipation of 
response before saccade. 

• VIP: spatial position in head-centered coordinates, 
multi-sensory responses. speed, motion. 

• 7a: large receptive fields, encode both visual input 
and eye position. 

Encoding applications: Cochlear implants (‘bionic ears’)

• surgically implanted electronic device that provides a sense of sound to a 
person who is profoundly deaf or severely hard of hearing.
• 324,000 people worldwide in 2012 have an implant.
• a set of electrodes stimulating neurons in the cochlea. 

17SENSATION AND PERCEPTION | BRAIN FACTSSOCIETY FOR NEUROSCIENCE 

Although the process is not yet completely understood, recent 
findings suggest that visual signals are fed into at least three separate 
processing systems. One system appears to process information mainly 
about shape; a second, mainly about color; and a third, movement, 
location, and spatial organization. These findings of separate processing 
systems come from anatomical and physiological studies in monkeys. 
They are supported by human psychological studies showing that the 
perception of movement, depth, perspective, the relative size of objects, 
the relative movement of objects, shading, and gradations in texture all 
depend primarily on contrasts in light intensity rather than on color.

Why movement and depth perception should be emphasized by 
one processing system may be explained by a school of thought called 
Gestalt psychology. Perception requires various elements to be orga-
nized so that related ones are grouped together. This stems from the 
brain’s ability to group the parts of an image together and also to sepa-
rate images from one another and from their individual backgrounds.

How do all these systems combine to produce the vivid images 
of solid objects that we perceive? This involves extracting biologically 
relevant information at each stage and associating firing patterns of 
neuronal populations with past experience.

Vision studies also have led to better treatment for visual disor-
ders. Information from research in cats and monkeys has improved 
the therapy for strabismus, or squint, a term for cross-eye or walleye. 
Children with strabismus initially have good vision in each eye. But 
because they cannot fuse the images in the two eyes, they tend to 
favor one eye and often lose useful vision in the other. Vision can be 
restored in such cases, but only during infancy or early childhood. 
Beyond the age of 6 or so, the blindness in one eye becomes perma-
nent. Until a few decades ago, ophthalmologists waited until children 
reached the age of 4 before operating to align the eyes or prescribing 
exercises or an eye patch. Now strabismus is corrected very early in 
life — before age 4, when normal vision can still be restored.

Hearing
Often considered the most important sense for humans, 

hearing allows us to communicate with each other by receiving 
sounds and interpreting speech. It also gives us information vital to 
survival; for instance, by alerting us to an approaching car. 

Like the visual system, our hearing system distinguishes several 
qualities in the signals it detects. Our hearing system, however, 

HEARING. From the chirping of crickets 

to the roar of a rocket engine, sound waves 

are collected by the external ear — the pinna 

and the external auditory canal — and fun-

neled to the tympanic membrane (eardrum) 

to make it vibrate. Attached to the tympanic 

membrane, the malleus (hammer) transmits 

the vibration to the incus (anvil), which passes 

vibration on to the stapes (stirrup). The stapes 

pushes on the oval window, which separates 

the air-filled middle ear from the fluid-filled 

inner ear, to produce pressure waves in the 

snail-shaped cochlea of the inner ear. Hair 

cells in the cochlea, riding on the vibrating 

basilar membrane, have “hair bundles” of 

microscopic stereocilia that are deflected by 

the overlying tectorial membrane. Hair cells 

convert the mechanical vibration to an elec-

trical signal; they, in turn, release chemicals 

to excite the 30,000 fibers of the auditory 

nerve that carry the signals to the brainstem. 

Auditory information is analyzed by multiple 

brain centers as it flows to the temporal gyrus 

or auditory cortex, the part of the brain 

involved in perceiving sound.

People hearing for the first time: 
https://www.youtube.com/watch?
v=mbe7x8GP2Ds 

https://www.youtube.com/channel/UCkN8E4D0Gs9y-QgUcWc-gMQ?v=LhSpb36_1s4 



Encoding applications: retinal implants (‘bionic eyes’)

• in development 
• meant to partially restore vision to people 
with degenerative eye conditions such as 
macular degeneration
• stimulating the retina with array of 
electrodes -currently 60-100 channels.

Sheila Nirenberg: A prosthetic 
eye to treat blindness
http://www.ted.com/talks/
sheila_nirenberg_a_prosthetic_eye_to_treat_blindness.html

https://www.youtube.com/watch?v=CiyGOUHD2nI 
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In response to a stimulus with unknown orientation s, we observe a 
pattern of activity r (e.g. in V1). What can we say about s given r?
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r

?

Decoding populations of neurons

An estimation problem (detecting signal in noise). 
➡ Tools : estimation theory, bayesian inference, machine learning  

When does the problem occur?: 

1 - Point of view of the experimentalist or Neuro-Engineering. Seeking the 
most effective method (e.g. prosthetics) to read out the code. 

  
✤ Statistical optimality 
✤ considering the constraints  (e.g. real time?) 

2 - Model of the brain’s decoding strategy 
e.g. mapping from sensory signals to motor response and understanding 

the relationship between physiology and psychophysics 

✤ statistical optimality ?  
✤ optimality within a class ?   
✤ or simplicity/ arbitrary choice? (what are the biological constraints ?)  



Decoding: to understand the link between  
Physiology and Psychophysics

• Understanding the relationship between neural responses and 
performances of the animal: 

• Detection Task: e.g. can you see the target ?  
Measure Detection threshold.  
 
• Estimation Task: e.g. What is the angle of the bar ? The contrast of the 
grating? Measure Estimation errors (bias -- illusions). 

• Discrimination Task: e.g. What is the minimal difference you can see?  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Optimal  
Decoder

✤  optimality criterion? 
MSE(s) =< (ŝ� s)2 >

1. Optimal Decoding
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✤  Maximum Likelihood:   
if we know P[r|s] (the encoding model),  
choose the stimulus s that has maximal probability of having 
generated the observed response, r.

1. Optimal Decoding
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ŝ = argmaxsP (r|s)

✤  Maximum Likelihood:   
if we know P[r|s] (the encoding model),  
choose the stimulus s that has maximal probability of having 
generated the observed response, r.

1. Optimal Decoding
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✤  Maximum Likelihood:   
if we know P[r|s] (the encoding model),  
choose the stimulus s that has maximal probability of having 
generated the observed response, r.
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✤  Maximum a Posteriori:   
if we know P[r|s] and have a prior on s, P[s],  
choose the stimulus s that is most likely, given r.

ŝ = argmaxsP (s|r) = argmaxsP [r|s]P [s]

1. Optimal Decoding
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Simple  
Decoders

Is the brain able to do ML or MAP estimation ? 

- Unknown 
- It is argued that realistic architectures could perform ML  
[Deneve, Latham, Pouget al 2001,  Ma, Pouget et al 2006, Jazayeri and 
Movshon 2006]
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2. Simpler Decoding Strategies

 Winner Take All :  

If we know the preferred orientation of all neurons, 
choose the preferred orientation of the neuron that responds most. 
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2. Simpler Decoding Strategies
2. Simpler decoding strategies:  

Optimal Decoders within a class 

Optimal decoders often requires much too much 
data  (full model P[r|s]), seem too complex: 

The question then is the cost of using non-
optimal decoders. 
- Linear Decoders, eg. OLE, [Salinas and Abbott 
1994]  
- Decoders that ignore the correlations (decode 
with the “wrong model” which assumes 
independence) [Nirenberg  & Latham 2000, Wu 
et al 2001, Seriès et al 2004]

ŝ =
�

i

wiri

Use of simple decoding methods for prosthetics

Brain-machine interface usually use very simple decoding techniques  
 ... and they show promising results (as well as surprising learning effects). 

See eg. lab of M. Nicolelis @ Duke, and A. Schwartz @ Pittsburg

http://www.youtube.com/watch?
v=7kctOHnrvuM&feature=related
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Neuronal ensemble control of prosthetic
devices by a human with tetraplegia
Leigh R. Hochberg1,2,4, Mijail D. Serruya2,3, Gerhard M. Friehs5,6, Jon A. Mukand7,8, Maryam Saleh9†,
Abraham H. Caplan9, Almut Branner10, David Chen11, Richard D. Penn12 & John P. Donoghue2,9

Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing
movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To
translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after
spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent.
Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables
useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity
recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion
modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a ‘neural
cursor’ with which MN opened simulated e-mail and operated devices such as a television, even while conversing.
Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-
jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity
could provide a valuable new neurotechnology to restore independence for humans with paralysis.

Hundreds of thousands of people suffer from forms of motor
impairment in which intact movement-related areas of the brain
cannot generate movements because of damage to the spinal cord,
nerves, or muscles1. Paralysing disorders profoundly limit indepen-
dence, mobility and communication. Current assistive technologies
rely on devices for which an extant function provides a signal that
substitutes for missing actions. For example, cameras can monitor
eye movements that can be used to point a computer cursor2.
Although these surrogate devices have been available for some
time, they are typically limited in utility, cumbersome to maintain,
and disruptive of natural actions. For instance, gaze towards objects
of interest disrupts eye-based control. By contrast, an NMP is a
type of brain–computer interface (BCI) that can guide movement
by harnessing the existing neural substrate for that action—that is,
neuronal activity patterns in motor areas. An ideal NMP would
provide a safe, unobtrusive and reliable signal from the discon-
nected motor area that could restore lost function. Neurons in the
primary motor cortex (MI) arm area of monkeys, for example,
provide information about intended arm reaching trajectories3–5,
but this command signal would work for an NMP only if neural
signals persist and could be engaged by intention in paralysed
humans.
In concept, NMPs require a sensor to detect the activity of multiple

neurons, a decoder to translate ensemble firing patterns into motor
commands, and, typically, a computer gateway to engage effectors.
BrainGate (Cyberkinetics, Inc.) is an NMP system under development

and in pilot trials in people with tetraparesis from spinal cord injury,
brainstem stroke, muscular dystrophy, or amyotrophic lateral sclero-
sis. Currently, this system consists of a chronically implanted sensor
and external signal processors developed from preclinical animal
studies (see Methods)6–8. The participant described in this report, the
first in the BrainGate trial, is a 25-yr-old male (MN) who sustained a
knife wound in 2001 that transected the spinal cord between cervical
vertebrae C3–C4, resulting in complete tetraplegia (C4 ASIA A)9. The
array was implanted in June 2004 into the MI arm area ‘knob’10, as
identified on pre-operative magnetic resonance imaging (MRI)
(Fig. 1c). Post-operative recovery was uneventful. The data presented
here are derived from 57 consecutive recording sessions from
14 July 2004 to 12 April 2005 (9months).

Signal quality and variety
Action potentials were readily observable on multiple electrodes,
indicating that MI neural spiking persists three years after SCI, as
suggested indirectly by functional MRI data11–14. Recorded signals
ranged from qualitatively well-isolated single neurons to mixtures of
a few different waveforms (Fig. 2a). Different waveform shapes were
identified visually, using standard time-amplitude windows, but
there was no further attempt to distinguish between well isolated
and intermixed waveforms, both of which we refer to in this report as
‘units’. An average of 26.9 ^ 14.2 units were observed each day
(range 3–57), with mean peak-to-peak spike amplitudes of
76.4 ^ 25.0 mV (mean ^ s.d., n ¼ 56 sessions) (see Supplementary
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https://www.youtube.com/watch?v=Z3a5u6djGnE 
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http://www.youtube.com/watch?v=ZuATvhlcUU4

Neural Prosthetics: Krishna Shenoy at TEDxStanford

http://www.youtube.com/watch?v=CR_LBcZg_84

Miguel Nicolelis: A monkey that controls a robot with its 
thoughts.  

35

Decoding in humans

http://www.youtube.com/watch?v=6FsH7RK1S2E

Jack Gallant -- decoding the movie you’re viewing from your fMRI scan

https://www.youtube.com/watch?v=1_yaQTR3KHI 

36

fMRI

http://videolectures.net/fmri06_mitchell_odmsp/

classification techniques : a machine learning problem
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lie detection: fMRI now better than polygraphs?
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Decoding:  Summary of previous slides

✤  Decoding: for neuro-prostheses and/or for understanding the relationship 
between the brain’s activity and perception or action 

✤ Different strategies are possible: optimal decoders (e.g. ML, MAP) vs 
simple decoders (e.g. winner take all, population vector), depending on 
what we know about the encoding model, and constraints.


