Encoding problem: P[r|s]

Activity in the brain
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Overview of the visual cortex

Two streams:

¢ Ventral ‘What: V1,V2, V4, IT, form recognition and object representation

e Dorsal ‘Where’: V1,V2, MT, MST, LIP, VIP, 7a: motion, location, control of eyes and
arms

MNature Reviews | Neuroscience

Overview of the visual cortex
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Quiroga et al, Nature, 2005 -- Invariant visual representation by single neurons in the
human brain (MTL), a.k.a the Jennifer Aniston Neuron. Dorsal pathway
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https://www.youtube.com/watch?v=635Ntur8K2s

Dorsal pathway Encoding applications: Cochlear implants (‘bionic ears’)

https://www.youtube.com/channel/UCKkN8E4D0Gs9y-QgUcWc-gMQ?v=LhSpb36 1s4

* MST: linear, radial, circular motion (flow field).
« surgically implanted electronic device that provides a sense of sound to a

person who is profoundly deaf or severely hard of hearing.
* 324,000 people worldwide in 2012 have an implant.
* a set of electrodes stimulating neurons in the cochlea.

e LIP: spatial position in head-centered coordinates.
spatial attention, spatial representation. saliency map
-- used by oculo-motor system (the “saccade planning
area”). spatial memory trace and anticipation of
response before saccade.
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People hearing for the first time:
: 2

* VIP: spatial position in head-centered coordinates, Clies e oo ) / v=mbe7x8GP2Ds

multi-sensory responses. speed, motion.
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« 7a: large receptive fields, encode both visual input
and eye position.
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Encoding applications: retinal implants (‘bionic eyes’)

TED "
spreading

Sheila Nirenberg: A prosthetic
eye to treat blindness

http://www.ted.com/talks/
sheila_nirenberg a prosthetic eye to treat blindness.html

« in development

» meant to partially restore vision to people
with degenerative eye conditions such as
macular degeneration

« stimulating the retina with array of
electrodes -currently 60-100 channels.

https://www.youtube.com/watch?v=CiyGOUHD2nI
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Visual prostheses for the blind

Robert K. Shepherd’%, Mohit N. Shivdasani’-?, David A.X. Nayagam'%3,
Christopher E. Williams'-?, and Peter J. Blamey'-?

! Bionics Institute, 384-388 Albert St East Melbourne, 3002, Victoria, Australia
2 Medical Bionics Department, University of Melbourne, 384-388 Albert St East Melbourne, 3002, Victoria, Australia
 Department of Pathology, University of Melbourne, Parkville, 3010, Victoria, Australia

After more than 40 years of research, visual prostheses
are moving from the laboratory into the clinic. These
devices are desi d to provide prosthetic vision to the
blind by sti ing localized neural i in one
of the retinotopically organized structures of the visual
pathway - typically the retina or visual cortex. The long
gestation of this research reflects the many significant
i i ical ac-
cess, mechanical stability, hardware miniaturization,
hermetic encapsulation, high-density electrode arrays,
and signal processing. This review provides an introduc-
tion to the pathophysiology of blind an overview of
visual p h their ad and draw-
backs; the perceptual effects evoked by electrical stimu-
lation; as well as the role played by plasticity and training
in clinical outcomes.

It is estimated that 285 million people are visually
impaired worldwide; 39 million of whom are blind [2].
Although uncorrected refractive errors are the main cause
of visual impairment, di iated with d -
tion of the retinal photoreceptors result in severe visual
loss with few or no therapeutic options for ongoing clinical
management. Importantly, significant numbers of RGCs
are spared following the loss of photoreceptors. Although
there are major alterations to the neural circuitry of these
surviving neurons (3], their presence provides the potential
to restore vision using electrical stimulation delivered by
an electrode array located close to the retina (Box 1). The
clinical management of other forms of blindness, including

Glossary

Age-related macular degeneration [AMD): damage to the photoreceptors of

the macula region of the reting leading 1o centrsl blindness.

Decoding populations of neurons

In response to a stimulus with unknown orientation s, we observe a
pattern of activity r (e.g. in V1). What can we say about s given r?
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Decoding populations of neurons

An estimation problem (detecting signal in noise).
= Tools : estimation theory, bayesian inference, machine learning

When does the problem occur?:

1 - Point of view of the experimentalist or Neuro-Engineering. Seeking the
most effective method (e.g. prosthetics) to read out the code.

+ Statistical optimality

+ considering the constraints (e.g. real time?)

2 - Model of the brain’s decoding strategy
e.g. mapping from sensory signals to motor response and understanding
the relationship between physiology and psychophysics

+ statistical optimality ?
+ optimality within a class ?

+ or simplicity/ arbitrary choice? (what are the biological constraints ?)




Decoding: to understand the link between
Physiology and Psychophysics

* Understanding the relationship between neural responses and
performances of the animal:

* Detection Task: e.g. can you see the target ?
Measure Detection threshold.

* Estimation Task: e.g. What is the angle of the bar ? The contrast of the
grating? Measure Estimation errors (bias -- illusions).

¢ Discrimination Task: e.g. What is the minimal difference you can see?

1. Optimal Decoding
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+ optimality criterion?
MSE(s) =< (§ — 5)* >

1. Optimal Decoding

4+ Maximum Likelihood:
if we know P[r|s] (the encoding model),
choose the stimulus s that has maximal probability of having
generated the observed response, r.

§ = argmax P(r|s)
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1. Optimal Decoding

4 Maximum Likelihood:
if we know P[r|s] (the encoding model),

choose the stimulus s that has maximal probability of having
generated the observed response, r.

§ = argmax,P(r|s)
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1. Optimal Decoding

*+ Maximum Likelihood:
if we know P[r|s] (the encoding model),
choose the stimulus s that has maximal probability of having
generated the observed response, r.

§ = argmax,P(r|s)
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1. Optimal Decoding

% Maximum a Posteriori:
if we know P[r|s] and have a prior on s, P[s],
choose the stimulus s that is most likely, given r.

§ = argmax,P(s|r) = argmax,P[r|s|P[s]
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Is the brain able to do ML or MAP estimation ?

- Unknown
- It is argued that realistic architectures could perform ML

[Deneve, Latham, Pouget al 2001, Ma, Pouget et al 2006, Jazayeri and
Movshon 2006]
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2. Simpler Decoding Strategies

Winner Take All :

If we know the preferred orientation of all neurons,

choose the preferred orientation of the neuron that responds most.
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2. Simpler Decoding Strategies
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2. Simpler Decoding Strategies

2. Simpler decoding strategies:
Optimal Decoders within a class
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Optimal decoders often requires much too much
data (full model PIr|s]), seem too complex:

The question then is the cost of using non-

optimal decoders. R
- Linear Decoders, eg. OLE, [Salinas and Abbott 5= Z Wil
1994] i

- Decoders that ignore the correlations (decode

with the “wrong model” which assumes
independence) [Nirenberg & Latham 2000, Wu
et al 2001, Seriés et al 2004]

Use of simple decoding methods for prosthetics

Brain-machine interface usually use very simple decoding techniques
... and they show promising results (as well as surprising learning effects).

See eg. lab of M. Nicolelis @ Duke, and A. Schwartz @ Pittsburg

http://www.youtube.com/watch?

v=7kctOHnrvuMé&feature=related

nature Vol 44213 July 2006/doi:10.1038/nature04970

ARTICLES

Neuronal ensemble control of prosthetic
devices by a human with tetraplegia

Leigh R. Hochberg>*, Mijail D. Serruya®*, Gerhard M. Friehs™, Jon A. Mukand”*®, Maryam Saleh’s,
Abraham H. Caplan®, Almut Branner'®, David Chen'’, Richard D. Penn'? & John P. Donoghue®”

Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing
movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To
translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after
spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent.
Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables
useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity
recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion
modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a ‘neural
cursor’ with which MN opened simulated e-mail and operated devices such as a television, even while conversing.
Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-
jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity
could provide a valuable new to restore i for humans with paralysis.

http://www.braingate2.org/60mins.html
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and service to them, what an honor. Elizabeth Tyler-Kabara: What

Breakthrough: Robotic limbs moved by the mind

CBS News

Miguel Nicolelis: A monkey that controls a robot with its
thoughts.

http://www.youtube.com/watch?v=CR_LBcZg_84
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Neural Prosthetics: Krishna Shenoy at TEDxStanford
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Decoding in humans
http://www.youtube.com/watch?v=6FsH7RK1S2E

Jack Gallant -- decoding the movie you're viewing from your fMRI scan

https://www.youtube.com/watch?v=1 yaQTR3KHI
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Brain decoding how scientists can read your mind

ATLITLVIGIED
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fMRI

http://videolectures.net/fmri06_mitchell_odmsp/

classification techniques : a machine learning problem
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lie detection: fMRI now better than polygraphs?

J Clin Psychiatry. 2016 Oct;77(10):1372-1380. doi: 10.4088/JCP.15m09785.

Polygraphy and Functional Magnetic Resonance Imaging in Lie Detection: A Controlled Blind
Comparison Using the Concealed Information Test.

Langleben DD 23, Hakun JG*, Seelig D2, Wang AL, Ruparel K2, Bilker WB2, Gur RC23,

@ Author information

Abstract

OBJECTIVE: Intentional deception is a common act that often has detrimental social, legal, and clinical implications. In the last decade, brain
activation patterns associated with deception have been mapped with functional magnetic imaging (fMRI), sit i
our i of the However, despite substantial criticism, polygraphy remains the only biological method of lie
detection in practical use today. We ablind, ive, and thin-subjects study to compare the accuracy of fMRI and
polygraphy in the detection of concealed information. Data were collected between July 2008 and August 2009.

METHOD: Participants (N = 28) secretly wrote down a number between 3 and 8 on a slip of paper and were questioned about what number
they wrote during consecutive and counterbalanced fMRI and polygraphy sessions. The Concealed Information Test (CIT) paradigm was
used to evoke ptit about the number. Each participant's preprocessed fMRI images and 5-channel polygraph
data were independently evaluated by 3 fMRI and 3 polygraph experts, who made an independent determination of the number the
participant wrote down and concealed.

RESULTS: Using a logistic regression, we found that fMRI experts were 24% more likely (relative risk = 1.24, P < .001) to detect the
concealed number than the polygraphy experts. Incidentally, when 2 out of 3 raters in each modality agreed on a number (N = 17), the
combined accuracy was 100%.

CONCLUSIONS: These data justify further evaluation of fMRI as a potential ive to The ial or concurrent use of
psychophysiology and neuroimaging in lie detection also deserves new consideration.
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Decoding: Summary of previous slides

+ Decoding: for neuro-prostheses and/or for understanding the relationship
between the brain’s activity and perception or action

+ Different strategies are possible: optimal decoders (e.g. ML, MAP) vs
simple decoders (e.g. winner take all, population vector), depending on
what we know about the encoding model, and constraints.
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