
2. Decoding (continued) 
 

Readings: Decoding D&A ch.3 
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In response to a stimulus with unknown orientation s, we observe a 
pattern of activity r (e.g. in V1). What can we say about s given r?
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✤  optimality criterion? 
MSE(s) =< (ŝ� s)2 >

1. Optimal Decoding
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✤  Maximum Likelihood:   
if we know P[r|s] (the encoding model),  
choose the stimulus s that has maximal probability of having 
generated the observed response, r.

1. Optimal Decoding (supposing we know P[r|s])
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✤  Maximum Likelihood:   
if we know P[r|s] (the encoding model),  
choose the stimulus s that has maximal probability of having 
generated the observed response, r.
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✤  Maximum Likelihood:   
if we know P[r|s] (the encoding model),  
choose the stimulus s that has maximal probability of having 
generated the observed response, r.

1. Optimal Decoding (supposing we know P[r|s])
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✤  Maximum a Posteriori:   
if we know P[r|s] and have a prior on s, P[s],  
choose the stimulus s that is most likely, given r.

ŝ = argmaxsP (s|r) = argmaxsP [r|s]P [s]

1. Optimal Decoding (supposing we know P[r|s])
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Simpler  
Decoders

- It might be that, as experimentalist, we don’t know have 
access to full knowledge of P[r|s].  
- The brain itself might not be able to perform such complex 
computations when mapping information from one stage to 
another.  
=> we need to consider simpler decoding strategies.
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2. Simpler Decoding Strategies

 Winner Take All :  

If we know the preferred orientation of all neurons, 
choose the preferred orientation of the neuron that responds most. 
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2. Simpler Decoding Strategies

A more efficient alternative, if we 
know the preferred orientation 
of all neurons, 

−180 −90 0 90 180
0

25

50

θ
test

 R
e
s
p

o
n

s
e
s

A − Tuning Curves

−180 −90 0 90 180

0

25

50

θ
test

B − Population Response

preferred orientation

sp
ik

es
/s

0

90

180

-90

 Population Vector 

  

 

2. Simpler Decoding Strategies

−180 −90 0 90 180
0

25

50

θ
test

 R
e
s
p

o
n

s
e
s

A − Tuning Curves

−180 −90 0 90 180

0

25

50

θ
test

B − Population Response

preferred orientation

sp
ik

es
/s

0

90

180

-90

 Population Vector 

  

 

2. Simpler Decoding Strategies



−180 −90 0 90 180
0

25

50

θ
test

 R
e
s
p

o
n

s
e
s

A − Tuning Curves

−180 −90 0 90 180

0

25

50

θ
test

B − Population Response

preferred orientation

sp
ik

es
/s

0

90

180

-90

 Population Vector 
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2. Simpler Decoding Strategies

2. Simpler decoding strategies:  
Optimal Decoders within a class 

Optimal decoders often requires much too much data  (full model P[r|s]), 
seem too complex: 

The question then is the cost of using non-optimal decoders, such as  
WTA or population vector, also sometimes considering optimal decoders 
within a class: 

- Linear Decoders, eg. OLE, [Salinas and Abbott 1994]  
 
- Decoders that ignore the correlations (decode with the “wrong model” 
which assumes independence) [Nirenberg  & Latham 2000, Wu et al 2001, 
Seriès et al 2004] 
 
In practice also: supervised learning strategies, e.g. SVM. 

ŝ =
�

i

wiri

Use of simple decoding methods for prosthetics

• Brain-machine interface usually use very simple decoding techniques, 
such as linear filters  

• and they show promising results 
• as well as surprising learning effects:  dissociating BMI control from motor 

control, i.e., animals started controlling the robotic arm without any overt 
movement.  

See eg. lab of M. Nicolelis @ Duke, and A. Schwartz @ Pittsburg

https://www.youtube.com/watch?v=_arFi-IfYc4 
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Neuronal ensemble control of prosthetic
devices by a human with tetraplegia
Leigh R. Hochberg1,2,4, Mijail D. Serruya2,3, Gerhard M. Friehs5,6, Jon A. Mukand7,8, Maryam Saleh9†,
Abraham H. Caplan9, Almut Branner10, David Chen11, Richard D. Penn12 & John P. Donoghue2,9

Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing
movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To
translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after
spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent.
Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables
useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity
recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion
modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a ‘neural
cursor’ with which MN opened simulated e-mail and operated devices such as a television, even while conversing.
Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-
jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity
could provide a valuable new neurotechnology to restore independence for humans with paralysis.

Hundreds of thousands of people suffer from forms of motor
impairment in which intact movement-related areas of the brain
cannot generate movements because of damage to the spinal cord,
nerves, or muscles1. Paralysing disorders profoundly limit indepen-
dence, mobility and communication. Current assistive technologies
rely on devices for which an extant function provides a signal that
substitutes for missing actions. For example, cameras can monitor
eye movements that can be used to point a computer cursor2.
Although these surrogate devices have been available for some
time, they are typically limited in utility, cumbersome to maintain,
and disruptive of natural actions. For instance, gaze towards objects
of interest disrupts eye-based control. By contrast, an NMP is a
type of brain–computer interface (BCI) that can guide movement
by harnessing the existing neural substrate for that action—that is,
neuronal activity patterns in motor areas. An ideal NMP would
provide a safe, unobtrusive and reliable signal from the discon-
nected motor area that could restore lost function. Neurons in the
primary motor cortex (MI) arm area of monkeys, for example,
provide information about intended arm reaching trajectories3–5,
but this command signal would work for an NMP only if neural
signals persist and could be engaged by intention in paralysed
humans.
In concept, NMPs require a sensor to detect the activity of multiple

neurons, a decoder to translate ensemble firing patterns into motor
commands, and, typically, a computer gateway to engage effectors.
BrainGate (Cyberkinetics, Inc.) is an NMP system under development

and in pilot trials in people with tetraparesis from spinal cord injury,
brainstem stroke, muscular dystrophy, or amyotrophic lateral sclero-
sis. Currently, this system consists of a chronically implanted sensor
and external signal processors developed from preclinical animal
studies (see Methods)6–8. The participant described in this report, the
first in the BrainGate trial, is a 25-yr-old male (MN) who sustained a
knife wound in 2001 that transected the spinal cord between cervical
vertebrae C3–C4, resulting in complete tetraplegia (C4 ASIA A)9. The
array was implanted in June 2004 into the MI arm area ‘knob’10, as
identified on pre-operative magnetic resonance imaging (MRI)
(Fig. 1c). Post-operative recovery was uneventful. The data presented
here are derived from 57 consecutive recording sessions from
14 July 2004 to 12 April 2005 (9months).

Signal quality and variety
Action potentials were readily observable on multiple electrodes,
indicating that MI neural spiking persists three years after SCI, as
suggested indirectly by functional MRI data11–14. Recorded signals
ranged from qualitatively well-isolated single neurons to mixtures of
a few different waveforms (Fig. 2a). Different waveform shapes were
identified visually, using standard time-amplitude windows, but
there was no further attempt to distinguish between well isolated
and intermixed waveforms, both of which we refer to in this report as
‘units’. An average of 26.9 ^ 14.2 units were observed each day
(range 3–57), with mean peak-to-peak spike amplitudes of
76.4 ^ 25.0 mV (mean ^ s.d., n ¼ 56 sessions) (see Supplementary

ARTICLES

1Department of Neurology, Massachusetts General Hospital, Brigham and Women’s Hospital, and Spaulding Rehabilitation Hospital, Harvard Medical School, 55 Fruit Street,
Boston, Massachusetts 02114, USA. 2Department of Neuroscience and Brain Science Program, and 3Department of Engineering, Brown University, PO Box 1953, Providence,
Rhode Island 02912, USA. 4Center for Restorative and Regenerative Medicine, Rehabilitation Research and Development Service, Department of Veterans Affairs, Veterans
Health Administration, 830 Chalkstone Avenue, Providence, Rhode Island 02908, USA. 5Department of Clinical Neurosciences (Neurosurgery), Brown University, and
6Department of Neurosurgery, Rhode Island Hospital, 120 Dudley Street, Suite 103, Providence, Rhode Island 02905, USA. 7Department of Rehabilitation Medicine, Brown
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Use of simple decoding methods for prosthetics, in 
monkey and now also humans: 

http://www.bbc.co.uk/news/health-18092653

BrainGate technology: 
- clinical trials 2004-2006 in individuals with tetraplegia, show they can 

control a cursor by thought.  
- 2012: two people paralysed by brainstem stroke several years earlier 

were able to control robotic arms for reaching and grasping

22

https://www.youtube.com/watch?v=Z3a5u6djGnE 

• The story of Jan Sheuermann. 

• Diagnosed with spinocerebellar 
degeneration, she was only able 
to move her head and neck. 
 

• in 2012, she seized an opportunity 
to turn her personal liability into an 
extraordinary asset for 
neuroscience: She elected to 
undergo brain surgery to implant 
two arrays of electrodes on her 
motor cortex

•  used for increasingly complex 
tasks, in 2015 flying a F-35 flight 
Simulator with Her Mind

23

http://www.youtube.com/watch?v=ZuATvhlcUU4

Neural Prosthetics: Krishna Shenoy at TEDxStanford

http://www.youtube.com/watch?v=CR_LBcZg_84

Miguel Nicolelis: A monkey that controls a robot with its thoughts.
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Decoding in humans from fMRI signals

• Decoding techniques are increasingly used with fMRI signals, e.g. to 
decode the movie you’re viewing (Jack Gallant, http://www.youtube.com/
watch?v=6FsH7RK1S2E), or what class of objects you’re thinking about, 
http://www.youtube.com/watch?v=6FsH7RK1S2E 

• Classification task - pure machine learning ! (videolectures.net/
fmri06_mitchell_odmsp/)  
Often used, support vector machines. 
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some ethical questions too …  
lie detection: fMRI now better than 
polygraphs?
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A- 'Unaware'

Fixed !
!

Decoder

Adaptation!

 State

Population !

Response

Encoder!!! r

B- 'Aware'

Adaptive !
!

Decoder

Adaptation!

 State

Population !

Response

Encoder!!! r

s ŝ
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Decoding:  Summary of previous slides

✤  Decoding: for neuro-prostheses and/or for understanding the relationship 
between the brain’s activity and perception or action 

✤ Different strategies are possible: optimal decoders (e.g. ML, MAP) vs simple 
decoders (e.g. winner take all, population vector), depending on what we know 
about the encoding model, and constraints. 

✤ Exciting applications : Brain Machine interfaces (BMI), fMRI analysis. 

Now: Decoding as a tool for understanding the 
link between the properties of neurons, the 

precision of the code and behavioural 
performances
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✴ How can we relate this model of perception with measured 
psychophysical performance? 

✴ Can we reverse-engineer information about the encoder and decoder 
based on experimental data ?
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From Population Codes to Psychophysical Performances
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A little detour

Estimation theory 101:  

 
Estimation theory: the branch of statistics that deals with 

estimating the values of parameters based on measured 

empirical data that has a random component. 
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Performances of our model estimator 
(Estimation theory 101)
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• 1) Bias. 
  

If                         the estimator is said to be unbiased.  

b(s) = E(ŝ|s)� s

E(ŝ|s) = s

Measuring the performances of our model estimator 
(Estimation theory 101)

• 2) Variance 
 
If var = as small as possible, the (unbiased) estimator is said to be efficient 
 
The smallest possible variance is given by the Cramér-Rao Bound. 
The denominator is known as Fisher Information, a function of P[r|s]. 

var(ŝ)
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var(ŝ) � (1 + b�(s))2

IF (s)

Measuring the Performances of our model estimator 
(Estimation theory 101)

IF (s) = � <
⇤2lnP [r|s]

⇤s2
>where

estimator



• As a consequence, the best possible estimator is  
- unbiased, 
- have a variance defined by (the inverse of) Fisher Information. 
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Measuring the Performances of our model estimator 
(Estimation theory 101)

estimator

What is Being Measured in Psychophysics ?

s

ŝ

Estimation tasks

a) Estimation tasks

Tilt after-effet Fraser Illusion

Poggendorf 
Illusion

Stare at this 
for 20 sec

Then look at 
that Zollner Illusion

✴ The measured quantity is the (average) difference between the 

perceived orientation and the real orientation < ŝ > �s

b) Discrimination Tasks

✴ Is the second grating of the same 
orientation as the first grating, or a different 
orientation? 

✴ The measured quantity is the Discrimination 
Threshold  a.k.a Just Noticeable difference (JND) 
- on average detected on 76% of the trials.



b) Discrimination Tasks

✴ Is the second grating of the same 
orientation as the first grating, or a different 
orientation? 

✴ The measured quantity is the Discrimination 
Threshold  a.k.a Just Noticeable difference (JND) 
- on average detected on 76% of the trials.

Discrimination threshold depends on the overlap 
between the internal ‘representation’ of the 2 
stimuli: p[ŝ1|r] and p[ŝ2|r]: 
• The bias of the internal representation  
(expansion/contraction of the ‘distance’ between 
the stimuli) 
• How noisy the internal representation is (the 
variance of the estimates)

<ŝ1> <ŝ2>

<ŝ1> <ŝ2>

ŝ1 ŝ2 var(ŝ)
b(ŝ) =< ŝ > �s

Linking the statistics of the model and psychophysics
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ŝ1

ŝ2
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perceptual bias

discrimination threshold (76% 
correct) 
just noticeable difference

threshold(ŝ) =
std(ŝ)

1 + b�(ŝ)

Fisher information: the best possible discrimination 
performance for a given encoder model

✴ Interpreted as a measure of ‘information’ in the responses; 
✴  is related with Mutual information and Stimulus Specific Information (Brunel 
and Nadal 1998, Yarrow, Challis and Seriès 2012).

IF (s) = � <
⇤2lnP [r|s]

⇤s2
>

✴ Fisher information: gives the discrimination threshold that would be obtained 
(asymptotically) by an optimal decoder, for eg. ML (units of var ^-1) 

✴ is expressed in terms of the encoding model P[r|s], i.e.  in terms of the tuning 
curves and the noise

threshold(ŝ) � 1�
IF (s)

P (n = k|s) =
e�f(s)f(s)k

k!

I(s) =
�

i

f �
i(s)2

fi(s)
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From Population Responses to Psychophysics
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Response

 Two strategies: 
✴ Assume the decoder is optimal: Compute Fisher information from P[r|s].  This 
gives us the minimal possible variance of any unbiased decoder, and the minimal 
threshold of any decoder (biased or unbiased). 
✴ Construct explicitly the decoder (e.g. population vector). Compute explicitly bias, 
variance, and threshold of estimates.

P [r|s]
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var(ŝ) � 1
IF (s)

‣ Number of neurons? 
‣Tuning curves shape ? 
‣ Noise correlations ?

Questions that we can explore: 
What changes in encoder would increase discrimination performances?

thres(ŝ) � 1�
IF (s)

From Population Responses to Psychophysics
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Sharpening of tuning 
curve
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Aging? Disease ? 
Drugs? Lack of sleep?

Response 
variance from 

trial to trial

For independent neurons, FI of the 
population is the sum of each 
neurons’ FI

Slope 2

variance

What are the factors that control performance?

Ii(s) =
f �

i(s)2

fi(s)

I(s) =
�

i

f �
i(s)2

fi(s)

✴ Fisher information formalises intuition and provides a tool to explore 
these questions precisely. 

✴ For Poisson noise 

IF (s) = f ⇥(s)Q�1(s)f ⇥(s) +
1
2
Trace[Q�1(s)Q⇥(s)Q�1(s)Q⇥(s)]

For correlated neurons, FI is modulated by 
correlations. 

What are the factors that control performance?

P [r|s] =
1�

(2�)N |Q(s)|
e�

1
2 (r�f(s))TQ�1(s)(r�f(s)))

For Gaussian correlated noise:

I(s) =
X

i

f 0
i(s)

2

�2
i (s)

For Gaussian uncorrelated noise:

Research questions (1)

✴ What would be the ‘optimal’ shape for tuning curves? 
✴ Are adaptation, attention and learning a step towards more ‘optimal’ tuning 
curves for the attended/trained stimulus ? 

[Dean, Harper & McAlpine, Nature Neuro,  2005]

Neurons in auditory midbrain of the guinea pig adjust their response to improve the 
accuracy of the code close to the region of most commonly occurring sound levels.



Research questions (2)

✴ How many neurons participate in a psychophysical task ? (see also, lab 1) 
1, 10, 100, 10000? How can we find out ?  
✴ comparing performance (e.g. MT: Britten et al 1992; Stuttgen & Schwartz 
2008). stimulating (MT: Salzman, Britten, Newsome 1990).

Houweling & Brecht, Nature, 2008 
Barrel cortex single cell stimulation.

Research questions (3)

✴ Pooling from large populations of neurons thought to be a way to 
average out the noise. 
✴ Pairs of neurons show correlations in their variability: does pooling 
more and more neurons increases (linearly) the accuracy of the 
representation?  
or  Is information saturating over a certain number of neurons ? 
[Zohary et al 1994] 

✴ Could that be that adaptation,  attention  and perceptual learning 
act by changing correlations? [Cohen & Maunsell 2009; Gutnisky & 
Dragoi 2008, Gu et al 2011, Bejjanki et al 2011]

Research questions (4)

✴ Can the study of illusions inform us on the type of ‘decoder’ 
that is used in the brain?  [Seriès, Stocker and Simoncelli 2009]

Sensory Adaptation 

Verify that this grating is vertical



Sensory Adaptation 

Fixate on the central circle for 30 sec

Sensory Adaptation 

Now observe the grating again

The Tilt After-Effect

Visual Adaptation: Psychophysics

Visual adaptation leads to: 
❖ estimation tasks:  strong biases (mainly repulsion)                    

Repulsion
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Visual adaptation leads to: 
❖ estimation tasks:  strong biases  (mainly repulsion)                    

Visual Adaptation: Psychophysics
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Visual adaptation leads to: 
❖ estimation tasks: strong biases  (mainly repulsion) 
❖ discrimination tasks:  changes in performance                   

Visual Adaptation: Psychophysics Visual Adaptation: Physiology

Mainly a Gain change  
[Van Wezel & Britten 2002, Krekelberg et 
al. 2006] 
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Other effects are controversial, 
dependent on time scale and area: 
shifts in preferred orientation, 
changes in width, changes in 
variability. 
[Kohn & Movshon 2004, Dragoi et 
al, 2000]
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Neural activity and perception are both affected by sensory history. The
work presented here explores the relationship between the physiological
effects of adaptation and their perceptual consequences. Perception is
modeled as arising from an encoder-decoder cascade, in which the en-
coder is defined by the probabilistic response of a population of neurons,
and the decoder transforms this population activity into a perceptual es-
timate. Adaptation is assumed to produce changes in the encoder, and
we examine the conditions under which the decoder behavior is con-
sistent with observed perceptual effects in terms of both bias and dis-
criminability. We show that for all decoders, discriminability is bounded
from below by the inverse Fisher information. Estimation bias, on the
other hand, can arise for a variety of different reasons and can range from
zero to substantial. We specifically examine biases that arise when the
decoder is fixed, “unaware” of the changes in the encoding population
(as opposed to “aware” of the adaptation and changing accordingly). We
simulate the effects of adaptation on two well-studied sensory attributes,
motion direction and contrast, assuming a gain change description of en-
coder adaptation. Although we cannot uniquely constrain the source of
decoder bias, we find for both motion and contrast that an “unaware” de-
coder that maximizes the likelihood of the percept given by the preadap-
tation encoder leads to predictions that are consistent with behavioral
data. This model implies that adaptation-induced biases arise as a result
of temporary suboptimality of the decoder.

Neural Computation 21, 3271–3304 (2009) C⃝ 2009 Massachusetts Institute of Technology

3276 P. Seriès, A. Stocker, and E. Simoncelli

Figure 1: Encoding-decoding framework for adaptation. The encoder repre-
sents stimulus s using the stochastic responses of a neural population, r. This
mapping is affected by the current adaptation state, and the responses can also
affect the adaptation state. Two types of decoders can be considered. (A) An
aware decoder knows of the adaptive state of the encoder and can adjust it-
self accordingly. Note that although the diagram implies that the adaptation
state must be transmitted via a separate channel, it might also be possible to
encode it directly in the population response. (B) An unaware decoder is fixed
and ignores any adaptive changes in the encoder.

assume an unaware ML decoder, denoted MLunaw , which selects as an esti-
mate the stimulus that maximizes the probability of the observed response
under the preadaptation encoding model Ppre(r | s).

In conclusion, two distinct types of decoder, “aware” and “unaware,”
have been related to measures of discriminability or estimation, respec-
tively: biases in estimation have typically been explained using fixed (and
thus, unaware) decoders such as the population vector (see e.g., Jin et al.,
2005), whereas discriminability has typically been studied using the Fisher
information, which implicitly assumes an unbiased (and thus, in most cases,
aware) estimator. However, no consistent account has been provided of
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Summary

✤  The efficiency of Estimators / Decoders can be characterized by the bias 
and the variance. 

✤ The bias and variance of estimators used to read-out neural responses can 
be easily compared with psychophysical performance (estimation biases, 
and discrimination threshold). 

✤ Fisher Information is related to the minimal variance of a unbiased estimator. 
✤ In a model of a population of neurons, Fisher Information can be expressed 

in terms of the tuning curves and the noise. 
✤ Fisher information can be used to relate population responses and 

discrimination performances. It gives a bound on the discrimination 
threshold 

✤ Fisher Information can be used to explore the factors that impact on the 
precision of the code / behavioral performances. 

 


