Decoding populations of neurons

2. Decoding (continued)

Readings: Decoding D&A ch.3

In response to a stimulus with unknown orientation s, we observe a
pattern of activity r (e.g. in V1). What can we say about s given r?
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1. Optimal Decoding

1. Optimal Decoding (supposing we know P[r|s])
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4 Maximum Likelihood:
if we know P[r|s] (the encoding model),
choose the stimulus s that has maximal probability of having
generated the observed response, r.

§ = argmax,P(r|s)
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1. Optimal Decoding (supposing we know P[r|s])

*+ Maximum Likelihood:
if we know P[r|s] (the encoding model),
choose the stimulus s that has maximal probability of having
generated the observed response, r.

§ = argmax,P(r|s)
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1. Optimal Decoding (supposing we know P[r|s])

+ Maximum Likelihood:
if we know P[r|s] (the encoding model),
choose the stimulus s that has maximal probability of having
generated the observed response, r.

§ = argmax P(r|s)
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1. Optimal Decoding (supposing we know P[r|s])

4+ Maximum a Posteriori:
if we know P[r|s] and have a prior on s, P[s],
choose the stimulus s that is most likely, given r.

§ = argmax, P(s|r) = argmaxP|r|s|P[s]
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- It might be that, as experimentalist, we don’t know have
access to full knowledge of P[r|s].

- The brain itself might not be able to perform such complex
computations when mapping information from one stage to
another.

=> we need to consider simpler decoding strategies.
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2. Simpler Decoding Strategies

Winner Take All :

If we know the preferred orientation of all neurons,
choose the preferred orientation of the neuron that responds most.
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2. Simpler Decoding Strategies

90
Population Vector

A more efficient alternative, if we
know the preferred orientation
of all neurons,
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2. Simpler decoding strategies:
Optimal Decoders within a class

Use of simple decoding methods for prosthetics

Optimal decoders often requires much too much data (full model P[r|s]),
seem too complex:

The question then is the cost of using non-optimal decoders, such as

WTA or population vector, also sometimes considering optimal decoders
within a class:

- Linear Decoders, eg. OLE, [Salinas and Abbott 1994] § = Z w;T;
%

- Decoders that ignore the correlations (decode with the “wrong model”

which assumes independence) [Nirenberg & Latham 2000, Wu et al 2001,

Seriés et al 2004]

In practice also: supervised learning strategies, e.g. SVM.

Brain-machine interface usually use very simple decoding techniques,
such as linear filters

and they show promising results

as well as surprising learning effects: dissociating BMI control from motor
control, i.e., animals started controlling the robotic arm without any overt
movement.

See eg. lab of M. Nicolelis @ Duke, and A. Schwartz @ Pittsburg

https://www.youtube.com/watch?v=_arFi-IfYc4




Use of simple decoding methods for prosthetics, in
monkey and now also humans:

BrainGate technology:

- clinical trials 2004-2006 in individuals with tetraplegia, show they can
control a cursor by thought.

- 2012: two people paralysed by brainstem stroke several years earlier
were able to control robotic arms for reaching and grasping

hitp://www.bbe.co.uk/news/health-18092653

namre Vol 442113 uy 2006 doi10.1038/mature0a070

ARTICLES LETTER

Reach and grasp by people with tetraplegia using a
neurally contro]]ed robotic arm
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Neuronal ensemble control of prosthetic
devices by a human with tetraplegia
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TED.

Miguel Nicolelis: A monkey that controls a robot with its thoughts.

http://www.youtube.com/watch?v=CR_LBcZg 84
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Neural Prosthetics: Krishna Shenoy at TEDxStanford
http://www. .com/watch?v=ZuATvhl 4

® The story of Jan Sheuermann.

¢ Diagnosed with spinocerebellar
degeneration, she was only able
to move her head and neck.

and service to them, what an honor. Elizabeth Tyler-Kabara: What

Breakthrough: Robotic limbs moved by the mind

€BS News
®CBs

® in 2012, she seized an opportunity M Ry e 3739 ews
to turn her personal liability into an e A A
extraordinary asset for
neuroscience: She elected to
undergo brain surgery to implant
two arrays of electrodes on her
motor cortex

¢ used for increasingly complex
tasks, in 2015 flying a F-35 flight
Simulator with Her Mind

https://www.youtube.com/watch?v=Z: iGnE
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Decoding in humans from fMRI signals

» Decoding techniques are increasingly used with fMRI signals, e.g. to
decode the movie you're viewing (Jack Gallant, http://www.youtube.com/
watch?v=6FsH7RK1S2E), or what class of objects you’re thinking about,
http://www.youtube.com/watch?v=6FsH7RK1S2E

* Classification task - pure machine learning ! (videolectures.net/
fmri06_mitchell odmsp/)
Often used, support vector machines.

Haynes' research shows that its possible to deter-
mine a subject’s intentions—in this case, whether the person
was preparing to perform an addition or a subtraction—by
reading brain-activity patterns. Activity patterns in the green
regions predicted covert intentions before the subject began
to perform the calculation. The regions marked in red revealed

intentions that were already being acted upon. (Photo courtesy
of Bernstein Center for Computational Neuroscience.)




some ethical questions too ...
lie detection: fMRI now better than
polygraphs?

JClin Psyehiatry. 2016 Oct77(10):1372-1380. doi: 10.4088/JCP.15mOGT8S.
F ind F Imaging in Lie D AC Blind
Comparison Using the Concealed Information Test.

Langleben DD'2*, Hakun JG*, Seelig D2 Wang AL?, Ruparel K2, Bilker W82, Gur RC%?.

@ Author information

Abstract
OBJECTIVE: Intentional deception is a common act that often has detrimental social, legal, and ciinical implications. In the last decade, brain
activation patterns associated with deception have been mapped with functional magnetic resonance imaging (MRI), significantly expanding
our theoretical understanding of the phenomenon. However, despite substantial criticism, polygraphy remains the only biological method of lie
detection in practical use today. We conducted a blind, prospective, and controlled within-subjects study to compare the accuracy of fMRI and
polygraphy in the detection of concealed information. Data were collected between July 2008 and August 2009,

METHOD: Participants (N = 28) secretly wrote down a number between 3 and 8 on a slip of paper and were questioned about what number
they wrote during consecutive and counterbalanced fMRI and polygraphy sessions. The Concealed Information Test (CIT) paradigm was
used to evoke deceptive responses about the concealed number. Each participant's preprocessed fMRI images and 5-channel polygraph
data were independently evaluated by 3 fMRI and 3 polygraph experts, who made an independent determination of the number the
participant wrote down and concealed

RESULTS: Using a logistic regression, we found that fMRI experts were 24% more likely (relative risk = 1.24, P < .001) to detect the

concealed number than the polygraphy experts. Incidentally, when 2 out of 3 raters in each modality agreed on a number (N = 17), the

combined accuracy was 100%.

CONCLUSIONS: These data justify further evaluation of fMRI as a potential alterative to polygraphy. The sequential or concurrent use of
psychophysiology and neurcimaging in lie detection also deserves new consideration. 25

Decoding: Summary of previous slides

+ Decoding: for neuro-prostheses and/or for understanding the relationship
between the brain’s activity and perception or action

+ Different strategies are possible: optimal decoders (e.g. ML, MAP) vs simple
decoders (e.g. winner take all, population vector), depending on what we know
about the encoding model, and constraints.

+ Exciting applications : Brain Machine interfaces (BMI), fMRI analysis.
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Now: Decoding as a tool for understanding the
link between the properties of neurons, the
precision of the code and behavioural
performances
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tuning curve model
noise model

* How can we relate this model of perception with measured
psychophysical performance?

* Can we reverse-engineer information about the encoder and decoder
based on experimental data ?




A little detour

Estimation theory 101:

Estimation theory: the branch of statistics that deals with
estimating the values of parameters based on measured

empirical data that has a random component.

Performances of our model estimator
(Estimation theory 101)

// S =>| Encoder IZ>®I:> estimafor = S

Measuring the performances of our model estimator
(Estimation theory 101)

Measuring the Performances of our model estimator
(Estimation theory 101)

// S =>|  Encoder ':>®|:> estimafor = §1

1) Bias. b(s) = E(3]s) — s

If E(5]s) =5 the estimator is said to be unbiased.

// S = Encoder ':>®|:> estimator  |E=> §1

» 2) Variance var(.§)

If var = as small as possible, the (unbiased) estimator is said to be efficient

The smallest possible variance is given by the Cramér-Rao Bound.
The denominator is known as Fisher Information, a function of P[r|s].

var(§) > W where Ip(s) = — < % >




Measuring the Performances of our model estimator
(Estimation theory 101)

What is Being Measured in Psychophysics ?

S- Encoder ‘@» estimator  |E=> ,§1

As a consequence, the best possible estimator is

- unbiased,
- have a variance defined by (the inverse of) Fisher Information.

Estimation tasks

a) Estimation tasks

b) Discrimination Tasks

> The measured quantity is the (average) difference between the

perceived orientation and the real orientation < S > —8

I SS8

Stare at this
for 20 sec Ther;'::;)k at Zollner lllusion

Tilt after-effet

Fraser lllusion

Poggendorf
lllusion

* Is the second grating of the same
orientation as the first grating, or a different
orientation?

Test (500 ms)

* The measured quantity is the Discrimination
Threshold a.k.a Just Noticeable difference (JND)
- on average detected on 76% of the trials.

Fixation (500 ms)




b) Discrimination Tasks

> Is the second grating of the same
// orientation as the first grating, or a different
orientation?

|meg

fest (500 ms)

e // Doy 600550 me) * The measured quantity is the Discrimination
EE e Threshold a.k.a Just Noticeable difference (JND)

ey “ - on average detected on 76% of the trials.

Discrimination threshold depends on the overlap ) S

igh noise,
between the internal ‘representation’ of the 2 Iotgs of overiap
stimuli: p[S4|r] and p[S2|r]:

* The bias of the internal representation

. . e , <§1> <§>
(expansion/contraction of the ‘distance’ between Low noise
the stimuli) not much overlap
* How noisy the internal representation is (the
variance of the estimates) <§1> <§p>
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Linking the statistics of the model and psychophysics

b(§) =<5§> -85 «—> perceptual bias

var($§)

discrimination threshold (76%
correct)

just noticeable difference

threshold(§) = % D
S

Fisher information: the best possible discrimination
performance for a given encoder model

* Fisher information: gives the discrimination threshold that would be obtained
(asymptotically) by an optimal decoder, for eg. ML (units of var #-1)
1
threshold(§) > ——
Ir(s)

* is expressed in terms of the encoding model P[r|s], i.e. in terms of the tuning
curves and the noise

2 e
IF(S):—<M%W> eg P(r=Fhls)=———"
3 V0
I(s) = Z )

* Interpreted as a measure of ‘information’ in the responses;
* is related with Mutual information and Stimulus Specific Information (Brunel
and Nadal 1998, Yarrow, Challis and Series 2012).

From Population Responses to Psychophysics

Two strategies:

* Assume the decoder is optimal: Compute Fisher information from P[r|s]. This
gives us the minimal possible variance of any unbiased decoder, and the minimal
threshold of any decoder (biased or unbiased).

* Construct explicitly the decoder (e.g. population vector). Compute explicitly bias,
variance, and threshold of estimates.
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From Population Responses to Psychophysics

Population
Response
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R
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Questions that we can explore:
What changes in encoder would increase discrimination performances?
» Number of neurons?

»Tuning curves shape ?
» Noise correlations ?

What are the factors that control performance?
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What are the factors that control performance?

Sharpening or
Gain @ e [
modulation

Response
variance from
trial to trial

Aging? Disease ?
Drugs? Lack of sleep?

Responses (spk/s)
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Orientation ()
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What are the factors that control performance?

* Fisher information formalises intuition and provides a tool to explore
these questions precisely.

* For Poisson noise

Si 2
(s) = B0 =
i =
fi (S) variance
/(s 2 For independent neurons, Fl of the
I<5) = Z l( ) population is the sum of each
Z(S) neurons’ Fl

What are the factors that control performance?

For Gaussian uncorrelated noise:
! 2
1(s) = 3 1L
PR (s)

For Gaussian correlated noise:

Plr|s] = 1 et e ee)

2m)NQ(s)|
Ip(s) = f'(s)Q 7 (s)f'(s) + %Trace[Q_l(S)Q’(S)Q_l(S)Q'(S)]

For correlated neurons, Fl is modulated by
correlations.

Research questions (1)

* What would be the ‘optimal’ shape for tuning curves?
* Are adaptation, attention and learning a step towards more ‘optimal’ tuning
curves for the attended/trained stimulus ?

da

160 mn
0.07 ) 0%
0.06 § 120 0.06 %.
5005 a 3
5 0.04 o 80 0.04 3
<2 0.03 o >
T 0,02 2 40 0.02 2
0.01 © i =
0 - : - : 0 %
20 30 40 50 60 70 80 90 100 20 40 60 80 100 ~

Sound level (dB SPL) Sound level (dB SPL)

Neurons in auditory midbrain of the guinea pig adjust their response to improve the
accuracy of the code close to the region of most commonly occurring sound levels.

[Dean, Harper & McAlpine, Nature Neuro, 2005]




Research questions (2)

Research questions (3)

* How many neurons participate in a psychophysical task ? (see also, lab 1)
1, 10, 100, 10000? How can we find out ?

* comparing performance (e.g. MT: Britten et al 1992; Stuttgen & Schwartz
2008). stimulating (MT: Salzman, Britten, Newsome 1990).

b Single-cell stimulation

LCATR RS
cr R
IR B I TP
04

Catch trials
8].#;‘[..\‘,\' U]
ol

Microstimulation

Houweling & Brecht, Nature, 2008 =

Barrel cortex single cell stimulation.

1 Time(s)

* Pooling from large populations of neurons thought to be a way to
average out the noise.

* Pairs of neurons show correlations in their variability: does pooling
more and more neurons increases (linearly) the accuracy of the
representation?

or Is information saturating over a certain number of neurons ?
[Zohary et al 1994]

* Could that be that adaptation, attention and perceptual learning
act by changing correlations? [Cohen & Maunsell 2009; Gutnisky &
Dragoi 2008, Gu et al 2011, Bejjanki et al 2011]

Research questions (4)

* Can the study of illusions inform us on the type of ‘decoder’
that is used in the brain? [Seriés, Stocker and Simoncelli 2009]

Sensory Adaptation

Verify that this grating is vertical

[l




Sensory Adaptation

Fixate on the central circle for 30 sec

Sensory Adaptation

Now observe the grating again

il

Visual Adaptation: Psychophysics

Visual adaptation leads to:
+ estimation tasks: strong biases (mainly repulsion)

Visual Adaptation: Psychophysics
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Visual adaptation leads to:
<+ estimation tasks: strong biases (mainly repulsion)
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Visual Adaptation: Psychophysics

Visual adaptation leads to:
% estimation tasks: strong biases (mainly repulsion)

< discrimination tasks: changes in performance

Visual Adaptation: Physiology
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Other effects are controversial,
dependent on time scale and area:
shifts in preferred orientation,

Mainly a Gain change
[Van Wezel & Britten 2002, Krekelberg et
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Is the Homunculus “Aware” of Sensory Adaptation?
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Neural activity and perception are both affected by sensory history. The B- "Unaware’

work presented here explores the relationship between the

effects of adaptation and their percep is

modeled as arising from an encoder-decoder cascade, in which the en-
coder s defined by the probabilistic response of a population of neurons,
and the decoder transforms this population activity into a perceptual es-
timate. Adaptation is assumed to produce changes in the encoder, and
we examine the conditions under which the decoder behavior is con-
sistent with observed perceptual effects in terms of both bias and dis-
criminability. We show that for all decoders, discriminability is bounded
from below by the inverse Fisher information. Estimation bias, on the
other hand, can arise for a variety of different reasons and can range from
ze10 to substantial. We specifically examine biases that arise when the

TN
= (T)=>

Population

decoder is fixed, “unaware” of the changes in the encoding population Response
(as opposed to “aware” of the ion and changing We
simulate the effects of adaptation on two well-studied sensory attribut

motion direction and contrast, assuming a gain change description of en-
coder adaptation. Although we cannot uniquely constrain the source of
decoder bias, we find for both motion and contrast that an “unaware” de-
coder that maximizes the likelihood of the percept given by the preadap-
tation encoder leads to i that are witl

data. This model implies that adaptation-induced biases arise as a result
of temporary suboptimality of the decoder.
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al. 2006] - .
changes in width, changes in
variability.

[Kohn & Movshon 2004, Dragoi et
al, 2000]
Results (2) -- ‘unaware’ read-out
Bias [Standard Threshold
Deviation] Ratio
ML unaware

(Iy)~2

PV simulations

WTA
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[Series, Stocker and Simoncelli, 2009]




Summary

+ The efficiency of Estimators / Decoders can be characterized by the bias
and the variance.

* The bias and variance of estimators used to read-out neural responses can
be easily compared with psychophysical performance (estimation biases,
and discrimination threshold).

+ Fisher Information is related to the minimal variance of a unbiased estimator.

* In a model of a population of neurons, Fisher Information can be expressed
in terms of the tuning curves and the noise.

+ Fisher information can be used to relate population responses and
discrimination performances. It gives a bound on the discrimination
threshold

+ Fisher Information can be used to explore the factors that impact on the
precision of the code / behavioral performances.




