Decoding: Summary of previous slides

Measuring the performances of our model estimator
(Estimation theory 101)

+ Decoding: for neuro-prostheses and/or for understanding the relationship between the

brain’s activity and perception or action

+ Different strategies are possible: optimal decoders (e.g. ML, MAP) vs simple decoders
(e.g. winner take all, population vector), depending on what we know about the
encoding model, and constraints.

*+ Promising applications, Brain Machine interfaces (BMI), fMRI analysis.
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1) Bias. b(s) = E(§]s) — s

If E(3]s) =5 the estimator is said to be unbiased.

Measuring the Performances of our model estimator
(Estimation theory 101)
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2) Variance var(§)
If var = as small as possible, the (unbiased) estimator is said to be efficient

The smallest possible variance is given by the Cramér-Rao Bound.
The denominator is known as Fisher Information, a function of P[r|s].
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Measuring the Performances of our model estimator
(Estimation theory 101)
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* As a consequence, the best possible estimator:

- is unbiased,
- has a variance defined by (the inverse of) Fisher Information.




Comparing different decoding schemes? (cf. assignment)
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« We can use modelling to explore theoretically the different
methods for decoding from populations of neurons:
- Bias?
- Variance?
- are they optimal ? How does the variance compare to 1/
I_Fisher?

Fisher information: the best possible discrimination
performance for a given encoder model

* Fisher information: gives the discrimination threshold that would be obtained
(asymptotically) by an optimal decoder, for eg. ML (units of var *-1)

*Interpreted as a measure of ‘information’ in the neurons, in the responses for a
given stimulus;

* is expressed in terms of the encoding model P[r|s], i.e. in terms of the tuning
curves and the noise
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* is related with Mutual information and Stimulus Specific Information (Brunel and
Nadal 1998, Yarrow, Challis and Series 2012).

Fisher Information in a population of neurons with Poisson noise
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- it will thus also depend on the number of neurons active for that stimulus.

Fisher Information in a population of neurons with Gaussian noise

- For Gaussian uncorrelated noise, similarly:

](S) _ Z ‘21/2(&98)) Slope 2

variance

- For Gaussian correlated noise:
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For correlated neurons, Fl is modulated by
correlations.




Understanding the influence of the population response
properties: what limits performance?
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Questions that we can explore:
What changes in encoder would increase discrimination performances?
» Number of neurons?

»Tuning curves shape ?
» Noise correlations ?

What are the factors that control performance?
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What are the factors that control performance?
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Fisher Information in a population of neurons

- Fisher information formalises those intuitions, and leads to quantitative
predictions.

- For Gaussian uncorrelated noise:
(g)2 Slope ?
1(s) = 3 2B o
i Ui (8) variance

- For Gaussian correlated noise:
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For correlated neurons, Fl is modulated by
correlations.

Research questions (1)

* What would be the ‘optimal’ shape for tuning curves?
* Are adaptation, attention and learning a step towards more ‘optimal’ tuning
curves for the attended/trained stimulus ?
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Neurons in auditory midbrain of the guinea pig adjust their response to improve the
accuracy of the code close to the region of most commonly occurring sound levels.

[Dean, Harper & McAlpine, Nature Neuro, 2005]

Research questions (2)

* How many neurons participate in a psychophysical task ? (see also, lab 1)
1, 10, 100, 10000? How can we find out ?

* comparing performance (e.g. MT: Britten et al 1992; Stuttgen & Schwartz
2008). stimulating (MT: Salzman, Britten, Newsome 1990).
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Houweling & Brecht, Nature, 2008
Barrel cortex single cell stimulation.
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Research questions (3)

* Pooling from large populations of neurons thought to be a way to
average out the noise.

* Pairs of neurons show correlations in their variability: does pooling
more and more neurons increases (linearly) the accuracy of the
representation?

or s information saturating over a certain number of neurons ?
[Zohary et al 1994]

* Could that be that adaptation, attention and perceptual learning
act by changing correlations? [Cohen & Maunsell 2009; Gutnisky &
Dragoi 2008, Gu et al 2011, Bejjanki et al 2011]




ARTICLES

nature
neuroscience

Attention improves performance primarily by reducing
interneuronal correlations

Marlene R Cohen & John H R Maunsell

Visual ion can improve b i by allowing observers to focus on the important information in a complex
scene. A ion also typically i the firing rates of cortical sensory neurons. Rate increases improve the signal-to-noise
ratio of individual neurons, and this i has been d to underlie i lated i in beh

We recorded dozens of neurons simultaneously in visual area V4 and found that changes in single neurons accounted for only a
small fraction of the improvement in the sensitivity of the population. Instead, over 80% of the attentional improvement in the

population signal was caused by d in the | the trial-to-trial fluctuations in the responses of pairs of
neurons. These results suggest that the representation of sensory information in populations of neurons and the way attention
affects the sensitivity of the ion may only be by idering the i ions b neurons.
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Published in final edited form as:
Neuron. 2011 August 25; 71(4): 750-761. doi:10.1016/j.ncuron.2011.06.015.

Perceptual learning reduces interneuronal correlations in
macaque visual cortex

Yong Gu', Sheng Liu', Christopher R. Fetsch', Yun Yang', Sam Fok', Adhira Sunkara’,
Gregory C. DeAngelis, and Dora E. Angelaki'*

' Department of Anatomy and Neurobiology, Washington University School of Medicine, St.
Louis, MO

2 Department of Brain and Cognitive Sciences, University of Rochester, NY

SUMMARY

Responses of neurons in early visual cortex change little with training, and appear insufficient to
account for perceptual learning. Behavioral performance, however, relies on population activity,
and the accuracy of a population code is constrained by correlated noise among neurons. We
tested whether training changes interneuronal correlations in the dorsal medial superior temporal
area, which is involved in multisensory heading perception. Pairs of single units were recorded
simultancously in two groups of subjects: animals trained extensively in a heading discrimination
task, and “naive” animals that performed a passive fixation task. Correlated noise was
significantly weaker in trained versus naive animals, which might be expected to improve coding
efficiency. However, we show that the observed uniform reduction in noise correlations leads to
little change in population coding efficiency when all neurons are decoded. Thus, global changes
in correlated noise among sensory neurons may be insufficient to account for perceptual learning.

Research questions (4)

* Can the study of illusions inform us on the type of ‘decoder’
that is used in the brain? [Seriés, Stocker and Simoncelli 2009]

Sensory Adaptation

Verify that this grating is vertical
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Sensory Adaptation

Fixate on the central circle for 30 sec

Sensory Adaptation

Now observe the grating again
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Visual Adaptation: Psychophysics

Visual adaptation leads to:
+ estimation tasks: strong biases (mainly repulsion)

Visual Adaptation: Psychophysics

Bias (°)

Visual adaptation leads to:
<+ estimation tasks: strong biases (mainly repulsion)
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Visual Adaptation: Psychophysics

Visual adaptation leads to:
% estimation tasks: strong biases (mainly repulsion)

< discrimination tasks: changes in performance

Visual Adaptation: Physiology
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Other effects are controversial,
dependent on time scale and area:
shifts in preferred orientation,

Mainly a Gain change
[Van Wezel & Britten 2002, Krekelberg et
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ARTICLE c icated by Peter Dayan
Is the Homunculus “Aware” of Sensory Adaptation?
Peggy Seriés A- 'Aware’

peries@infed ac.uk
TANC, University of Edinburgh, Edinburgh EH8 9AB, LK.

Alan A. Stocker Adaptation

astocker@sas.upenn.edu State

Department of Psychology, University of Pennsyloania, Philadelphia, |
Pennsylvania 19104, U.S.A. §

Eero P. Simoncelli
cero.simoncelli@nyu.edu
Howard Hugles Medical Institute, Center for Neural Science, and Courant Institute

for Mathematical Sciences, New York University, New York, New York 10003, U.S.A. Population
Response

Neural activity and perception are both affected by sensory history. The B- "Unaware’

work presented here explores the relationship between the

effects of adaptation and their percep is

modeled as arising from an encoder-decoder cascade, in which the en-
coder s defined by the probabilistic response of a population of neurons,
and the decoder transforms this population activity into a perceptual es-
timate. Adaptation is assumed to produce changes in the encoder, and
we examine the conditions under which the decoder behavior is con-
sistent with observed perceptual effects in terms of both bias and dis-
criminability. We show that for all decoders, discriminability is bounded
from below by the inverse Fisher information. Estimation bias, on the
other hand, can arise for a variety of different reasons and can range from
ze10 to substantial. We specifically examine biases that arise when the
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decoder is fixed, “unaware” of the changes in the encoding population Response
(as opposed to “aware” of the ion and changing We
simulate the effects of adaptation on two well-studied sensory attribut

motion direction and contrast, assuming a gain change description of en-
coder adaptation. Although we cannot uniquely constrain the source of
decoder bias, we find for both motion and contrast that an “unaware” de-
coder that maximizes the likelihood of the percept given by the preadap-
tation encoder leads to i that are witl

data. This model implies that adaptation-induced biases arise as a result
of temporary suboptimality of the decoder.
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changes in width, changes in
variability.

[Kohn & Movshon 2004, Dragoi et
al, 2000]
Results (2) -- ‘unaware’ read-out
Bias [Standard Threshold
Deviation] Ratio
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[Series, Stocker and Simoncelli, 2009]




Summary

+ The efficiency of Estimators / Decoders can be characterized by the bias
and the variance.

* The bias and variance of estimators used to read-out neural responses can
be easily compared with psychophysical performance (estimation biases,
and discrimination threshold).

+ Fisher Information is related to the minimal variance of a unbiased estimator.

* In a model of a population of neurons, Fisher Information can be expressed
in terms of the tuning curves and the noise.

+ Fisher information can be used to relate population responses and
discrimination performances. It gives a bound on the discrimination
threshold

+ Fisher Information can be used to explore the factors that impact on the
precision of the code / behavioral performances.




