Reinforcement learning (RL):
- an area of machine learning inspired by behaviorist psychology, concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward.
- thought to be a good model of how learning is occurring in the brain.

Maximizing reward as a guide to decision-making
- Decision making at all levels
- Why is this hard: (1) rewards/ punishment may be delayed; (2) outcome may depend on series of actions (credit assignment problem)
- Need learning of predictions of events and actions

Animals learn predictions — Pavlovian conditioning
- Animals learn predictions
- Classical conditioning: pairing of a CS with a US
- example: conditioned suppression
 http://www.youtube.com/watch?v=OMwStQn8b5k
- autosshaping
 http://www.youtube.com/watch?v=mjnxv4ygElA
Rescorla & Wagner model of classical conditioning (1972)

- Most influential model of animal learning, explains puzzling behavioural phenomena such as blocking, overshadowing and conditioned inhibition.
- describe changes in associative strength (V) between a signal (conditioned stimulus CS) and subsequent stimulus (unconditioned stimulus US)
- The idea: error-driven learning: Learning occurs only when events violate expectations.

Change in value is proportional to the difference between actual and predicted outcome

$$V_{\text{new}}(CS_i) = V_{\text{old}}(CS_i) + \eta \left[\lambda \mu - \sum r V_{\text{old}}(CS_i) \right].$$

Learning only occurs when events not predicted
- predictions due to different stimuli are summed to form the total prediction in a trial.

Limitations of Rescorla & Wagner (1972)

- does not extend to 2d order conditioning.
- A->B->reward; where A gains reward predictive value
- Basic unit of learning = conditioning trial as discrete temporal object fails to account for the temporal relations between CS and US stimuli within a trial
- Temporal Difference (TD) learning as a means to overcome these limitations = extension of Rescorla-Wagner to take into account timing of events.

How do we know that animals use an error-correcting rule?

- blocking
- interpretation: the bell fully predicts the food and the presence of the light adds no new predictive information -- therefore no association develops to the light.

Temporal Difference (TD) learning (1)

- Consider a succession of states S, following each other with $P(S_{t+1} \mid S_t)$
- Rewards observed in each state with probability $P(r \mid S)$
- Useful quantity to predict is the expected sum of all future rewards, given current state S_t, value of state S, $V(S)$

$$V(S_t) = E \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ... \mid S_t \right] = E \left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} \mid S_t \right]$$

- Discount factor introduced to make sure that the sum is finite, but also humans and animals prefer earlier rewards to later ones
- incorporating probabilities $P(S_{t+1} \mid S_t)$ and $P(r \mid S)$, we get recursive form

$$V(S_t) = E \left[r_t \mid S_t \right] + \gamma E \left[r_{t+1} \mid S_t \right] + \gamma^2 E \left[r_{t+2} \mid S_t \right] + ... =$$

$$E \left[r_t \mid S_t \right] + \gamma \sum P(S_{t+1} \mid S_t) \left(E \left[r_{t+1} \mid S_{t+1} \right] + \gamma E \left[r_{t+2} \mid S_{t+1} \right] + ... \right) =$$

$$P(r \mid S_t) + \gamma \sum P(S_{t+1} \mid S_t) V(S_{t+1})$$
Temporal Difference (TD) learning (2)

- When estimated values are incorrect, there is a discrepancy between 2 sides of equation: prediction error:
 \[\delta_t = P(r_t|s_t) + \gamma \sum_{t=1}^{\infty} P(s_{t+1}|s_t) V(s_{t+1}) - V(s_t). \]
 prediction error is a natural signal for improving estimates \(V(s_t) \), giving
 \[V(s_t)_{\text{new}} = V(s_t)_{\text{old}} + \eta \cdot \delta_t, \]
- Optimal learning rule, basis of "dynamic programming".
- One problem: assumes knowledge of \(P(s_{t+1}|s_t) \) and \(P(r_t|s_t) \) which is unreasonable in basic learning situations.
- Model-free Approximation which can be formally justified (sampling):
 \[\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t) \]
 - current reward + next prediction - current prediction

Instrumental conditioning: adding control

- Animals not only learn associations between stimuli and reward but also between actions and reward
- Learning to select actions that will increase the probability of rewarding events and decrease the probability of aversive events.
- Rat lever pressing in boxes -- operant conditioning (Skinner)

http://www.youtube.com/watch?v=1_clJqHtHIA (Interview of Skinner)

Temporal Difference (TD) learning (3)

- Resulting learning rule:
 \[V_{\text{new}}(s_t) = V_{\text{old}}(s_t) + \eta (r_t + \gamma V(s_{t+1}) - V(s_t)). \]
- Incorporating Rescorla-Wagner idea that predictions due to different stimuli are additive:
 \[V_{\text{new}}(s_t) = V_{\text{old}}(s_t) + \eta \left[r_t + \gamma \sum_{s_{t+1}} V_{\text{old}}(s_{t+1}) - \sum_{s_{t+1}} V_{\text{old}}(s_{t+1}) \right]. \]
- This is TD learning rule as proposed by Sutton & Barto (1990)

Actor/Critic Methods

- How can such action selection be learned?
- Barto (1983) shows that credit assignment problem can be solved by a learning system comprised of 2 neurons-like elements:
 - the critic, uses TD learning to construct values of states
 - the actor, learn to select actions at each state using prediction error.

Idea: if positive prediction error is encountered, current action has improved prospects for the future and should be repeated.
Learning of policies:
\[\pi(S,a) = p(a|S), \] \[\pi(S,a)_{\text{new}} = \pi(S,a)_{\text{old}} + \eta \pi \delta_t \]
A recent application of Q-learning to deep learning, by Google DeepMind has been successful at playing some Atari 2600 games at expert human levels. Preliminary results were presented in 2014, with a paper published in February 2015 in Nature.

Q learning

- Watkins (1989)
- Alternative: explicitly learn the predictive value (future expected rewards) of taking an action at each state, = learn the value of state-action pairs \(Q(S, a) \)
- learning rule:
 \[
 Q(S_t, a_t)_{\text{new}} = Q(S_t, a_t)_{\text{old}} + \eta \delta_t
 \]
- TD prediction error:
 \[
 \delta_t = r_t + \max_a Q(S_{t+1}, a) - Q(S_t, a_t)
 \]
 - current reward + prediction of next best action - current prediction

How does the brain do reinforcement learning?

- "the largest success of computational neuroscience", dopamine and prediction error
What is Dopamine?

- Parkinson's Disease: motor control/initiation
- Addiction, gambling, natural rewards
- Also involved in: working memory, novel situations, ADHD, schizophrenia

New idea: phasic dopamine signals prediction error

- Schultz et al. 90s
- Monkeys underwent simple instrumental or pavlovian conditioning
- Disappearance of dopaminergic response at reward delivery after learning
- If reward is not presented, response depression below basal firing at expected time of reward.

Former idea: Dopamine signals reward (Wise, ‘80s)

- Initial idea: dopamine might represent reward signals
- Antipsychotic drugs (dopamine antagonists) cause anhedonia
- Brain self stimulation by rats
- Dopamine important for reward mediated conditioning

Dopamine and Prediction

- The idea: dopamine encodes prediction error (Montague, Dayan, Barto, 1996)
- Provided normative basis for understanding not only why dopamine neurons fire when they do, but also what the function of these firing might be.
- Evidence for dopamine dependent or dopamine gated plasticity in synapses between cortex and striatum.

Dopamine Response = RewardOccurred – RewardPredicted.

Schultz, Dayan, Montague, 1997

http://www.youtube.com/watch?v=7HbAFYiejvo
• checking that size of response at onset of CS is proportional to reward size

Tobler et al, 2005

<table>
<thead>
<tr>
<th>0.0 ml</th>
<th>0.025 ml</th>
<th>0.075 ml</th>
<th>0.15 ml</th>
<th>0.25 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Onset of conditioned stimuli predicting expected reward value

• Actor/Critic architecture. Whether instrumental conditioning vs pavlovian condition, supporting an prediction errors.

O Doherty et al (2004) show that FMRI correlates of prediction error

Model driven analysis search the brain for predicted hidden variables that should control learning and decision making, eg state values and prediction errors.

• prediction errors signals found in nucleus accumbens and orbito frontal cortex, both major dopaminergic targets.

• O Doherty et al (2004) show that FMRI correlates of prediction error signals can be dissociated in dorsal and ventral striatum according to whether instrumental conditioning vs pavlovian condition, -- supporting an Actor/Critic architecture.
Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions

- Frontal cortex responses in the patient group were suggestive of disrupted prediction-error processing.
- Across subjects, the extent of disruption was significantly related to an individual’s propensity to delusion formation.

Application to Psychiatry

Model based vs Model Free

- Debated how much human learning is “model-free” vs “model-based”
- Model free corresponds to habit, inflexible
- Possibly relevant to pathology

Summary

- Optimal learning depends on prediction and control
- The problem: prediction of future reward
- The algorithm: TD learning
- Neural implementation: dopamine-dependent learning in cortico-striatal synapses in basal ganglia
- RL has revolutionised how we think of learning in the brain implications for the understanding of disorders, such as Parkinson’s and schizophrenia, as well as addiction.