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Encoding problem: A- 'Unaware'

Fixed !
!

Decoder

Adaptation!

 State

Population !

Response

Encoder!!! r

B- 'Aware'

Adaptive !
!

Decoder

Adaptation!

 State

Population !

Response

Encoder!!! r

s ŝ
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−180 −90 0 90 180
0

25

50

θ
test

 R
e
s
p

o
n

s
e
s

A − Tuning Curves

−180 −90 0 90 180

0

25

50

θ
test

B − Population Response

Perception:  
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world is like

Activity in the brain

properties of neurons

P [r|s]

r

What is the relationship between stimuli in the world and the 
activity of the brain?

1. Modeling the average firing rate <r(s)>

• Focus description on average firing rate <r(s)>.  
• Tuning curves: modify an aspect s of the stimulus, and measure <r(s)>  
• V1 neurons: highly selective to the orientation of the stimulus (e.g. bar) flashed in 
their receptive field. 
• Such bell-shaped (Gaussian-like) tuning curves are very common in the cortex.

s�< r(s) >

A Population Code 

• in V1, neurons of every preferred orientation, direction, spatial freq. etc.. can be 
found: population code. 
• Retinotopy, preferred orientations, directions are very precisely organized, 
forming columns and maps.
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Single cell tuning curves vs population response

Single cell tuning curve: change stimulus, record spike count for every stimulus 

Population response: keep stimulus fixed, record spike count of every neuron in 
the population
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Tuning curves everywhere ... 

• Primary motor cortex (M1) -- arm reaching 
task 
• <r> as a function of the direction in which 
the monkey moved his arm  
• Here described as a cosine

 Georgopoulos et al, 1982

14 Neural Encoding I: Firing Rates and Spike Statistics

Response tuning curves can be used to characterize the selectivities of neu-
rons in visual and other sensory areas to a variety of stimulus parameters.
Tuning curves can also be measured for neurons in motor areas, in which
case the average firing rate is expressed as a function of one or more pa-
rameters describing a motor action. Figure 1.6A shows an example of ex-
tracellular recordings from a neuron in primary motor cortex in a monkeyprimary motor

cortex M1 that has been trained to reach in different directions. The stacked traces for
each direction are rasters showing the results of five different trials. The
horizontal axis in these traces represents time, and each mark indicates
an action potential. The firing pattern of the cell, in particular the rate at
which spikes are generated, is correlated with the direction of arm move-
ment and thus encodes information about this aspect of the motor action.
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Figure 1.6: A) Recordings from the primarymotor cortex of a monkey performing
an arm reaching task. The hand of the monkey started from a central resting loca-
tion and reachingmovements were made in the directions indicated by the arrows.
The rasters for each direction show action potentials fired on five trials. B) Aver-
age firing rate plotted as a function of the direction in which the monkey moved
its arm. The curve is a fit using the function 1.15 with parameters rmax = 54.69
Hz, r0 = 32.34 Hz, and smax = 161.25◦. (A adapted from Georgopoulos et al., 1982
which is also the source of the data points in B.)

Figure 1.6B shows the response tuning curve of an M1 neuron plotted as
a function of the direction of arm movement. Here the data points havecosine

tuning curve been fit by a tuning curve of the form

f (s) = r0 + (rmax − r0) cos(s− smax) (1.15)

where s is the reaching angle of the arm, smax is the reaching angle associ-
ated with the maximum response rmax, and r0 is an offset or background
firing rate that shifts the tuning curve up from the zero axis. Theminimum
firing rate predicted by equation 1.15 is 2r0− rmax. For the neuron of figure
1.6B, this is a positive quantity, but for some M1 neurons 2r0 − rmax < 0,
and the function 1.15 is negative over some range of angles. Because fir-
ing rates cannot be negative, the cosine tuning curve must be half-wave
rectified in these cases (see equation 1.13),

f (s) = [r0 + (rmax − r0) cos(s− smax)]+ . (1.16)

Peter Dayan and L.F. Abbott Draft: December 17, 2000

2. Describing ‘the noise’

• Beyond describing only the mean spike count … the variability in the spike 

count.  

•To model the statistics of the response (one trial), we can use tools from 

probability theory: stochastic (random) processes.

• The spike count r on one trial is considered as a random variable.

• The probability of getting each outcome (n=1,2 .., 10, 50 spikes) is given by a 
probability distribution P(n|s) for which we want to find a suitable model.

• To do that, we use known statistics of n: the mean <n>=f(s) and 2d order 

statistics (variance, correlations). 

Describing the variance of the spike count

• Measure the variance of the spike count, for a number of repetitions with the same 
stimulus.
• Experiments show that the variance of the spike count is linearly related to the 
mean spike count (with prop. const ~1).
• Noise is often described as Poisson, or Gaussian with a variance proportional to 
the mean.

var(n) = F � mean(n)

F: Fano Factor

[O Keefe, 1997 - MT cortex]
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a) Poisson Distribution - definition

• Poisson distribution, named after French mathematician Siméon Denis 
Poisson, is a discrete probability distribution that expresses the probability of a 
given number of events occurring in a fixed interval of time and/or space if 
these events occur with a known constant rate and independently of the time 
since the last event. 

• if the average number of events in the interval/ rate is  
The probability of observing k events in an interval is given by the equation: 
 
 
 
where 

- e is the number 2.71828... (Euler's number) the base of the natural logarithms 
- k takes values 0, 1, 2, … 
- k! = k × (k − 1) × (k − 2) × … × 2 × 1 is the factorial of k. 

a) Poisson Distribution - P(n|s)

k

P (n = k|s) =
e�f(s)f(s)k

k!

e.g. if f(s)=10, P(n=10|s)=0.125
P(n=7|s)=0.09
P(n=3|s)=0.007

P
(n

=k
|s

)

f(s)=1 
f(s)=4 
f(s)=10

• Poisson distribution is an appropriate model for describing the number of spikes in a 
time window.   
• The rate / average number of spikes for a given stimulus s is also what is measured by 
the tuning curve f(s)

• It is a property of the Poisson distribution that var(n)=E(n)=f(s)

b) Gaussian Distribution

• Another model that is commonly used to describe the variability of the spike 
count is the Gaussian noise model. 
• The activity of a neuron (number of spikes) can be described as:

n = f(s) + �(s)
�(s) � N(0,⇥2(s))

• To mimic a Poisson distribution, we choose  
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c) From Poisson Distribution to Poisson Process

• We can be interested to model not only the number of spikes (or any event), 
but the temporal sequence of such spikes.
 
 
 

Such that the number of spikes will be described with a Poisson distribution.  
 
We can use the model of the Poisson Process.  
 

• Divide time window T into N bins. p=probability of spiking in each bin. 
• In each bin,  toss a coin with probability P(head)=p, if you get a head, record a 
spike. 
• For small p, the number of spikes in T follows a Poisson distribution.

How to construct a Poisson Spike train

c) Poisson Processes - spike sequences

………

T

N bins p=   /N

Draw random number between 0 and 1: if < than p, record spike. 
………1

Draw random number between 0 and 1: if < than p, record spike. 

• variance(spike count) = mean(spike count).  (~data) 
• Inter-spike intervals (ISI) follow an exponential distribution (~data, except for 
very short intervals(refractory period) and for bursting neurons).

 Properties

• Poisson model can be made to include a refractory period 
• Homogeneous: mean spike count is fixed in time window f(s) / 
Inhomogeneous -- changing in time window :f(s,t).

c) Poisson Processes - spike sequences
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Figure 1: A. Snippet of a Poisson spike train with and msec. B. Spike count

histogram calculated from many Poisson spike trains, each of 1 sec duration with , superim-

posed with the theoretical (Poisson) spike count density. C. Interspike interval histogram calculated

from the simulated Poisson spike trains superimposed with the theoretical (exponential) interspike

interval density. D. Snippet bursty spike train generated by replacing each spike in A with a “burst”

of zero, one, or more spikes. The height of each impulse represents the number of spikes in that time

bin. The number of spikes per burst was Poisson distributed with a mean of spike/burst. E.

Spike count histogram calculated from many bursty spike trains like that in D, superimposed with

the Poisson spike count density. The bursty spike trains have the same mean spike count, but the

variance of the bursty spike count histogram is twice that of the Poisson. F. Renewal process spike

train generated from A by removing all but every fourth spike. G. Spike count histogram calculated

from many renewal spike trains like that in F. The mean spike count is 1/4 that of the Poisson, as

expected. H. Interspike interval histogram calculated from the renewal process spike trains super-

imposed with the theoretical (gamma) interspike interval density. The mean interspike interval is

40 msec, four times longer than that in C, as expected because we have removed 3/4 of the spikes.

The standard deviation of the interspike intervals is 20 msec so the coefficient of variation is 1/2.
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Figure 1: A. Snippet of a Poisson spike train with and msec. B. Spike count

histogram calculated from many Poisson spike trains, each of 1 sec duration with , superim-

posed with the theoretical (Poisson) spike count density. C. Interspike interval histogram calculated

from the simulated Poisson spike trains superimposed with the theoretical (exponential) interspike

interval density. D. Snippet bursty spike train generated by replacing each spike in A with a “burst”

of zero, one, or more spikes. The height of each impulse represents the number of spikes in that time

bin. The number of spikes per burst was Poisson distributed with a mean of spike/burst. E.

Spike count histogram calculated from many bursty spike trains like that in D, superimposed with

the Poisson spike count density. The bursty spike trains have the same mean spike count, but the

variance of the bursty spike count histogram is twice that of the Poisson. F. Renewal process spike

train generated from A by removing all but every fourth spike. G. Spike count histogram calculated

from many renewal spike trains like that in F. The mean spike count is 1/4 that of the Poisson, as

expected. H. Interspike interval histogram calculated from the renewal process spike trains super-

imposed with the theoretical (gamma) interspike interval density. The mean interspike interval is

40 msec, four times longer than that in C, as expected because we have removed 3/4 of the spikes.

The standard deviation of the interspike intervals is 20 msec so the coefficient of variation is 1/2.
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From one neuron to the population :  
Describing pair-wise noise correlations

no correlation positive 
correlation

r1(s)r1(s)

r 2
(s

)

r 2
(s

)

• An important question in neuroscience is to understand whether the noise is 
independent between neurons.  
• Measure Trial-to-trial fluctuations of pairs of neurons, for same s. 
When neuron 1 is above its mean, is neuron 2 also ? or are their fluctuations 
independent? 

• Experimental data show weak positive correlations, which might be critical for 
the accuracy of the code.
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“Tuning Curve + Noise”  Population Model

The activity of a neuron (number of spikes) can be described as:

ai = fi(s) + �i(s) �(s) = N(0,Q(s))

P [r|s] =
1�

(2�)N |Q(s)|
e�

1
2 (r�f(s))TQ�1(s)(r�f(s)))

Where does the noise come from?

• Is this ‘Poisson’ variability really noise? (unresolved, yet critical question)

• Where could it come from?
• Probably not in the sensory inputs (e.g. random arrival of photons)
• Probably not in the spike initiation mechanism (Mainen and Sejnowski 1995)
• Probably not in the stochastic nature of opening / closing of ion channels
• Probably not in the unreliable synapses (spontaneous AP, spontaneous 
release of vesicles, variability in size of PSPs).

Where does the noise come from?

•  Neurons embedded in a recurrent network with sparse connectivity and 
balance between excitatory and inhibitory inputs tend to fire with Poisson 
statistics (Van vreeswijk and Sompolinksy, 1997)

• a consequence of using steady signals (Mainen and Sejnowski, 1995, Butts et 
al 2007).

• Variability could offer distinct advantages (eg. enhance weak signals, 
encoding and manipulating uncertainty (Alex Pouget) or emerge from 
deterministic Bayesian processes (Sophie Deneve))

• Large Spontaneous Activity (Tsodyks al 1999; Fizser  et al . 2004)

Further reading:  Neuronal variability: noise or part of the signal? Stein et al, 
Nature Rev Neuroscience, 2005.



Encoding:  Summary 

✤  Spikes are the important signals in the brain. 
✤  What is still debated is the code: number of spikes, exact spike timing, 

temporal relationship between neurons’ activities? 

✤ Experimentalists have characterized the activity of neurons all over the 
brain and in particular in sensory cortex, motor cortex etc .., mainly in 
terms of tuning curves and response curves. A variety of well-specialized 
areas. Detailed wiring and mechanisms at the origins of these responses 
are largely unknown.  

✤ Other techniques to predict activity (when stimulus is changing) : STA, 
reverse correlation. 

✤ The large variability (in ISI, number of spikes) is often well described by a 
Poisson or Gaussian model.

Overview of the visual cortex

Two streams:  
• Ventral ‘What’: V1,V2, V4, IT, form recognition and object representation 
• Dorsal ‘Where’: V1,V2, MT, MST, LIP, VIP, 7a: motion, location, control of eyes and 
arms

23

Overview of the visual cortex
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Ventral pathway



25

Figure 1a shows the responses of a single unit in the left posterior
hippocampus to a selection of 30 out of the 87 pictures presented to
the patient. None of the other pictures elicited a statistically signifi-
cant response. This unit fired to all pictures of the actress Jennifer
Aniston alone, but not (or only very weakly) to other famous and
non-famous faces, landmarks, animals or objects. Interestingly, the
unit did not respond to pictures of Jennifer Aniston together with the
actor Brad Pitt (but see Supplementary Fig. 2). Pictures of Jennifer
Aniston elicited an average of 4.85 spikes (s.d. ¼ 3.59) between 300
and 600ms after stimulus onset. Notably, this unit was nearly silent

during baseline (average of 0.02 spikes in a 700-ms pre-stimulus time
window) and during the presentation of most other pictures
(Fig. 1b). Figure 1b plots the median number of spikes (across trials)
in the 300–1,000-ms post-stimulus interval for all 87 pictures shown
to the patient. The histogram shows amarked differential response to
pictures of Jennifer Aniston (red bars).
Next, we quantified the degree of invariance using a receiver

operating characteristic (ROC) framework15. We considered as the
hit rate (y axis) the relative number of responses to pictures of a
specific individual, object, animal or landmark building, and as

Figure 1 | A single unit in the left posterior hippocampus activated
exclusively by different views of the actress Jennifer Aniston.
a, Responses to 30 of the 87 images are shown. There were no statistically
significant responses to the other 57 pictures. For each picture, the
corresponding raster plots (the order of trial number is from top to bottom)
and post-stimulus time histograms are given. Vertical dashed lines indicate
image onset and offset (1 s apart). Note that owing to insurmountable
copyright problems, all original images were replaced in this and all
subsequent figures by very similar ones (same subject, animal or building,
similar pose, similar colour, line drawing, and so on). b, The median

responses to all pictures. The image numbers correspond to those in a. The
two horizontal lines show the mean baseline activity (0.02 spikes) and the
mean plus 5 s.d. (0.82 spikes). Pictures of Jennifer Aniston are denoted by
red bars. c, The associated ROC curve (red trace) testing the hypothesis that
the cell responded in an invariant manner to all seven photographs of
Jennifer Aniston (hits) but not to other images (including photographs of
Jennifer Aniston and Brad Pitt together; false positives). The grey lines
correspond to the same ROC analysis for 99 surrogate sets of 7 randomly
chosen pictures (P , 0.01). The area under the red curve is 1.00.
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Quiroga et al,  Nature, 2005 -- Invariant visual representation by single neurons in the 
human brain (MTL), a.k.a the Jennifer Aniston Neuron.

https://www.youtube.com/watch?v=635Ntur8K2s
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Dorsal pathway

• MT: MOTION. stimulus of choice: random dot patterns. 
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Dorsal pathway

• MST: linear, radial, circular motion (flow field). 

• LIP: spatial position in head-centered coordinates. 
spatial attention, spatial representation. saliency map 
-- used by oculo-motor system (the “saccade planning 
area”). spatial memory trace and anticipation of 
response before saccade. 

• VIP: spatial position in head-centered coordinates, 
multi-sensory responses. speed, motion. 

• 7a: large receptive fields, encode both visual input 
and eye position. 


