

1. Modeling the average firing rate <r(s)>

- Focus description on average firing rate <r(s)>.
- Tuning curves: modify an aspect *s* of the stimulus, and measure <r(s)>
- V1 neurons: highly selective to the orientation of the stimulus (e.g. bar) flashed in their receptive field.
- Such bell-shaped (Gaussian-like) tuning curves are very common in the cortex.

A Population Code

- in V1, neurons of every preferred orientation, direction, spatial freq. etc.. can be found: population code.
- Retinotopy, preferred orientations, directions are very precisely organized, forming columns and maps.

2. Describing 'the noise'

• Beyond describing only the mean spike count ... the variability in the spike count.

•To model the statistics of the response (one trial), we can use tools from probability theory: stochastic (random) processes.

• The spike count r on one trial is considered as a random variable.

• The probability of getting each outcome (n=1,2 ..., 10, 50 spikes) is given by a probability distribution P(nls) for which we want to find a suitable model.

• To do that, we use known statistics of *n*: the mean *<n>=f(s)* and 2d order statistics (variance, correlations).

Describing the variance of the spike count

• Measure the variance of the spike count, for a number of repetitions with the same stimulus.

• Experiments show that the variance of the spike count is linearly related to the mean spike count (with prop. const ~1).

• Noise is often described as Poisson, or Gaussian with a variance proportional to the mean.

a) Poisson Distribution - definition

• Poisson distribution, named after French mathematician Siméon Denis Poisson, is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known constant rate and independently of the time since the last event.

• if the average number of events in the interval/ rate is λ The probability of observing k events in an interval is given by the equation:

 $P(k ext{ events in interval}) = e^{-\lambda} rac{\lambda^k}{k!}$

where

- e is the number 2.71828... (Euler's number) the base of the natural logarithms - k takes values 0, 1, 2, ...

 $-k! = k \times (k - 1) \times (k - 2) \times ... \times 2 \times 1$ is the factorial of k.

• Poisson distribution is an appropriate model for describing the number of spikes in a time window.

• The rate / average number of spikes for a given stimulus s is also what is measured by the tuning curve f(s)

$$P(n=k|s) = \frac{e^{-f(s)}f(s)^k}{k!}$$

e.g. if f(s)=10, P(n=10|s)=0.125 P(n=7|s)=0.09 P(n=3|s)=0.007

• Another model that is commonly used to describe the variability of the spike count is the Gaussian noise model.

• The activity of a neuron (number of spikes) can be described as:

$$n = f(s) + \eta(s)$$
$$\eta(s) \simeq N(0, \sigma^2(s))$$

- To mimic a Poisson distribution, we choose
$$\ \ \sigma^2(s)=f(s)$$

Comparison of Poisson vs Gaussian noise with variance equal to the mean

Figure 1: A. Snippet of a Poisson spike train with r = 100 and $\delta t = 1$ msec. B. Spike count histogram calculated from many Poisson spike trains, each of 1 sec duration with r = 100, superimposed with the theoretical (Poisson) spike count density. C. Interspike interval histogram calculated from the simulated Poisson spike trains superimposed with the theoretical (exponential) interspike interval density.

Where does the noise come from?

• Neurons embedded in a recurrent network with sparse connectivity and balance between excitatory and inhibitory inputs tend to fire with Poisson statistics (Van vreeswijk and Sompolinksy, 1997)

• a consequence of using steady signals (Mainen and Sejnowski, 1995, Butts et al 2007).

• Variability could offer distinct advantages (eg. enhance weak signals, encoding and manipulating uncertainty (Alex Pouget) or emerge from deterministic Bayesian processes (Sophie Deneve))

• Large Spontaneous Activity (Tsodyks al 1999; Fizser et al . 2004)

Further reading: Neuronal variability: noise or part of the signal? Stein et al, Nature Rev Neuroscience, 2005.

Encoding: Summary

- * Spikes are the important signals in the brain.
- What is still debated is the code: number of spikes, exact spike timing, temporal relationship between neurons' activities?
- Experimentalists have characterized the activity of neurons all over the brain and in particular in sensory cortex, motor cortex etc ..., mainly in terms of tuning curves and response curves. A variety of well-specialized areas. Detailed wiring and mechanisms at the origins of these responses are largely unknown.
- Other techniques to predict activity (when stimulus is changing) : STA, reverse correlation.
- The large variability (in ISI, number of spikes) is often well described by a Poisson or Gaussian model.

Dorsal pathway

• MST: linear, radial, circular motion (flow field).

• LIP: spatial position in head-centered coordinates. spatial attention, spatial representation. saliency map -- used by oculo-motor system (the "saccade planning area"). spatial memory trace and anticipation of response before saccade.

• VIP: spatial position in head-centered coordinates, multi-sensory responses. speed, motion.

• **7a:** large receptive fields, encode both visual input and eye position.

Dorsal pathway								
• MT:	MOTION	I. stimulus	s of choic	e: randor	n dot pat	terns.		
								16