
Tools of computational neuroscience : Models of neurons

Readings:  
D&A Chapter 5. 
Izhikevich, 2004, ‘which model to use for cortical spiking neurons’

• Until now, descriptive/phenomenological models of statistics of responses 
(spike count). short hand for describing neural data. (what) 
[question: knowing the statistics of the response, how can we relate the 
responses with behavior?] 

• explanatory -- mechanistic models / dynamical systems -- circuits 
[questions: what are the mechanisms & circuits involved? what is the 
influence of some part of the circuit (e.g. inhibition/neuromodulator/dynamic 
synapses) on global behaviour?  (e.g. gain modulation/oscillations/
variability)] 
Identify the building blocks of brain function. (how) 

• Multiple level of abstraction are possible/ Neurons and Networks.

Types of models: descriptive vs explanatory 

 Models of neurons -  
How  do neurons get activated?

Neurons

•  neuron = cell, diverse morphologies

•2Dendrites: receive inputs from other cells, 
mediated via synapses.  

•3 Soma (cell body): integrates signals from 
dendrites. 4-100 micrometers.
•4 Action potential: All-or-nothing event generated 
if signals in soma exceed threshold.  

•5 Axon: transfers signal to other neurons.

• Synapse: contact between pre- and 
postsynaptic cell.  
- Efficacy of transmission can vary over time. 
- Excitatory or inhibitory. 
- Chemical or electrical. 
10^16 synapses in young children (decreasing with 
age --  1-5x10^15) 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A bit of history

•  1791-1797: Galvani describes electrical 

activity in nerves

• 1848 Emil du Bois Reymond discovered 

the action potential

• Ramon y Cajal (Nobel prize 1906) 

established that nervous tissue is made up 

of discrete cells

• In 1902 and 1912, Bernstein advanced 

the hypothesis that the action potential 

resulted from a change in the permeability 

of the axonal membrane to ions.
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http://www.youtube.com/watch?v=k48jXzFGMc8

Hodgkin & Huxley (1952)

•  Cambridge (1935-1952)

• experimental measurements theory of the 

action potential

• Used the giant axon of the squid which 

enabled them to record ionic currents

• voltage clamp technique: to measure 

ionic currents across membrane by holding 

potential constant.

• Ions channels across the membrane, allowing ions to move in and out, with 
selective permeability  (mainly Na+, K+, Ca2+,Cl-)
• Vm: difference in potential between interior and exterior of the neuron.
• at rest, Vm~-70 mV (more Na+ outside, more K+ inside, due to N+/K+ pump)
• Following activation of (Glutamatergic) synapses, depolarization occurs.
• if depolarization > threshold, neuron generates an action potential (spike) (fast 
100 mv depolarization that propagates along the axon, over long distances). 

Membrane potential and action potential 

• We describe the membrane potential by a single variable V.
• membrane capacitance: Due to excess of negative charges inside the neuron, 
positive charges outside the neuron, membrane acts like a capacitor
• V and the amount of charges Q are related by the standard equation for  
capacitor:

Point neurons (1)

Q = CmV

Cm
dV

dt
=

dQ

dt
= �im

here, by convention i_m is positive outwards 
 
This is the basic equation used to model neurons. 

Cm
dV
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= �

�
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Iion + Iext(t)

• From this we can determine how V changes when charges change:
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• The ion movements are due to channels that are open all the time (leakage), 
or that open at specific times, dependent on V, e.g. to generate action potential, 
or following synaptic events.

• Each current can be described in terms of a conductance gi and equilibrium or 
reversal potential Ei. Ei describes the value of potential at which the current 
would stop, because the forces driving the ions (diffusion and electric forces) 
would cancel.

Point neurons (2)

Cm
dV

dt
= �

�

ion

Iion + Iext(t)

Ii = gi(V � Ei)

EK+~-70--90 mV, ENa+~50mV, Ecl-~-60mV--65mV.

A conductance with reversal potential Ei will tend to move Vm towards Ei

Hodgkin-Huxley Model (in a nutshell)

Cm
dV

dt
= �

�

ion

Iion + Iext(t)

•  describe ionic movements involved in 
generation of action potential.
• n,m,h are the gating variables describing 
the dynamics of the K+, and Na+ channels.   
m: opening of Na+ (activation) 
h: closing of Na+ (inactivation) 
n: opening of K+ (activation)
•They depend on V and  their evolution 
(V,t) is described by other differential 
equations.
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tion gate. Another class of conductances, the hyperpolarization-activated
conductances, behave as if they are controlled solely by an inactivation
gate. They are thus persistent conductances, but they open when the neu-
ron is hyperpolarized rather than depolarized. The opening probability
for such channels is written solely of an inactivation variable similar to
h. Strictly speaking these conductances deinactivate when they turn on
and inactivate when they turn off. However, most people cannot bring
themselves to say deinactivate all the time, so they say instead that these
conductances are activated by hyperpolarization.

5.6 The Hodgkin-Huxley Model

The Hodgkin-Huxley model for the generation of the action potential, in
its single-compartment form, is constructed by writing the membrane cur-
rent in equation 5.6 as the sum of a leakage current, a delayed-rectified K+

current and a transient Na+ current,

im = gL(V− EL) + gKn
4(V− EK) + gNam

3h(V− ENa) . (5.25)

The maximal conductances and reversal potentials used in the model are
gL = 0.003 mS/mm

2, gK = 0.036 mS/mm
2, gNa = 1.2 mS/mm

2, EL = -54.402
mV, EK = -77 mV and ENa = 50 mV. The full model consists of equation 5.6
with equation 5.25 for the membrane current, and equations of the form
5.17 for the gating variables n, m, and h. These equations can be integrated
numerically using the methods described in appendices A and B.

The temporal evolution of the dynamic variables of the Hodgkin-Huxley
model during a single action potential is shown in figure 5.11. The ini-
tial rise of the membrane potential, prior to the action potential, seen in
the upper panel of figure 5.11, is due to the injection of a positive elec-
trode current into the model starting at t = 5 ms. When this current drives
the membrane potential up to about about -50 mV, the m variable that
describes activation of the Na+ conductance suddenly jumps from nearly
zero to a value near one. Initially, the h variable, expressing the degree
of inactivation of the Na+ conductance, is around 0.6. Thus, for a brief
period both m and h are significantly different from zero. This causes a
large influx of Na+ ions producing the sharp downward spike of inward
current shown in the second trace from the top. The inward current pulse
causes the membrane potential to rise rapidly to around 50 mV (near the
Na+ equilibrium potential). The rapid increase in both V and m is due
to a positive feedback effect. Depolarization of the membrane potential
causes m to increase, and the resulting activation of the Na+ conductance
causes V to increase. The rise in the membrane potential causes the Na+

conductance to inactivate by driving h toward zero. This shuts off the Na+

current. In addition, the rise in V activates the K+ conductance by driving
n toward one. This increases the K+ current which drives the membrane
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Figure 5.11: The dynamics of V,m, h, and n in the Hodgkin-Huxley model during
the firing of an action potential. The upper trace is the membrane potential, the
second trace is the membrane current produced by the sum of the Hodgkin-Huxley
K+ and Na+ conductances, and subsequent traces show the temporal evolution of
m, h, and n. Current injection was initiated at t = 5 ms.

potential back down to negative values. The final recovery involves the
re-adjustment of m, h, and n to their initial values.

The Hodgkin-Huxley model can also be used to study propagation of an
action potential down an axon, but for this purpose a multi-compartment
model must be constructed. Methods for constructing such a model, and
results from it, are described in chapter 6.

5.7 Modeling Channels

In previous sections, we described the Hodgkin-Huxley formalism for
describing voltage-dependent conductances arising from a large number
of channels. With the advent of single channel studies, microscopic de-
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dn/dt=an(V)(1-n)-bn(V)n        an(V) = opening rate    bn(V) = closing rate  

dm/dt=am(V)(1-m)-bm(V)m    am(V) = opening rate    bm(V) = closing rate  

dh/dt=ah(V)(1-h)-bh(V)h         ah(V) = opening rate    bh(V) = closing rate  

an=(0.01(V+55))/(1-exp(-0.1(V+55)))           bn=0.125exp(-0.0125(V+65)) 

am=(0.1(V+40))/(1-exp(-0.1(V+40)))            bm=4.00exp(-0.0556(V+65)) 

ah=0.07exp(-0.05(V+65))                              bh=1.0/(1+exp(-0.1(V+35)))

Hodgkin-Huxley Model (in a nutshell)

•  n,m, and h are also described using differential equations • The Hodgkin Huxley model : one of the most influential models 

of computational neuroscience

• In terms of models 3 success: (1) good model system (2) 
introduction of computers (3) right level of details for describing 

phenomenon --> link microscopic ion channels to macroscopic 
currents and AP.

• Led to many predictions and experiments, e.g. gating charge 

movements, that Na+ and K+ channels were separate molecular 
identities with different pore sizes, other dynamics.

• most biophysical models of spiking neurons still based on H-H 

equations.

HH : Conclusion



• One extreme: detailed description of the morphology of the neuron -- multi-
compartmental models. Based on cable (differential) equations to solve 
Vm(x,t), simulations with softwares like NEURON. 
• Hodgkin-Huxley neuron: model of spike generation using differential 
equations to model dynamics of K+ and Na+
• Integrate and fire neurons (family). spike generation replaced by stereotyped 
form.
• rate model. 

Models of neurons
si

m
pl

ify

this course

1. Only describe ion movements due to channels that are open all the time 
(leakage)= passive properties.

Integrate and fire neurons (1)

EL= resting potential; 
Rm=1\gl = membrane 
resistance; 
taum= membrane time 
constant;

 Can be also written, using 

Cm
dV

dt
= �gl(V � EL) + Iext(t)

RmCm = �m

2.  When V>Vthres  (e.g. -55 mV) an action potential is triggered (V set to Vspike 
(e.g. 50 mV)) and V reset to Vreset  e.g. -75 mV.

�m
dV

dt
= �V + EL + Rm ⇥ Iext(t)

Integrate and fire neurons (2)

 Example.
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To generate action potentials in the model, equation 5.8 is augmented by
the rule that whenever V reaches the threshold value Vth, an action po-
tential is fired and the potential is reset to Vreset. Equation 5.8 indicates
that when Ie = 0, the membrane potential relaxes exponentially with time
constant τm to V = EL. Thus, EL is the resting potential of the model cell.

The membrane potential for the passive integrate-and-fire model is deter-
mined by integrating equation 5.8 (a numerical method for doing this is
described in appendix A) and applying the threshold and reset rule for
action potential generation. The response of a passive integrate-and-fire
model neuron to a time-varying electrode current is shown in figure 5.5.
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Figure 5.5: A passive integrate-and-fire model driven by a time-varying electrode
current. The upper trace is the membrane potential and the bottom trace the driv-
ing current. The action potentials in this figure are simply pasted onto the mem-
brane potential trajectory whenever it reaches the threshold value. The parameters
of the model are EL = Vreset = −65 mV, Vth = −50 mV, τm = 10 ms, and Rm = 10
M".

The firing rate of an integrate-and-fire model in response to a constant
injected current can be computed analytically. When Ie is independent of
time, the subthreshold potential V(t) can easily be computed by solving
equation 5.8 and is

V(t) = EL + Rm Ie + (V(0) − EL − Rm Ie)exp(−t/τm) (5.9)

where V(0) is the value of V at time t = 0. This solution can be checked
simply by substituting it into equation 5.8. It is valid for the integrate-and-
fire model only as long as V stays below the threshold. Suppose that at
t = 0, the neuron has just fired an action potential and is thus at the reset
potential, so that V(0) = Vreset. The next action potential will occur when
the membrane potential reaches the threshold, that is, at a time t = tisi

when

V(tisi) = Vth = EL + Rm Ie + (Vreset − EL − Rm Ie)exp(−tisi/τm) . (5.10)

By solving this for tisi, the time of the next action potential, we can de-
termine the interspike interval for constant Ie, or equivalently its inverse,
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Integrate and fire neurons (3)

• The firing rate of an integrate and fire neuron in response to a constant 
injected current can be computed analytically (cf D&A). 

• Integrate and fire neurons = a family of models.  
 Inputs can be modeled as a current, or conductances (better model of 
synapses).
• Can be modified to account for a repertoire  of dynamics e.g. can include a 
model of refractoriness and spike rate adaptation (and more)
• conductance-based IAF: these phenomena + inputs are modelled using added 
conductances.

spike rate adaptation



Integrate and fire neurons (4): adding spike rate adaptation

• spike rate adaptation can be modeled as an hyperpolarizing K+ current

spike rate adaptation

�m
dV

dt
= EL � V � rmgsra(t)(V � EK) + RmIe

• when neuron spikes, gsra is increased by a given amount:

gsra � gsra + �gsra

• the conductance relaxes to 0 exponentially with time constant �sra

�sra
dgsra(t)

dt
= �gsra(t)

Conductances triggered by spiking are used 
to model refractory period, bursting... 
Synaptic input can be modeled similarly  (but 
triggered by presynaptic spike)

Integrate and fire neurons (5): adding synaptic input

5.9 Synapses On Integrate-and-Fire Neurons 37

sion rate will be this previous value of ⟨Prel⟩ times the new rate r + !r,
which is P0(r+ !r)/(1+ (1− fD)rτP). For sufficiently high rates, this is
approximately proportional to (r + !r)/r. The size of the change in the
transmission rate is thus proportional to !r/r, which means that depress-
ing synapses not only amplify transient inputs, they transmit them in a
scaled manner. The amplitude of the transient transmission rate is propor-
tional to the fractional change, not the absolute change, in the presynaptic
firing rate. The two transients seen in figure 5.19 have similar amplitudes
because in both cases !r/r = 3. The difference in the recovery time for
the two upward transients in figure 5.19 is due to the fact that the effec-
tive time constant governing the recovery to a new steady-state level r is
τP/(1+ (1− fD)τPr).

5.9 Synapses On Integrate-and-Fire Neurons

Synaptic inputs can be incorporated into an integrate-and-fire model by
including synaptic conductances in the membrane current appearing in
equation 5.8,

τm
dV

dt
= EL −V− rmgsPs(V− Es) + Rm Ie . (5.43)

For simplicity, we assume that Prel = 1 in this example. The synaptic cur-
rent is multiplied by rm in equation 5.43 because equation 5.8 was multi-
plied by this factor. To model synaptic transmission, Ps changes whenever
the presynaptic neuron fires an action potential using one of the schemes
described previously.

Figures 5.20A and 5.20B show examples of two integrate-and-fire neu-
rons driven by electrode currents and connected by identical excitatory
or inhibitory synapses. The synaptic conductances in this example are
described by the α function model. This means that the synaptic conduc-
tance a time t after the occurrence of a presynaptic action potential is given
by Ps = (t/τs)exp(−t/τs). The figure shows a non-intuitive effect. When
the synaptic time constant is sufficiently long (τs = 10 ms in this exam-
ple), excitatory connections produce a state in which the two neurons fire
alternately, out of phase with each other, while inhibitory synapses pro-
duce synchronous firing. It is normally assumed that excitation produces synchronous and

asynchronous
firing

synchrony. Actually, inhibitory connections can be more effective in some
cases than excitatory connections at synchronizing neuronal firing.

Synapses have multiple effects on their postsynaptic targets. In equation
5.43, the term rmgsPsEs acts as a source of current to the neuron, while the
term rmgsPsV changes the membrane conductance. The effects of the latter
term are referred to as shunting, and they can be identified most easily if
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• Synaptic inputs are modeled as depolarizing or hyperpolarizing conductances

• Each time a presynaptic spike occurs (+ synaptic delay), Ps is modified.  
For example, Ps can be modeled using an alpha-function:

Ps(t) =
Pmaxt

�s
exp(1� t

�
)

• a variety of models can be used for Ps depending on dynamics that we want to 
account for (slow/fast synapses)

• Es=0 for excitatory synapses, Es=-70--90 mV for inhibitory synapses.

Synaptic input

• Different synapses have different dynamics. 
• Excitatory synapses: AMPA is fast, NMDA slow.
• Inhibitory synapses: GABAa are fast, GABAb slower.

Synaptic input

•  The amplitude of synaptic EPSPs and IPSPs may vary depending on 
spiking history: synaptic facilitation and depression.
• They can also vary on a longer time scale : learning. (LTP, LTD)



Izhikevich neuron (2003,2004)

•  A recent and popular alternative to the integrate and fire.
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On Numerical Integration

•  Sometimes the differential equations can be solved analytically
• Usually though, they are solved numerically
• The simplest method is known as Euler’s method: a system

dy

dt
= f(y)

 can be simulated by choosing the initial condition y(0) and repeatedly 
performing the Euler integration step:

 Higher order and adaptive methods, such as Runge-Kutta are commonly 
used (check ‘numerical recipes’, matlab ode23, ode45, and Hansel et al 1998 
for an evaluation of such methods with IAF neurons).

y(t + dt) = y(t) + dtf(y)


