Types of models: descriptive vs explanatory

Tools of computational neuroscience : Models of neurons

Readings:
D&A Chapter 5.
Izhikevich, 2004, ‘which model to use for cortical spiking neurons’

¢ Until now, descriptive/phenomenological models of statistics of responses
(spike count). short hand for describing neural data. (what)

[question: knowing the statistics of the response, how can we relate the
responses with behavior?]

* explanatory -- mechanistic models / dynamical systems -- circuits
[questions: what are the mechanisms & circuits involved? what is the
influence of some part of the circuit (e.g. inhibition/neuromodulator/dynamic
synapses) on global behaviour? (e.g. gain modulation/oscillations/
variability)]

Identify the building blocks of brain function. (how)

* Multiple level of abstraction are possible/ Neurons and Networks.

Models of neurons -
How do neurons get activated?

Neurons

¢ neuron = cell, diverse morphologies

- Dendrites: receive inputs from other cells,
mediated via synapses.

+ Soma (cell body): integrates signals from
dendrites. 4-100 micrometers.

* Action potential: All-or-nothing event generated
if signals in soma exceed threshold.

« Axon: transfers signal to other neurons.

* Synapse: contact between pre- and
postsynaptic cell.

- Efficacy of transmission can vary over time.

- Excitatory or inhibitory.

- Chemical or electrical.

1076 synapses in young children (decreasing with
age -- 1-5x1075)




A bit of history

* 1791-1797: Galvani describes electrical
activity in nerves

* 1848 Emil du Bois Reymond discovered
the action potential

* Ramon y Cajal (Nobel prize 1906)
established that nervous tissue is made up /m

of discrete cells

*In 1902 and 1912, Bernstein advanced
the hypothesis that the action potential
resulted from a change in the permeability

of the axonal membrane to ions.

Hodgkin & Huxley (1952)

¢ Cambridge (1935-1952)
* experimental measurements theory of the

action potential

* Used the giant axon of the squid which
enabled them to record ionic currents

¢ voltage clamp technique: to measure
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Membrane potential and action potential

¢ lons channels across the membrane, allowing ions to move in and out, with
selective permeability (mainly Na+, K+, Ca2+,Cl-)

* \Vm: difference in potential between interior and exterior of the neuron.

e at rest, Vm~-70 mV (more Na+ outside, more K+ inside, due to N+/K+ pump)
* Following activation of (Glutamatergic) synapses, depolarization occurs.

« if depolarization > threshold, neuron generates an action potential (spike) (fast
100 mv depolarization that propagates along the axon, over long distances).
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Point neurons (1)

* We describe the membrane potential by a single variable V.

* membrane capacitance: Due to excess of negative charges inside the neuron,
positive charges outside the neuron, membrane acts like a capacitor

* V and the amount of charges Q are related by the standard equation for

capacitor:
P Q=0CnV

* From this we can determine how V changes when charges change:

v dQ

Cn gy = ag ~ "m

here, by convention i_m is positive outwards

This is the basic equation used to model neurons.

dv
CmE - - Zlion + Iext(t) -Q

ion




Point neurons (2)

dVv
Cmﬁ - - Zlion + Iemt(t)

ion

* The ion movements are due to channels that are open all the time (leakage),
or that open at specific times, dependent on V, e.g. to generate action potential,

or following synaptic events.

¢ Each current can be described in terms of a conductance gi and equilibrium or

reversal potential Ei. Eidescribes the value of potential at which the current
would stop, because the forces driving the ions (diffusion and electric forces)
would cancel.

A conductance with reversal potential E; will tend to move Vm towards E;
Ek+~-70--90 mV, Ena+~50mV, Ec.~-60mV--65mV.

Hodgkin-Huxley Model (in a nutshell)

dV
Cm% = Zlion + Iea:t(t)

won

3. (V—=Ep) +gun*(V = Ex) + g, h(V — Exa)

¢ describe ionic movements involved in

generation of action potential.

e n,m,h are the gating variables describing ;

the dynamics of the K+, and Na+ channels. most J\

m: opening of Na+ (activation) 0

h: closing of Na+ (inactivation)

h o5F
n: opening of K+ (activation) 0_.\./

*They depend on V and their evolution
(V,}) is described by other differential

equations. 0 5 10

Hodgkin-Huxley Model (in a nutshell)

* n,m, and h are also described using differential equations

dn/dt=a (V)(1-n)-b,(V)n a,(V) = opening rate b, (V) = closing rate
dm/dt=a_(V)(1-m)-b_(V)m a_ (V)= opening rate b (V)= _closing rate
dh/dt=a,(V)(1-h)-b,(V)h a,(V) = opening rate b, (V) = closing rate

a,=(0.01(V+55))/(1-exp(-0.1(V+55))) b,=0.125exp(-0.0125(V+65))
a, =(0.1(V+40))/(1-exp(-0.1(V+40))) b,,=4.00exp(-0.0556(V+65))
2,=0.07exp(-0.05(V+65)) b,=1.0/(1+exp(-0.1(V+35)))

HH : Conclusion

* The Hodgkin Huxley model : one of the most influential models
of computational neuroscience

* In terms of models 3 success: (1) good model system (2)
introduction of computers (3) right level of details for describing
phenomenon --> link microscopic ion channels to macroscopic
currents and AP.

e Led to many predictions and experiments, e.g. gating charge
movements, that Na+ and K+ channels were separate molecular
identities with different pore sizes, other dynamics.

» most biophysical models of spiking neurons still based on H-H

equations.




Models of neurons

* One extreme: detailed description of the morphology of the neuron -- multi-
compartmental models. Based on cable (differential) equations to solve
Vm(x,t), simulations with softwares like NEURON.

simplify

* Hodgkin-Huxley neuron: model of spike generation using differential
equations to model dynamics of K+ and Na+

e Integrate and fire neurons (family). spike generation replaced by stereotyped
form.

Y e rate model.

Integrate and fire neurons (1)

1. Only describe ion movements due to channels that are open all the time
(leakage)= passive properties.

O =~V — Br) + L)

Can be also written, using R,,C,, = T E.= resting potential;
Rm=1\gi = membrane
resistance;

dV taum= membrane time

Tm—— = —V + Ep + Ry * Loy (t) constant;

2. When V>Vines (€.9. -55 mV) an action potential is triggered (V set to Vspike
(e.g- 50 mV)) and V reset to Vieset €.9. -75 mV.

this course
Integrate and fire neurons (2)
Example.
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Figure 5.5: A passive integrate-and-fire model driven by a time-varying electrode
current. The upper trace is the membrane potential and the bottom trace the driv-
ing current. The action potentials in this figure are simply pasted onto the mem-
brane potential trajectory whenever it reaches the threshold value. The parameters
of the model are EL. = Vieset = —65 mV, Vi, = =50 mV, ty = 10 ms, and Ry = 10
MQ.

Integrate and fire neurons (3)

* The firing rate of an integrate and fire neuron in response to a constant
injected current can be computed analytically (cf D&A).

* Integrate and fire neurons =_a family of models.
Inputs can be modeled as a current, or conductances (better model of
synapses).
* Can be modified to account for a repertoire of dynamics e.g. can include a
model of refractoriness and spike rate adaptation (and more)
e conductance-based IAF: these phenomena + inputs are modelled using added
conductances.
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Integrate and fire neurons (4): adding spike rate adaptation

* spike rate adaptation can be modeled as an hyperpolarizing K+ current

d
delt/ = By =V —rogera(D(V — Ex) 4+ Rl

* when neuron spikes, gsra is increased by a given amount:
9sra — Ysra + Agsra

e the conductance relaxes to 0 exponentially with time constant Tgrq

dgsra(t)
sra— . = —Ysrall
T, o gsra(t)

G
Conductances triggered by spiking are used
to model refractory period, bursting...

i Synaptic input can be modeled similarly (but
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triggered by presynaptic spike)
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spike rate adaptation

Integrate and fire neurons (5): adding synaptic input

» Synaptic inputs are modeled as depolarizing or hyperpolarizing conductances

|4
rm% =EL =V —rm8Ps(V — Eg)|+ R I .

* Each time a presynaptic spike occurs (+ synaptic delay), Ps is modified.
For example, Ps can be modeled using an alpha-function:

Praat t
P(t) = "2 exp(1 = )

S

* a variety of models can be used for Ps depending on dynamics that we want to
account for (slow/fast synapses)

* Es=0 for excitatory synapses, Es=-70--90 mV for inhibitory synapses.

Synaptic input

* Different synapses have different dynamics.
« Excitatory synapses: AMPA is fast, NMDA slow.
« Inhibitory synapses: GABAa are fast, GABAb slower.

—— NMDA
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Synaptic input

* The amplitude of synaptic EPSPs and IPSPs may vary depending on
spiking history: synaptic facilitation and depression.
* They can also vary on a longer time scale : learning. (LTP, LTD)
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Izhikevich neuron (2003,2004)

¢ Arecent and popular alternative to the integrate and fire.
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On Numerical Integration

¢ Sometimes the differential equations can be solved analytically
¢ Usually though, they are solved numerically
* The simplest method is known as Euler’s method: a system

dy
%—f(y)

can be simulated by choosing the initial condition y(0) and repeatedly
performing the Euler integration step:

y(t +dt) = y(t) +dtf(y)

Higher order and adaptive methods, such as Runge-Kutta are commonly
used (check ‘numerical recipes’, matlab ode23, ode45, and Hansel et al 1998
for an evaluation of such methods with IAF neurons).




