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The 'Bayesian’ approach to perceptibn,
cognition and disease

The challenge faced by the brain: uncertainty

Peggy Seriés,
IANC, University of Edinburgh
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do i know this person?

Is my model correct?

which is the path they said i should take

Uncertainty everywhere

* Humans & animals operate

in a world of sensory uncertainty:

- e.g. mapping of 3D objects to 2D image

- intrinsic limitations of the sensory systems

(e.g. number and quality of receptors in the retina)
- neural noise

--> multiple interpretations about the world are possible;

¢ The brain must deal with this uncertainty to generate perceptual

representations and guide actions.

¢ Perception must work backwards to extract underlying cause of noisy
inputs : unconscious, probabilistic inference

* The brain as a guessing machine.

The Uncertain History of the Bayesian Brain

~

* Bayesian Statistics (mathematics): Thomas Bayes
(1702-1761), Pierre-Simon Laplace (1749-1827),
Harold Jeffreys (1891-1989), Richard Cox
(1898-1991), Edwin Jaynes (1922-1998)

* 1860s: Helmholtz : perception as unconscious
inference, making assumptions and conclusions
from incomplete data, based on previous
experiences.

* 1990s : Geoff Hinton, Peter Dayan - Helmholtz
machine -- brain as generative model.

* 2000s --> enters experimental (psychophysics)

world, spreads in theoretical world, now physiology?




What is Bayes’ theorem about ?

* What is the chance that it will

rain today?

you want to compute P(hle) :

¢ probability that it is going to rain given the

evidence (e.g. the clouds look dark)

you use

* P(elh) : probability of the evidence (that the
clouds look dark) when it is actually going to

rain (from previous measurements - model of
the world).

e P(h): prior knowledge or bias about the

probability of rain (before observing any data)

A Bayesian theory of the Brain

- 1990s- Purpose of the brain: infer state of the
world from noisy and incomplete data [G. Hinton, P.
Dayan, A. Pouget, R. Zemel, R. Rao, etc..]

- Perception often modelled using the framework of
Bayesian Inference

P(elh1)P(h1)
P(e)

Reverend Thomas
Bayes, 1702- 1761

P(hile) =

likelihood x prior

posterior = ———————
normalizing constant

manipulating probabilities -- degree of belief.

"Instead of trying to come up with an answer to a question, the brain tries to come
up with a probability that a particular answer is correct,” Alex Pouget.

Bayesian coding hypothesis (1)

* Hypothesis: information manipulated by sensory
systems has the form of a conditional probability density
function

¢ e.g. the position of an object is represented not a
single number, x, but P(xIZ), where Z is the available

data

* = stores likelihoods = ‘generative models’, or ‘forward
model’” of the world, P(ZIx), and prior knowledge / state
of the world, P(x).

* Given new data Z, the brain computes P(xZ)
_ P(x,2) _ P(Z|z)P(z)
PUZ="pzy = pz)

P(x|2)

Bayes
theorem

Bayesian coding hypothesis (2)

« Benefits:

- integrate information efficiently over space & time

- integrate information efficiently from different sensory
cues and modalities

- propagate information without committing too early to
particular interpretations.

. . . P(x|2)
e Commit as late as possible, then collapsing the 1

T

probability distribution into a single number = decision,

or action taken.

* e.g. take the max of the posterior




Estimators and cost functions

* How to do that depends on cost function :

P(x|2)

* one option is to take the max of the posterior

& = argmax, P(x|Z)

this is known to optimize a cost function that is 0

when 7 = g  and e=cst otherwise. X

max of the posterior
* another option is to take the mean of the posterior

3= / (x| 2)da

which minimizes the mean squared error (i’ — :E)2

* another option is that the brain could use samples from the posterior

The Behavioural Level:
Do People behave as Bayesian Observers?

» Bayesian hypothesis as a benchmark for performance.

Is the Human Brain “Bayesian-optimal”?

* Humans not optimal / achieving the level of performance afforded by
the uncertainty in the physical stimulus (e.g. movies)

e The question is:

1 - Do neural computations take into account the uncertainty of

measurements at each stage of processing?
2 - Combine it optimally with previous experience?

e testable predictions at the behavioural level

1 - Do brains take into account measurement uncertainty
when combining different (simultaneous) information?
Combine different sources optimally?




Example: integrating vision and audition

* example: McGurk effect,
Ventriloquism

Why do we get tricked?

http://www.youtube.com/watch?v=G-IN8vWm3m0

http://www.youtube.com/watch?
v=rfNCoSE61w8

Cue Integration (1) : qualitative predictions

* e.g. integration between visual and |® F‘E""
[ )
auditive information N

Likelihood

e prediction 1 (position): if visual cue n

is more reliable, then final estimate OO o
is shifted towards visual cue. T et | C
o,
Ixation
* prediction 2 (variance or K ;‘\“Q\%j/’f’
DN

discrimination threshold): Final AN

Likelihood

discrimination threshold lower than

that for each modality ; varies if O@
reliability of one modality varies.

"6 4 2 0 2 4 6
Direction (X)

TRENDS in Neurosciences

Cue Integration (2):Theory

* Theory tells us how posterior depends on individual likelihoods:

% = argmax, P(x|d,, d2)

P(d1’d2|$)P(IE)

Pk =

x P(dyi|z)P(dz|x)P(x)
¢ Assuming that the likelihood are gaussian, i.e.

(di — x)?

Pldi]z) o exp(~ )
1

* We can determine mean and width of posterior (gaussian):

(d 2 (d )2 [m — l—aid;“?z H i
P(dy|2)P(ds ) o exp(— el — 22y  exp s

202 202 20203 /(02 +02)

Cue Integration (3):Theory

« |f we know mean estimate and variance for each modality in

isolation, we can deduce mean of bimodal estimate:

3, .
= 1 2
% + 0% a% + a% pushed

towards more
reliable cue

¢ and discrimination threshold

2 2 _ 2 2 2 2
17, x 079 = 0705/(07+03)

smaller than
1 or 2 alone




Cue Integration (4): Ernst and Banks, Nature, 2002

¢ visual + haptic cues

e vary noise level / visual cue

« compute discrimination threshold for staroo

glasses

each cue alone, or when both are present.

Force-
feedback

TPz o 015 = 0705/ (07+03)

scene

Noise:
3 cm equals 100%

Cue Integration (5): Ernst and Banks, Nature, 2002

d Discrimination thresholds
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¢ height judgment follows optimal integration of visual and haptic cues.

* ‘visual capture’ for low visual noise, ‘haptic capture’ for high visual noise

¢ instantaneous ‘switch’

* numerous studies replicate this result in a variety of paradigms (e.g. Alais & Burr,

2004).

Cue Integration (6):Ventriloquist effect

e Alais & Burr, Curr Biol, 2004
e visual blob of various size +

auditive ‘click’, possibly in

PSE (degs)

conflict.

* measure both estimate of

position (mean), and

% o
L S04 o ___ L
discrimination threshold g }/ﬁ “““ - _._'-
* near optimal integration g N ?/ / ﬁ L
* visual capture for small blobs 0204060 0 20 40 60 0 2040 60

. Width of Gaussian blob (degs)
* auditive capture for large
---: auditory alone
blobs o : visual alone
o : prediction

Cue Integration (7)

lilusions

* capture of vision by sound What you see

is what you hear
e Shams et al, Nature, 2000. Vmon is believed to dominate our
multisensory perception of the world.

Here we overturn this established view

by showing that auditory information can
qualitatively alter the perception of an
unambiguous visual stimulus to create a
striking visual illusion. Our findings indi-
cate that visual perception can be manipu-
lated by other sensory modalitics.

We have discovered a visual illusion that
is induced by sound: when a single visual
flash is accompanied by multiple auditory
beeps, the single flash is incorrectly per-
ceived as multiple flashes. These results
were obtained by flashing a uniform white
disk (subtending 2 degrees at 5 degrees
eccentricity) for a variable number of times
(50 milliseconds apart) on a black back- i B 3
ground. Flashes were accompanied by a Number of flashes

Number of perceived flashes

Number of perceived flashes




Cue Integration (8): when not to integrate?

« if spatial disparity between the 2 cues is too large: integration is not
appropriate anymore --> segmentation.

* problem = not only to infer source location of 2 sensory signals but also
whether the signals have a common cause (C)

« Kording et al 2007 : ideal-observer model that infers whether 2 sensory cues
originate from same location and also estimates their location(s) accurately

predicts nonlinear integration of cues in 2 auditory-visual localization tasks.
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2 - Do brains form a representation of the past
statistics of the environment (priors) and
combine it optimally with current information?
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A Bayesian theory of the Brain: Priors

* How is the brain making use of previous

knowledge? what priors?

* Prediction 1: the more uncertain the data, likelihood

probability

the more prior information should influence

the interpretation.

* Prediction 2: The priors should reflect the 6
statistics of the sensory world (on which .

time-scale?).
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Long-term “structural” priors

Visual illusions : insight into what sort of

assumptions the visual system makes.

e Light comes from above
 Cardinal orientations are more
frequent [Gershick et al 2011]

e smoothness [Geisler et al 2001]

* symmetry [Knill 2007]

¢ Objects don’t move or only slowly

[Weiss et al 2001; stocker & Simoncelli 2006]

... recently formalized in Bayesian terms

[T. Adelson, E. Simoncelli, O. Schwartz, Y. Weiss]

Interpreting motion : A Prior on Low Speeds (1)

Interpreting motion : A Prior on Low Speeds (2)

* Motion shown in an aperture is fundamentally ambiguous; it can
be interpreted in an infinite number of ways

« which one is chosen? why?

Ad

\‘ A . As

* Hypothesis: humans tend to favour slower motions
* Use a (gaussian) prior on low speeds (centred at 0).
 Explain great variety of data -- elegant unifying explanation

Image Image
a g b g

O—‘gi
|
A/

Prior Likelihood 1 Likelihood 2 Prior Likelihood 1 Likelihood 2

Weiss, Adelson & Simoncelli, Y Y,
Nat Neuro, 2002 v
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Can we measure people’s prior experimentally?

Do such priors correspond to the environment statistics?

¢ Method: reverse engineer the shape of the prior from perceptual data
* 2AFC speed discrimination task at different contrast levels -- measure

both bias and variability --> recover prior and likelihood

Prior Likelihood width
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Stocker & Simoncelli, Nat Neuro, 2006

Cardinal Directions.
¢ Girshick and Simoncelli, Nat Neuro 2010.

* Orientation judgments are
more accurate at cardinal
(horizontal and vertical)
orientations.

* Biased toward cardinal
orientations.

* Prior towards cardinal
orientation match orientation
distribution measured in
photographs.

is L stimulus CW or CCW
compared to H?
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Learning of priors:
Are we building up new priors constantly?

Are priors learned or innate? Do people form new
priors for everything? how fast?

[Chalk, Seitz and Series, JOV 2010]




Do people form new priors for everything? How fast?

Behavioural Task

Fixate
400 ms

« On each trial, participants were
presented with either a low contrast
random dot motion stimulus (100%
coherence) or a blank screen.

Estimation task:
subjects report motion

- Participants reported direction of
motion (estimation), before reporting
whether a stimulus was present
(detection).

Detection task:

subjects report
whether motion was
present

NO DOTS DOTS

. . . Stimulus distribution
- Two motion directions were presented

in a larger number of trials than other % 3 3
directions.

probability

~40 0

0
angle (deg)

Questions

1. Are participants going to learn implicitly which directions are most likely to
be presented?

2. How would these learned expectations bias their perception of
subsequently presented motion stimuli?

Result 1/3: Detection is better and faster for the
expected directions

* Detection performance was best for most
frequently presented directions

+ Reaction times were shorter

+ Similar to the effects of selective attention
(Posner et al. 1980) - suggesting that subjects |
were attending to expected directions. 0

60

20 40
angle (deg)

* Knowledge about the statistics of the stimulus
was however not conscious.

60

20 40
angle (deg)

Result 2/3: Participants ‘hallucinate’ motion in expected
directions

Distribution of estimates
« On trials where no stimulus was when no stimulus displayed
presented, but where participants
reported seeing a stimulus (in detection
task), they were strongly biased to
report motion in two most frequently

presented directions.

o

detected
undetected
012 all

0.0

response probability

« Did not occur on trials where
participants did not report seeing a g

stimulus, arguing against a ‘response angle (de)
bias’ explanation. b
» This effect was fast to develop, o
occurring in less than 200 trials / few 3 4 i
. o 15
¥ .

minutes. g | DA

g 1/8

oo /18

2 3 4 5 6
Prel (detected)




Result 3/3: Expectations bias perception of motion
direction

Estimation bias

—_— —

V)

 Estimates of motion direction were
biased towards most frequently .
presented directions:

subjects perceive motion direction to
be more similar to expected direction .
than it really is.

bias (deg)

20 40 60
angle (deg)

Modelling the observed estimation biases

* subjects learn an expected distribution of the stimuli (prior) and combine it
with sensory evidence

+ 4 free parameters: center and width of prior, width of likelihood, fraction of
‘random’ trials + motor noise (fixed with high contrast trials)

observer
stimulus observation posterior distribution ‘perceptual’ estimate response
0 0 p(010obs) — Opere — 0
obs obs perc est
‘sensory’ noise combine prior knowledge take the mean ‘motor’ noise|
& sensory evidence of the posterior

T

pexp(0> = %[V(_eezpa Hezp) + V(gez;n Kezp)]
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[Chalk, Seitz and Series, JOV 2010]

Conclusions

+ Participants rapidly learn multimodal stimulus expectations (< 200
trials).

* These expectations bias their perception of simple motion stimuli,
causing them to ‘hallucinate’ motion in the expected direction, and
perceive motion stimuli as closer to the expected directions than
they actually are.

« The biases we observed can be explained assuming that
participants combine a ‘learned prior’ about the stimulus statistics
with their sensory evidence in a probabilistically optimal way.

« A number of open questions (specificity of prior, time scale, neural
implementation - substrate of expectation)

+ in particular: can one learn any prior like this ? or are some priors
fixed?




