The `Bayesian’ approach to perception, cognition and disease

Peggy Seriès,
IANC, University of Edinburgh
- 1990s- **Purpose of the brain**: infer state of the world from noisy and incomplete data [G. Hinton, P. Dayan, A. Pouget, R. Zemel, R. Rao, etc.]

- Perception often modelled using the framework of Bayesian Inference

\[
P(h_1|e) = \frac{P(e|h_1)P(h_1)}{P(e)}
\]

posterior = \frac{likelihood \times prior}{normalizing constant}

manipulating probabilities -- degree of belief.

"**Instead of trying to come up with an answer to a question, the brain tries to come up with a probability that a particular answer is correct,**” Alex Pouget.
Humans not optimal / achieving the level of performance afforded by the uncertainty in the physical stimulus (e.g. movies)

The question is:
1 - Do neural computations take into account the uncertainty of measurements at each stage of processing?
2 - Combine it optimally with previous experience?

Testable predictions at the behavioural level
1 - Do brains take into account measurement uncertainty when combining different (simultaneous) information? Combine different sources optimally?
Example: integrating vision and audition

- example: McGurk effect,
 Ventriloquism
 Why do we get tricked?

http://www.youtube.com/watch?v=G-lN8vWm3m0

http://www.youtube.com/watch?v=rfNCoSE61w8
Cue Integration (1): qualitative predictions

- *e.g. integration* between visual and auditive information

- **prediction 1** (*position*): if visual cue is more reliable, then final estimate is shifted towards visual cue.

- **prediction 2** (*variance or discrimination threshold*): Final discrimination threshold lower than that for each modality; varies if reliability of one modality varies.
2 - Do brains form a representation of the past statistics of the environment (priors) and combine it optimally with current information?
• How is the brain making use of previous knowledge? what priors?
• Prediction 1: the more uncertain the data, the more prior information should influence the interpretation.
• Prediction 2: The priors should reflect the statistics of the sensory world (on which time-scale?).
Visual illusions: insight into what sort of assumptions the visual system makes.

- Light comes from above
- Cardinal orientations are more frequent [Gershick et al 2011]
- smoothness [Geisler et al 2001]
- symmetry [Knill 2007]
- Objects don’t move or only slowly [Weiss et al 2001; stocker & Simoncelli 2006]

... recently formalized in Bayesian terms [T. Adelson, E. Simoncelli, O. Schwartz, Y. Weiss]
Motion shown in an aperture is fundamentally ambiguous; it can be interpreted in an infinite number of ways. Which one is chosen? Why?
• Hypothesis: humans tend to **favour slower motions**
• Use a (gaussian) **prior on low speeds** (centred at 0).
• Explain great variety of data -- elegant unifying explanation

http://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html
Can we measure people’s prior experimentally?

- Method: **reverse engineer** the shape of the prior from perceptual data
- 2AFC speed discrimination task at different contrast levels -- measure both bias and variability --> recover prior and likelihood

Figure 3

Illustration depicting the relationship between the model parameters and the psychometric function. The slope of the prior affects the position of the distribution of estimates and thus influences only the position of the psychometric function. However, the width of the likelihood prior distribution and the likelihood width (as a separable function of speed and contrast) that maximized the probability of the observed data for each subject (Methods).

Figure 4

Gaussian distribution assumed in previous Bayesian models. The speed and contrast dependence of the likelihood width decreases monotonically with contrast in a manner consistent with a simple model for neural response characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but characteristics (dashed line; Methods). Shaded areas represent the two standard deviation intervals computed from 30 bootstrapped data sets. Subject 1 was aware of the purpose of the experiment but:

- **Prior**
 - Subject 1: $p(v)$
 - Subject 2: $p(v)$
 - **Likelihood width**
 - Subject 1: $g(v)$, $h(c)$
 - Subject 2: $g(v)$, $h(c)$

Stocker & Simoncelli, Nat Neuro, 2006
Do such priors correspond to the environment statistics?

Cardinal Directions.

- Girshick and Simoncelli, Nat Neuro 2010.

- Orientation judgments are more accurate at cardinal (horizontal and vertical) orientations.
- Biased toward cardinal orientations.
- Prior towards cardinal orientation match orientation distribution measured in photographs.

Supplementary Fig. 3

H1 ART

Distributions produce a single point on the psychometric function. Pale gray regions indicate 95% confidence intervals. Dark gray and light gray curves are the orientation discrimination threshold (that is, JND). Mean subject values show a moderate oblique effect whose strength lies between that of the low noise versus low noise and high noise versus high noise conditions. As there was no noise in the stimuli, the low-noise stimulus must be rotated counter-clockwise so as to be perceived to be oriented closer to the nearest cardinal orientation. The human observers showed a systematic bimodal relative bias, indicating that a relative bias is a result of the asymmetrical shape of the likelihoods near the cardinal orientations (for example, subject S2). This repulsive relation requires a non-uniform prior.

Cross-noise comparisons can be used to estimate relative bias not observable when comparing same-noise stimuli, as both stimuli presumably have the same bias. Cross-noise variability data (circles). The horizontal axis is the orientation of the high-noise stimulus. (98% of all just noticeable differences (JNDs) across orientations and content in images is often studied by averaging the Fourier amplitude spectrum over all spatial scales.

The sensory noise of the measurements propagates the posterior as a smooth curve and determined its shape for each observer by identified strongly oriented regions, computed their dominant orientation and prior (as functions of orientation) from the experimentally identified regions. These relationships allow us to estimate the likelihood that observers perform maximum-likelihood estimation).

The cross-noise variability data (H versus L) provides a link between the likelihood distribution or the human observer's prior, and both closely resemble the human behavior. Cross-noise comparisons allow us to estimate the likelihood that observers perform maximum-likelihood estimation.

To assess the strength of this result, we also considered the null hypothesis that observers are not biased toward the cardinal orientations. This hypothesis can be tested using the Bayesian framework. The likelihood function for the null hypothesis is a uniform distribution over all possible orientations.

Supplementary Fig. 4

Supplementary Fig. 5

Table 1

a. Stimuli are arrays of horizontal and vertical oriented gratings. (vertical line) Stimuli are arrays of horizontal and vertical oriented gratings. (horizontal line) Relative bias, expressed as the angle by which the high-noise stimulus was perceived to be oriented closer to the nearest cardinal orientation. The horizontal axis is the orientation of the high-noise stimulus. (98% of all just noticeable differences (JNDs) across orientations and content in images is often studied by averaging the Fourier amplitude spectrum over all spatial scales.
Learning of priors:

Where do the priors come from?
Are we building up new priors constantly?
Are priors learned or innate? Do people form new priors for everything? how fast?

[Chalk, Seitz and Seriès, JOV 2010]
Do people form new priors for everything? How fast?

• On each trial, participants were presented with either a low contrast random dot motion stimulus (100% coherence) or a blank screen.

• Participants reported direction of motion (estimation), before reporting whether a stimulus was present (detection).
Questions

1. Are participants going to *learn implicitly* which directions are most likely to be presented?

2. How would these learned expectations *bias their perception* of subsequently presented motion stimuli?
Result 1/3: Detection is better and faster for the expected directions

- **Detection performance** was best for most frequently presented directions
- **Reaction times** were shorter
- Similar to the effects of selective attention (Posner et al. 1980) - suggesting that subjects were attending to expected directions.
- Knowledge about the statistics of the stimulus was however **not conscious**.
Result 2/3: Participants ‘hallucinate’ motion in expected directions

- On trials where no stimulus was presented, but where participants reported seeing a stimulus, they were strongly biased to report motion in the two most frequently presented directions.
- This effect was fast to develop, occurring in less than 200 trials / few minutes.

Distribution of estimates when no stimulus displayed

![Graph showing distribution of estimates](image-url)
Result 3/3: Expectations bias perception of motion direction

[Chalk, Seitz, Seriès, JOV 2010]

- Estimates of motion direction were biased towards most frequently presented directions:

 subjects perceive motion direction to be more similar to expected direction than it really is.

![Graph showing estimation bias against motion direction](attachment:graph.png)
Modelling the estimation biases

• Bayesian Modeling: subjects learn an expected distribution of the stimuli (prior) and combine it with sensory evidence

• Extract prior for each individual.

• Model Comparison: Bayesian model describes the data better than response strategy models. Individual priors look like approximation of stimulus
Model comparison

- Bayesian model describes the data better than response strategy models.

\[BIC = -2 \cdot \ln(L) + k \cdot \ln(n) \]
Model comparison

- Bayesian model describes the data better than response strategy models.

\[BIC = -2 \cdot \ln(L) + k \cdot \ln(n) \]

[Chalk, Seitz and Seriès, JOV 2010]
Conclusions

• Participants **rapidly learn** multimodal stimulus expectations (< 200 trials).

• These expectations **bias** their perception of simple motion stimuli, causing them to ‘**hallucinate**’ motion in the expected direction, and perceive motion stimuli as closer to the expected directions than they actually are.

• The biases we observed can be explained assuming that participants combine a ‘**learned prior**’ about the stimulus statistics with their sensory evidence in a probabilistically optimal way.

• A number of open questions (specificity of prior, time scale, neural implementation - substrate of expectation)

• **in particular**: can one learn any prior like this? or are some priors fixed?
Are priors constantly updating? Even those supposedly corresponding to natural scene statistics?
Experience can change the ‘light-from-above’ prior

Wendy J Adams¹, Erich W Graf¹ & Marc O Ernst²

To interpret complex and ambiguous input, the human visual system uses prior knowledge or assumptions about the world. We show that the ‘light-from-above’ prior, used to extract information about shape from shading is modified in response to active experience with the scene. The resultant adaptation is not specific to the learned scene but generalizes to a different task, demonstrating that priors are constantly adapted by interactive experience with the environment.

The circular patches in Figure 1a have competing interpretations. However, patches that are brighter at the top are generally seen as convex and the others as concave, consistent with an assumption of light from above¹,². The Bayesian approach has successfully described performance in many perceptual tasks where stimulus information is combined with prior assumptions³–⁵. However, whether visual priors are hard-wired or learned in response to environmental statistics is not known⁶. We investigate the adaptability of the 'light-from-above' prior by adding shape information via haptic (active touch) feedback.
Changing expectations about speed alters perceived motion direction.
Extensions: **What are the limits of prior learning?**
How many priors can one learn simultaneously?
Are priors specific to learned conditions?
Time scales of learning?

Figure 2.1: Experimental procedure in a single trial. The participants were presented with a fixation point, followed by the motion stimulus and a grey bar projecting from the fixation point. After a period of 3000ms or the press of the mouse button by the participants, the screen was cleared and divided into three separate sections. The participants moved the cursor to the appropriate section and clicked to indicate their choice. The cursor flashed green or red to indicate a correct or an incorrect choice respectively.

[Gekas, Seitz and Seriès, JOV 2013]
Behavioural studies: So what have we learned?

• Bayesian model offer elegant/ parsimonious description of behaviour (descriptive tool)

• Transparent assumptions and emphasis on “why” question.

• Behaviour consistent with Bayesian hypothesis in that:
 - Brains take into account uncertainty, and combine sources of information combines information optimally (cue combination)
 - Use priors that are constantly updated
 - Those priors are consistent with (some approximation) of statistics of environment at different time scales. --> increase accuracy.

• Deviations from optimality are possibly informative about underlying biological constraints, or nature of approximations.

• Those priors (but also cost functions, likelihood) can be measured in individuals -- Bayesian modelling as a tool to describe the internal model used by individuals, possibly differentiating groups.
A possible tool for understanding Mental Illness?
Why is the Bayesian approach applicable to the study of disease? **Computational Psychiatry**

- Bayesian modelling offers a way to "reverse engineer" the brain.
- Mental illness could be due to differences in the models of the world that people's brains are working with:
 - e.g. different priors (e.g. pessimistic priors in depression, or priors on controllability, priors on mistrust in borderline).
 - or deficits / imbalance in incorporating priors with evidence (e.g. schizophrenia, autism).
- > a new area of research.
Mental Illness?

Mental illness is the result of an impairment in prediction, due to having a distorted internal model of the world, possibly due to an impairment in learning.
Schizophrenia affects the way you think

• about 1/100 people.
• usually starts during early adulthood.
• **Positive symptoms**
 experiencing things that are not real (**hallucinations**) and having unusual beliefs (**delusions**)
• **Negative symptoms** include lack of motivation and becoming withdrawn.

https://www.youtube.com/watch?v=SN1GCoVzxGg
Impaired integration of Priors in Schizophrenia

Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia

Paul C. Fletcher* and Chris D. Frith†§

Abstract | Advances in cognitive neuroscience offer us new ways to understand the symptoms of mental illness by uniting basic neurochemical and neurophysiological observations with the conscious experiences that characterize these symptoms. Cognitive theories about the positive symptoms of schizophrenia — hallucinations and delusions —

The computational anatomy of psychosis

Rick A. Adams¹ *, Klaas Enno Stephan¹²³, Harriet R. Brown¹, Christopher D. Frith¹ and Karl J. Friston¹

¹ Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK.
² Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich, ETH Zurich, Zurich, Switzerland
³ Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
Impaired Predictions in Schizophrenia

- Sensory priors are too broad/weak and fail to attenuate sensory inputs.
 - a changing and unstable world, aberrant salience.
- To compensate, more cognitive priors might become too strong
 - psychosis (hallucinations, delusions)
Autism Spectrum Disorder (ASD)

- Autism is a neurodevelopmental disorder characterized by impaired social interaction, verbal and non-verbal communication, and restricted repetitive behavior.

- a spectrum

- 1.1% of the population in the UK - increasing

- Theories of ASD have either focused on the social symptoms of ASD [e.g., as a deficit of theory of mind, reduced social salience, or a lack of social motivation]

- or on peculiarities of autistic perception [e.g., “weak central coherence”] - focus on detail.
When a person with Autism walks into a room

The first thing they see is:

A pillow with a coffee stain shaped like Africa
A train ticket sticking out of a magazine,
25 floorboards, a remote control,
a paperclip on the mantelpiece,
a marble under the chair,
a crack in the ceiling,
12 grapes in a bowl,
a piece of gum,
a book of stamps
sticking out
from behind a silver picture Frame.

so It’s not surprising they ignore you completely.
Impaired integration of Priors in Autism

When the world becomes ‘too real’: a Bayesian explanation of autistic perception

Elizabeth Pellicano and David Burr

1 Centre for Research in Autism and Education (CRAE), Institute of Education, University of London, London, UK
2 Department of Psychology, University of Florence, Florence, Italy
3 School of Psychology, University of Western Australia, Perth, Australia

Autism could also correspond to weak sensory priors / a failure to be able to predict sensory inputs from past inputs and context

An aberrant precision account of autism

Rebecca P. Lawson, Geraint Rees and Karl J. Friston

1 Wellcome Trust Centre for Neuroimaging, University College London, London, UK
2 Institute of Cognitive Neuroscience, University College London, London, UK

Autism is a neurodevelopmental disorder characterized by problems with social-communication, restricted interests and repetitive behavior. A recent and thought-provoking article presented a normative explanation for the perceptual symptoms of autism in terms of a failure of Bayesian inference (Pellicano and Burr, 2012). In response, we suggested that when Bayesian inference is grounded in its neural instantiation—namely, predictive coding—many features of autistic perception can be attributed to aberrant precision (or beliefs about precision) within the context of hierarchical message passing.
Impaired Predictions in Autism

• Sensory priors are too broad / flat / weak and fail to attenuate sensory inputs.
 ► deficits in contextual integration, percepts dominated by sensory inputs: hypersensitivity

• Stronger impact of the likelihood - “enhanced sensory precision model”.
 [Brock et al 2012; Van De Cruys et al 2014].

• Priors more rigid / inflexible
 [Van De Cruys et al 2014]
Quantitatively Testable?
On each trial, participants were presented with either a low contrast random dot motion stimulus (100% coherence) or a blank screen.

Participants reported direction of motion (estimation), before reporting whether a stimulus was present (detection).

[Chalk, Seitz, Seriès, JOV 2010]
Bayesian inference in Autism

with Gizem Aras and Frank Karvelis

- 83 Healthy Participants scored for schizotypy (RISC & SPQ) and autistic traits (AQ)

<table>
<thead>
<tr>
<th>AQ Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I prefer to do things with others rather than on my own.</td>
</tr>
<tr>
<td>2. I prefer to do things the same way over and over again.</td>
</tr>
<tr>
<td>3. If I try to imagine something, I find it very easy to create a picture in my mind.</td>
</tr>
<tr>
<td>4. I frequently get so strongly absorbed in one thing that I lose sight of other things.</td>
</tr>
<tr>
<td>5. I often notice small sounds when others do not.</td>
</tr>
<tr>
<td>6. I usually notice car number plates or similar strings of information.</td>
</tr>
<tr>
<td>7. Other people frequently tell me that what I’ve said is impolite, even though I think it is polite.</td>
</tr>
<tr>
<td>8. When I’m reading a story, I can easily imagine what the characters might look like.</td>
</tr>
<tr>
<td>9. I am fascinated by dates.</td>
</tr>
<tr>
<td>10. In a social group, I can easily keep track of several different people’s conversations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AQ</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>
Is Statistical Learning impaired in Schizotypy?

With Frank Karvelis

5 I have never seen anything that looked like a ghost
6 Sometimes my thoughts seem so loud I can almost hear them
7 I am almost always consistent in what I say and believe
8 Most people are too stupid to realize which things in life are important
9 In pitch dark I never see any visual images
10 I have never ‘come out in a cold sweat’ upon realizing what I have told someone about myself
11 There are some people whom I trust completely

RISC and SPQ scores
AQ Data: Clear evidence of Statistical Learning ..
... with some differences

- High AQ participants are more precise in their estimations, show less bias, and have less hallucinations
Participants with high AQ have more veridical perception

- High AQ participants are more precise in their estimations, show less bias, and have less hallucinations
 ▶️ compatible with the idea of them relying less on expectations

\[\rho = -0.357, p = 0.001 \\
\text{CI}(95\%) = [-0.535, -0.117] \]

\[\rho = -0.228, p = 0.039 \\
\text{CI}(95\%) = [-0.420, -0.013] \]

\[\rho = -0.270, p = 0.014 \\
\text{CI}(95\%) = [-0.465, -0.046] \]
Participants with high AQ rely more on the likelihood and less on the prior

- Consistent with (the debated) previous theories / perceptual differences in autism.

- Modelling can be used to quantitatively measure the relative and absolute impact of the likelihood and the prior on perception.
Prior integration in **Autism**

Our study:
- Large numbers of participants
- Broad spans of AQ scores
- Learning of a new prior (statistical learning) and use in subsequent perception
- Explicit recovery of individual priors and likelihood using Bayesian modelling.

Participants with high AQ have more veridical perception, less influenced by the stimulus statistics (prior).

Results surprisingly support the (controversial) “enhanced sensory precision model” (sharper likelihood).
General Conclusions

- Statistical learning tasks coupled with Bayesian modelling offer tools to **test current theories** in Psychiatry:
 - assess if machinery of inference is intact
 - quantify differences in internal models, e.g. prior beliefs.

- Classification of diseases; Offer potential “dimensions” to characterise illness across boundaries

- Impact for **clinical work?**